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Abstract

We discuss extensions of model-based designs, such as the continual reassessment method, for use
in dose-finding studies. Rather than work with a single model to carry out the design and analysis
of a dose-finding study we indicate how the use of several models can greatly increase flexibility.
We can appeal to established results on Bayesian model choice and this device makes the
inferential problem essentially straightforward. The greater flexibility enables us to take on board
many different kinds of added complexity. Examples include extended models to deal with subject
heterogeneity, extended models to take account of different treatment schedules and extended
models to tackle the problem of partial ordering.
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1. Background

Model-based designs, including the continual reassessment method (CRM) [1], have gained
in popularity over the last 20 years. One of the specific purposes of the CRM was to meet
the ethical requirement of a dose-finding study in which, aside from the usual requirements
of statistical accuracy, it is felt necessary to treat every included patient at the current best
estimate of some acceptable ‘ideal’ target dose. Many developments and innovations have
followed, the basic method and variants having found a number of other potential
applications. We assume that we have available & doses; @, ...dj possibly multi-
dimensional and ordered in terms of the probabilities, /(d)), for toxicity at each of the levels,

ie R(d) < R(dj) whenever /< j. The most appropriate dose, the ‘target” dose in any study

and the dose defined to be the ‘maximum tolerated dose (MTD)’, denoted ap €{d, ...di} is
that dose having an associated probability of toxicity, R(ap), as close as we can get to some
target ‘acceptable’ toxicity rate 6. Specifically we define dy € {d}, ...d)} such that

IR(do) - O1<IR(d) =6, €=1,....k, dr#do. ()

The binary indicator Yjtakes the value 1 in the case of a toxic response for the jh entered
subject (=1, ...n) and 0 otherwise. The dose for the jth entered subject, Xjis viewed as
random taking values x;€{ay, ...dk}; /=1, ...,n. Thus, Pr(Y;=1|X;= x) = R(x).
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Little is known about A(-) and, given accumulating observations, we have two goals; first to
identify with as great a precision as possible ap, second to ensure that each individual is
treated in some optimal way given the current state of knowledge at the time of treatment.
Usually we take ‘optimal’ to mean that every patient is given the best dose level, this being
defined as the one as close as we can get to ay. Of course if we knew gy the problem no
longer exists and, in practice, we can only hope to treat at the level we believe, in the light of
all available information, to be our best bet of being a. In statistical terms the two goals are;
(1) estimate ¢y consistently and efficiently and (2) during the course of the study,
concentrate as many experiments as possible at and around g, more precisely treat the jh
included patient at the same level we would have estimated as being ¢ had the study ended
after the inclusion of j— 1 patients. We model R(x;), the true probability of toxic response at

Xj=x, X €{ah, ...d} by
R (xf') =Pr (Y ,zllX,-:x,-) =E (Y jIXj) =y (xj,a) (2

for some one parameter model y{(x;, 4) and a defined on the set <7. For every a, y{(x4)
should be monotone increasing in x and, for any x, w(x,4) should be monotone in &. For
every djthere exists some &; € <7 such that R(d)=y(d;a), i.e. the one parameter model is
rich enough, at each dose, to exactly reproduce the true probability of toxicity at that dose.
We have a lot of flexibility in our choice for w(x,4). The simple choice: y{d;a)=af*P®,
where 7runs from 1 to 4, and where 0<a;<...<a,<1 and —oo<g<oo, has worked well in our
experience. The true mechanism generating the observations can be quite removed from our
working model overall, but, close to our target, the true situation and our working model
coincide. For the six levels studied in the simulations by O’Quigley et a/. [1] the working
model had a; = 0.05, ap =0.10, az = 0.20, a4 = 0.30, a5 = 0.50 and ag = 0.70. Once a
model has been chosen and we have data in the form of tbe set /= {1, x,-.., ¥ X}, the
outcomes of the first jexperiments we obtain estimates A(d), (/= 1,...,K) of the true
unknown probabilities R(d), (i=1,...,k) at the kdose levels (see below). The target dose
level is that level having associated with it a probability of toxicity as close as we can get to
6. The dose or dose level x;assigned to the jth included patient is such that

R(x)) = OI<IR (dr) — 61, £=1,....k, dr#x;. (3

This equation should be compared with equation (1). It translates the idea that the overall
goal of the study is also the goal for each included patient. The CRM is then an iterative
sequential design, the level chosen for the 7#+1th patient, who is hypothetical, being also our
estimate of ap. After having included jsubjects, we can calculate a posterior distribution for
awhich we denote by £a,Q;). We then induce a posterior distribution for y(d;d), / = 1,...,k,
from which we can obtain summary estimates of the toxicity probabilities at each level so
that;

R)=[ w(dya)f(aQ))da, i=l,....k @

Using equation (3) we can now decide which dose level to allocate to the (/+1)th patient. In

this context the starting level djshould be such that fwtﬁ(di, u) g (u) du=6_ This may be a
difficult integral equation to solve and, practically, we might take the starting dose to be

obtained from y(dj o) = @where /lo=fg{ ug (1) du, |t is also common practice to reduce the
number of integrals we need to evaluate by working with an alternative estimate /2

(A)=w(dip), i=1,...,k where ﬂ=fm¢af (a, Qj) da, There is no obvious value in this apart
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from intensive simulation studies where = the second estimate, which approximates the first,
reduces the amount of calculation although not even by an order of magnitude in most cases.

Given the set Q;and the log-likelihood - («) the posterior density for ais;

f(al))=H;'exp{ L (@} g (@), Hj=[" exp{Z;w)|gw)du. )

The dose x;1 €{dL,...di} assigned to the (/+ 1)th included patient is the dose minimizing

the Euclidean distance between &and fl/f{x/'+1,u}}f(ulﬂj) du. Often it will make little
difference if, rather than work with the of the toxicities, we work with the expectation of &,
thereby eliminating the need for k- 1 integral calculations. Thus we treat the (f+ 1)th
included patient at level xj1 €{d},...d} such that [6—y{X;1,u}| is minimized where

,uj:fuf (u|Qj) du,

2. Extended model-based designs

Suppose now that, instead of the single model of equation (2), we have some class of models
of interest and we denote these models as y,(x;,d) for m=1,..., Mwhere there are a total of
M possible models.

In particular, we might consider
U (dr, ) =al 0" G=1,....km=1,....M)

where 0<a;;<...<amx<l and —oo<g<co, as an immediate generalization of the single
model described the beginning of the section. Further, we may wish to take account of any
prior information concerning the plausibility of each model and so introduce (m),m=1,...,
M. where 7 (m) > 0 and where >, (m) =1. In the simplest case where each model is
weighted equally, we would take 7(m)=1/m.

If the data are to be analyzed under model /7 then, following the inclusion of / patients, the
logarithm of the likelihood, can be written as

J Jj
Lo (@)= ¥ 10ghy (xp, @)+ Y (1= ) log (1= Y (x0,@)) ()
(=1 =1

where any terms not involving the parameter a have been equated to zero. Under model m
we obtain a summary value of the parameter &, in particular the maximum of the posterior
mode and we refer to this as 4, Given the value of d,,;under model /77 we have an estimate
of the probability of toxicity at each dose level d;via: @)=y (d;ém) (/= 1,...,k). On the
basis of this formula, and having taken some value for /7, the dose to be given to the (f+1)th
patient, X1, is determined. Thus, we need some value for /m7and we make use of the
posterior probabilities of the models given the data Q/. Denoting these posterior probabilities

by r(m<y) then:

7 (m) fioooexp {.,Sfmj (u)} g (u)du
M 7 (m) 7 exp {- oy ()] g () du

(i) =

In some cases the 7z(/mQ)) are only of very indirect interest, such as using several models
and then averaging to decide on the best current, running, estimate of the MTD. In other
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cases the 7z(m|Qy) can play a more central role and we will want to say something about m
itself as we make progress. Once m, our indicator over potential models takes values greater
than one, then we consider that we are dealing with ‘extended’” models. There are a large
number of potential extensions of the CRM and here we focus on three of them;

1. Extensions to deal with patient heterogeneity. A closely related problem from the
methodological standpoint is when different patients receive different treatment
schedules which may have a potential impact on the probability of encountering a
DLT. Although in this case the whole group of treated patients may be
homogeneous, we can make use of the methods which account for heterogeneity.

2. Extensions that enable us to relax the monotonicity assumption and, in particular,
tackle the dose-finding problem using two drugs in which the toxic ordering may
not be known.

3. Extension that enable us to make use of several rather than a single CRM model
and thereby address to some extent the issue of arbitrariness in model choice.

Of these three problems the first two are very practical ones. In many actual dose-finding
studies it is more likely to be the rule than the exception that there exists significant
heterogeneity among the patients. The goal of fully accounting for all sources of
heterogeneity would coincide with that of individualized dose finding, a laudable although,
at this stage, an unrealistic goal. A lesser goal is that of combining patients into rough
prognostic groups and some of these immediately suggest themselves. Common examples
are dividing the patients into heavily pre-treated and less heavily pre-treated patient groups,
or, possibly, dividing the groups on the basis of adult and adolescent groups. The second
problem concerns dosing involving more than a single agent when, in order to maintain
caution, as we increase one of the component compounds we may decrease the other. The
result of this can be that only a partial ordering of the toxic probabilities can be claimed. The
exact ordering of the various combinations is unknown and an extended CRM model would
allow for this extra flexibility. Problem 3 has both a theoretical and a practical side although
essentially the question is a theoretical one: to what extent dose the arbitrariness in any
model choice impact final conclusions and, by appealing to a whole class rather than a
single arbitrarily chosen model, do we increase robustness or can we be more confident in
the final result. We consider the first problem in the following section and then, in
subsequent sections, we consider the other two problems.

3. Patient heterogeneity

As in other types of clinical trials we are essentially looking for an average effect. Patients
naturally differ in the way they may react to a treatment and, although hampered by small
samples, we may sometimes be in a position to specifically address the issue of patient
heterogeneity. One example occurs in patients with acute leukemia where it has been
observed that children will better tolerate more aggressive doses (standardized by their
weight) than adults. Similarly, heavily pre-treated patients are more likely to suffer from
toxic side effects than lightly pre-treated patients. In such situations, we may wish to carry
out separate trials for the different groups in order to identify the appropriate MTD for each
group. Otherwise we run the risk of recommending an ‘average’ compromise dose level, too
toxic for a part of the population and suboptimal for the other. Usually, clinicians carry out
two separate trials or split a trial into two arms after encountering the first DLTs when it is
believed that there are two distinct prognostic groups. This has the disadvantage of failing to
utilize information common to both groups. The most common situation is that of two
samples where we aim to carry out a single trial keeping in mind potential differences
between the two groups. A multi-sample CRM is a direct generalization although we must
remain realistic in terms of what is achievable in the light of the available sample sizes.

Stat Med. Author manuscript; available in PMC 2012 October 24.
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The papers [2, 3] focus mostly on models for the two group case, since this case is the most
common and there are not usually enough resources, in terms of patient numbers, to deal
with more complex structures. Elaborating higher dimensional models, at least conceptually,
is straightforward. The dose toxicity model is written;

Pr(Y=1|d;,z) =y (di,a,b) (9)

where the parameter 6 measures to some extent the difference between the groups. An
obvious example that has been used successfully is

U (diya,b) =aSP " (i=1,...,k) (10)

where, again, 0<a;<...<g<1; —00<g<00, —co<p<oo and zis a binary group indicator.
Asymptotic theory is cumbersome for these models, but consistency can be shown under
restrictive assumptions [2].

An alternative approach, in harmony with the underlying CRM idea of exploiting
underparametrized models, is to be even more restrictive than allowed by the above
regression models. Rather than allow for a large, possibly infinite, range of potential values
for the second parameter b, measuring differences between the groups, the differences
themselves are taken from a very small finite set. Since, in any event, if the first group
finishes with a recommendation for some level, agp say, then the other group will be
recommended either the same level or some level, one, two or more, steps away from it. The
idea is to parameterize these steps directly. The indices themselves are modeled and the
model is less cluttered if we work with log y{(d},a) rather than y1(d/;4) writing;

logyr (d;, a) =exp (a) logayi), ¢ (D) =i+zh; () (11

where

hi (1) =tI (1 < i+t < k) +kl (i+1>k) +1 (i+t<1), 1=0,1,2,..., (12

the second two terms in the above expression taking care of edge effects. It is easy to put a
discrete prior on £ possibly giving the most weight to #= 0 and only allowing one or two
dose level shifts if the evidence of the accumulating data points strongly in that direction.
No extra work is required in order to generalize to several groups. Under a condition,
analogous to condition 7 (see [2]), applied to both groups separately, consistency of the
model in terms of identifying the correct level, can be demonstrated. This is of interest but it
is more relevant to study small sample properties, often via the use of simulations, since, for
dose-finding studies, samples are invariably rather small.

1. Model 1: m=1

Pr(Y=1ld;,z=0) =y (d;, a)
Pr(Y=1ld;,z=1) =y (d;, a),

2. Model 2: m=2
Pr(Y=1|d;,z=0) =y (d;, @), i=1,...,k

Pr(Y=1ld;,z=1) =y (dix1,a), i=1,...,k—1
Pr(Y=1ldi,z=1) =y (dr, @), i=k

Stat Med. Author manuscript; available in PMC 2012 October 24.
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3. Model 3: m=3

Pr(Y=1ld;,z=0) =y (d;,a), i=1,...,k
Pr(Y=1ld;,z=1) =y (di=1,a), i=2,...,k
Pr(Y=1ldi,z=1) =y (d1,a), i=1

The above models allow up to a single difference in dose levels between the groups. This
difference can be in either direction, corresponding to a situation in which we do not know,
or have any reasonably solid knowledge about which of the two groups is likely to fare the
worst. At the same time we rule out the possibility that any difference, should one exist, be
greater than a single level. It is obviously very straightforward to construct models which
would allow for differences up to two or more levels, again in either direction. In addition,
nothing hinders us from allowing differences in one direction to be limited to say one level
at most whereas, in the other direction, we may allow greater differences than one level.
Indeed, we could decide that we will not allow any difference greater than zero in one
direction while allowing differences of one or more in the other. This would correspond to
the case where we know that should any difference exist it can only be in a given direction.
In practice this is likely to be the most common situation, a well-known example being
heavily pre-treated and lightly pre-treated patients. The MTD for the heavily pre-treated
patients will be no higher than that for the lightly pre-treated patients.

4. Different treatment schedules

Within the context of a Phase | dose-finding study it will sometimes be the case that there is
more than one treatment schedule. The dose may be broken down in different ways; given
say once a day for 3 days in a given week, given in a single dose for that week, or perhaps
given twice weekly at half of the single dose. For a given total amount of dose per week the
schedule itself may have an impact upon the probability of observing toxicity at any given
dose. One of the authors (J. O. Q.) was involved in the design of a study involving 3
schedules and 2 prognostic groups (heavily and more lightly pre-treated patients). This
meant that there were a total of 6 possibly groups and the promoters of the study wanted to
carry out 6 Phase I studies in parallel. Including no more than around 20 patients per group
means a total number of patients well over 100 and it became clear to the sponsors of the
study that this was not feasible. Sharing information across groups can allow for a more
efficient use of resources. This information can take the form of a parameter quantifying
possible shifts in the MTD between groups. The amount of savings can only be quantified
via deeper comparative study but, in the light of preliminary work on the heterogeneity
problem [2], it would be possible to reduce the sample size of around 120 described just
above to little more than one half of that.

In the practical context of modeling, we would introduce indicator variables, in a way
similar to those used to specify the problem of patient heterogeneity. The variable ‘schedule’
on 3 levels could be represented by 2 binary covariates, 2 and z3. Together with the variable
z; indicating the degree of prior treatment that would allow for 6 groups in all. We can write
the model as,

logy (d;, a) =exp (a) logayi), ¢ (i) =i+z1h (t) +22hi (s) +z3hi (W) (13)

where, in a way, entirely analogous to the definition of /{#) in equation (12), we allow the
variables, # sand v to take integer values beginning with zero (no effect) but keeping within
the range of allowed doses, i.e. we use indicator variables like those in equation (12) to cater
for edge effects. Although the problem is becoming quickly more involved than that
concerned with two sample heterogeneity, it may still be worth writing out all of the models
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as done there. This may be slightly tedious but is straightforward and would be useful in the
discussion stage of trial development.

As much as possible of what is known of the physical problem can be incorporated into the
design. For example, it may be argued that the shorter the time interval over which the
treatment is given, the greater the potential for any increase in the probability of toxicity at
any given dose. In this case the above 3 treatment schedules would be ordered and we could
reduce the use of two covariates 2, and z3 to a single covariate. Again, given the clinicians
precise knowledge of the situation, it may be possible to eliminate the notion that the 3
schedules might have 3 distinct MTDs. They may only differ by at most a single level and
this can be explicitly expressed via our model construction.

5. Partially ordered dose toxicity models

Conaway et al. [4] and Wages et al. (2010; under review) proposed methods for phase |
trials involving multiple agents in which some of the orderings of the toxicity probabilities
between combinations of agents are not known prior to the study. As an example, these
papers cite a study [5] involving pacitaxel and carboplatin administered in the combinations
in Table I. The ordering for combinations 3 and 5 is not known since combination 3 has a
greater dose of paclitaxel but a lower dose of carboplatin than combination 5. Many of the
orderings are known. For example, combination 2 has a greater probability of a toxicity than
combination 1 because combination 2 has the same dose of pacitaxel and the same dose of
carboplatin as combination 1.

The papers [4] (Wages et al., 2010; under review) consider all possible ‘simple orders’
consistent with the known orderings. A simple order is one in which all orderings between
pairs of treatment combinations are known. In the Patnaik (2001) study [5], there are 6
possible simple orders for the toxicity probabilities associated with the treatment
combinations.

m=1:R (x1) £ R(x2) < R(x3) < R(x4) < R(xs5) < R(x¢)
m=2:R(x1) < R(xp) < R(x3) < R(xs5) < R(xg) < R(x4)
m=3:R(x1) < R(x2) < R(x5) < R(xg) < R(x3) < R(xy4)
m=4:R (x1) £ R(xp) < R(x5) < R(x3) < R(x4) < R(x¢)
m=5:R(x1) < R(x2) < R(x3) < R(x5) < R(x4) < R(xg)
m=6:R (x1) < R(x2) < R(xs) <R(x3) <R(xg) < R(xq).

Each of the simple orders can be thought of as one of A/ = 6 possible models.

Using the accumulated data from / patients, Q/, the maximum likelihood estimate 4, of the
parameter &, in 6 can be computed for each ordering m,m=1,..., M, along with the value
of the log-likelihood (7) at 4, Wages et a/. (2010; under review) propose an escalation
method that first chooses the ordering with the largest maximized log-likelihood value,
% (@) 1f we denote this ordering by m’", the authors use the estimate of a,,;* to estimate
the toxicity probabilities for each treatment combination under ordering /77",

R(d)) =y (di,a,), (/= 1,...,K). The next patient is then allocated to the dose combination
with the estimated toxicity probability closest to the target. Wages et a/. (2010; under
review) investigate several variations of this basic design, including two-stage designs and
designs that incorporate randomization among the different possible orderings and describe
the operating characteristics of their proposed design.
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6. Bayesian averaging and maximization for working model selection

The choice of the working model, i.e. the a;in the setting up of any CRM design is largely
arbitrary. Cheung and Chappell [6] describe how operating characteristics can be less
sensitive to certain working model choices. O’Quigley and Zohar [7] indicate that an
‘unreasonable’ choice may have a negative impact on operating characteristics.
Unfortunately it is not easy to provide a sharp and precise definition as to what we mean by
‘reasonable’ and the only operationally useful definition of a reasonable model would be one
that exhibits good robustness properties. Some working models, while respecting the
constraints of Shen and O’Quigley [8] required for convergence, might be anticipated to be
not reasonable in this sense. Lee and Cheung [9] provide algorithms that can furnish a
satisfactory, if not optimal, working model. Their approach is based on that of indifference
intervals described in Cheung and Chappell [6]. A somewhat different strategy for tackling
the same question was adopted by Yin and Yuan [10]. These authors suggested that, rather
than identifying a single working model, we work with a class of working models and make
progress by appealing to the technique of Bayesian model averaging (BMA). This technique
makes use of the posterior estimates for the relevant toxic probabilities and these are then
weighted with respect to the corresponding posterior model probabilities. Daimon and
colleagues [11] also considered making use of several working models, selecting via an
sequentially adaptive technique based on different criteria. In particular they studied the
posterior predictive loss (PPL) [12], the deviance information criterion (DIC) [13] and the
posterior model probability (PMP) [10, 14].

To overcome the arbitrariness in pre-specification of a single working model, especially for
a phase I trial in which initial guess of the toxicity probabilities are rarely accurate, as well
as to avoid poor pre-specification, our proposal consists of the following procedures: (1) to
use all elicited or possible working models corresponding to initial guesses of the toxicity
probabilities given by investigators before the start of the trial, (2) to update each of them by
the CRM simultaneously, (3) to select one working model out of them, automatically and
adaptively by using some criterion, during the course of the trial, and (4) to estimate the
MTD based on the selected working model and allocate the estimated MTD to each included
patient. Different Bayesian model selection criteria can be used, for example, the PPL [12],
the DIC [13] or the PMP [10, 14].

Yin and Yuan [10] argue that their approach leads to greater robustness. However, as long as
we work with ‘reasonable” models (see O’Quigley and Zohar [7] for a definition of
reasonable) then it is not likely that we will gain very much in terms of robustness. One
intuitive explanation is that we can see the Bayesian averaging as being a process of taking
the mean according to a distribution of recommendations based on different models. If,
instead, we take a mean based on a distribution across the parameterizations of the models,
then this results in a single simple model. In general the mean of a function is not the same
as the function of the mean but, under assumptions of local linearity, they are likely to be
very close. Thus, the Bayesian averaging will behave in a way close to that of using a
particular single model. This argument would also support the idea that, in order to obtain
comparable performance, we would not anticipate encountering any penalty in terms of
sample size by using Bayesian averaging as opposed to working with a single model. Lee
and Cheung [9] tackle the issue in a slightly different way, taking the view that the best
approach is via a single simple model but that, given certain operational objectives, we can
strive to obtain a particular single model from the available class of models which can
effectively meet these objectives.

Stat Med. Author manuscript; available in PMC 2012 October 24.
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