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Asymptotic properties of mean survival
estimate based on the Kaplan–Meier curve
with an extrapolated tail
Qi Gonga and Liang Fangb*

Asymptotic distribution of the mean survival time based on the Kaplan–Meier curve with an extrapolated ‘tail’ is derived.
A closed formula of the variance estimate is provided. Asymptotic properties of the estimator were studied in a simulation
study, which showed that this estimator was unbiased with proper coverage probability and followed a normal distribution.
An example is used to demonstrate the application of this estimator. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many clinical trials, mean survival is difficult to estimate
because of censoring or insufficient follow-up. As an alterna-
tive, Irwin [1] proposed restricted mean survival time to estimate
expected lifetime restricted to a chosen time point T . Restricted
mean survival time is defined as the integration of survival func-
tion from time 0 to a chosen time point T , which essentially is
the area under the survival curve from time 0 to T . Test statis-
tics based on the difference of two restricted mean survival times
were derived to compare the distributions of survival time from
two treatment groups as an alternative test under the situation
of non-proportional hazard ratio [2–7]. Restricted mean survival
is also widely used to estimate quality-adjusted survival in patient
outcome research [8, 9].

The choice of restriction time T is often subjective and hard
to justify. Karrison [2] discussed a method to choose T on the
basis of the sample size. Literatures in quality-adjusted survival
[8, 9] suggest choosing median follow-up time as T . However, in
practice, the expected survival time (i.e., mean survival time) is
much more meaningful for patients than the expected survival
time up to a chosen time point T (i.e., restricted mean survival
time). Estimating mean survival time is possible if the last obser-
vation on the study was an event and survival curve drops to 0
at the end, although the estimation could be unstable because
of the small number of risk set at the tail of the survival curve.
When the last observation on the survival curve is censored and
the curve does not drop to 0 at the end, Efron [10] assumed 0
beyond the last observation. Moeschberger and Klein [11] and
Klein et al. [12] investigated ways to extrapolate the Kaplan–Meier
survival curve to 0. The extrapolation methods add a ‘tail’ to
the Kaplan–Meier curve beyond the last observed time point.
The ‘tail’ is estimated by a parametric function fit to the data. In
other words, the tail is imputed on the basis of the parametric
survival function estimated from the data. Gelber et al. [13] pro-
posed estimating mean survival on the basis of the extrapolated
Kaplan–Meier survival curve. Commercial software Stata (Stata

Corp., College Station, TX, USA) provides an option to calculate
the mean survival using this extrapolation method without pro-
viding the variance estimate (www.stata.com/help.cgi?stci). How-
ever, to our knowledge, the statistical inference of mean survival
estimator based on the extrapolated Kaplan–Meier curve has not
been derived. Especially, the variance estimate of such estima-
tor was obtained using a bootstrap method because no closed
formula was available. In this article, the estimator of the mean
survival time based on extrapolated Kaplan–Meier survival curve
is referred to as the hybrid estimator because it includes a non-
parametric estimate of survival and a parametric extrapolation of
the tail beyond the last observation of the survival curve. Statisti-
cal inferences of the hybrid estimator, including the closed form
of the variance estimate, are derived, and asymptotic properties
are evaluated.

The article is organized as follows. In Section 2, notations are
defined, and the hybrid estimator and its statistical inferences are
derived. A simulation study is reported in Section 3 to evaluate
the asymptotic properties of the hybrid estimator. In Section 4,
we apply our methods to estimate the mean survival time and
treatment effects from an oncology clinical trial. A discussion and
summary is presented in Section 5.

2. NOTATIONS AND METHODS

Let � denote the mean survival � D
R1

0 S.t/dt, where S.t/ is the
true survival function for event time. Also, define � D �KM C

�P , where �KM is restricted mean survival from time 0 up to
the biggest observation time � , and �P denotes the integration
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under the S.t/ from � to infinity. That is, �KM D
R �

0 S.t/dt and

�P D
R1
� S.t/dt. OSKM.t/ is the Kaplan–Meier estimate of S.t/ in

time interval [0, � ]. OSP.t/ is the survival estimate of S.t/ in inter-
val [� , 1] based on a parametric distribution, fP .t/, fit to the
data. For example, if the survival data are assumed to follow an
exponential function with parameter � (i.e., fP .t/ D �e��t/, the

estimate of the survival function OSP.t/ D e�
O�t , where O� is the

maximum likelihood estimator of �. When replacing S.t/ with its
estimates OSKM.t/ and OSP.t/ on corresponding intervals, we obtain
O�KM D

R �
0
OSKM.t/dt and O�P D

R1
�
OSP.t/dt naturally. Thus, the

hybrid mean survival estimator of � is defined as

O�H D O�KMC O�P D

Z �

0

OSKM.t/dtC

Z 1
�

OSp.t/dt. (2.1)

In fact, one could choose the adjacent time point to be a time
point (t1) earlier than the last observed survival time (� , t1 < � )
and let the parametric extrapolation start at t1 because the
Kaplan–Meier tail estimate is unstable due to few available data.
Nevertheless, the results in this section can be extended naturally
to obtain the variance estimate.

Let Ti denote the survival time, and Ci is the censoring time
for the ith subject. Assume Ci is independent of Ti . The observed
time is given by Xi D min.Ti , Ci/, and the censoring indicator
�i D I.Ti D Xi/, iD 1, : : : , n.

To estimate�KM, we use counting process notations. Let Y.t/be
the number of subjects at risk at time t and Ni.t/ be the count of
events at time t for the ith subject. �.t/ denotes the accumulate
baseline hazard function.

It can be shown that

OSKM.t/� S.t/D�
Xn

iD1
S.t/

Z t

0

OSKM.u�/I.Y.u/ > 0/

S.u/Y.u/
dMi.u/

D
Xn

iD1
�i.t/,

where �i.t/D�S.t/

Z t

0

OSKM.u�/I.Y.u/ > 0/

S.u/Y.u/
dMi.u/ and dMi.u/D

dNi.u/ � Yi.u/d � .u/ D dNi.u/ � Yi.u/dS.u/=S.u�/ [14]. Thus,

O�KM � �KM D

Z �

0

h
OSKM.t/� S.t/

i
dt D

Xn

iD1
'i , where 'i D

�

Z �

0
S.t/

Z t

0

OSKM.u�/I.Y.u/ > 0/

S.u/Y.u/
dMi.u/dt.

Under some regular conditions [15], O�KM � �KM � N.0, �11/

where �11 D
1

n

Z �

0

�Z 1
t

S.u/du

�2 dƒ.t/

S.t�/SC.t�/
, and SC.t/ is the

true survival function for the censoring time.
To estimate �P , we define ˇ as the parameter vector of

the distribution fit to data. To estimate ˇ, we write the likeli-

hood function as L D
Y
�iD1

fP.Xi/
Y
�iD0

SP.Xi/ [16]. Score func-

tion is U.ˇ/ D @ log.L/=@ˇ, and observed Fisher information is
I.ˇ/ D �@2 log.L/=@ˇ@ˇT . Thus, it can be written that Ǒ � ˇ D

I�1.ˇ/U. Ǒ/ D
Xn

iD1
 i , where  i D I�1.ˇ/Ui. Ǒ/, and Ǒ � ˇ �

N.0, �22/, where �22 D I�1.ˇ/.
Because ˜i(t), 	i , and i are all independent and identically dis-

tributed with zero expectation, the covariance coefficient for the
Kaplan–Meier and parametric extrapolated tail can be derived as

�12 D cov
�
O�KM ��KM, Ǒ � ˇ

�
D cov

�Xn

iD1
'i ,
Xn

iD1
 i

�
D

Xn

iD1
'i i . Thus, we have

�
O�KM ��KM
Ǒ � ˇ

�
� N

��
0
0

�
,

�
�11 �12

�T
12 �22

��
. (2.2)

Applying function delta method, O�H D O�KM C O�P D O�KM CZ 1
�

OSP

�
t; Ǒ
�

dt. Because we assume as Ǒ ! ˇ, OSP

�
t; Ǒ
�
! S.t/.

We have O�P! �P and can obtain O�H ��� N.0, �H/, where

�H D �11C 2�12
@ O�P

@ˇ
C
@ O�T

P

@ˇ
�22

@ O�P

@ˇ
.

All the terms mentioned in the preceding text can be consistently
estimated by their sample analogs. The hybrid mean survival
hypothesis testing is based on Z-test.

However, as discussed in many literatures [8, 17], the paramet-
ric function estimated from the data usually has poor fitting at the
tail of the survival curve. This is because the majority of the data
occur at the early part of the curve and drive the overall fitting of
the parametric function. For example, a Weibull distribution can
fit the data well when judging the goodness-of-fit from the entire
course of the survival curve. However, the local fitting at the tail
may be poor.

In such cases, we define another hybrid estimator of mean
survival �

O��H D O�KMC O�
�
P D O�KMC

Z 1
�

OS�P .t; t0,ˇ�/dt, (2.3)

where OS�P

�
t; t0, Ǒ�

�
D OSKM.t0/OSP.t; Ǒ�jt > t0/. This estimator

differs from (2.1) in such a way that the extrapolated tail is esti-
mated via data beyond time point t0, conditional on t > t0. In
other words, the parametric tail is estimated ‘locally’ and thus
results in a better fit to the tail of the survival curve. This paramet-
ric tail is then attached to the Kaplan–Meier estimate OSKM.t0/ at
time t0 to obtain the estimated survival function for the period

of time t > t0: OS�P

�
t; t0, Ǒ�

�
D OSKM.t0/OSP.t; Ǒ�jt > t0/. We

define ˇ� as the parameter vector of the distribution fit to local
data. To estimate ˇ�, we write the likelihood function as L� DY
�iD1

fP.XijXi > t0/I.Xi > t0/
Y
�iD0

SP.XijXi > t0/I.Xi > t0/ [16].

Score function is U�.ˇ�/ D @ log.L�/=@ˇ�, and observed Fisher
information is I�.ˇ�/ D �@2 log.L�/=@ˇ�@ˇ�T . Thus, it can be

written that Ǒ��ˇ� D I��1.ˇ/U�. Ǒ�/D
Xn

iD1
 �i , where �i D

I��1.ˇ�/U�i .
Ǒ�/, and Ǒ��ˇ� � N.0, ��22/, where ��22 D I��1.ˇ�/.

For example, if we fit the local data with exponential dis-
tribution S.t/ D expf��tg, the parametric part in (2.3) is
OS�P

�
t; t0, O��

�
D OSKM.t0/ expf�O��.t � t0/g. When constructing

OS�P

�
t; t0, Ǒ�

�
, the parametric piece OSP.t; Ǒ�jt > t0/ is connected

to the Kaplan–Meier estimate OSKM.t0/ at time t0. However, when
the extrapolated trail is added to the Kaplan–Meier curve, the tail
does not necessary go through the Kaplan–Meier estimate OSKM.�/

at time � . In other words, the end of the Kaplan–Meier curve and
the start of the extrapolated tail can, but are not required to,
connect to each other.1
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This hybrid estimator has been proposed by Su and Fang
[17] and Gelber et al. [8] without providing detailed asymp-
totic properties. We derive the asymptotic properties of this esti-

mator here. Similar to (2.2), we have

0
@ O�KM ��KM

Ǒ� � ˇ�

OSKM.t0/� SKM.t0/

1
A �

N

2
64
0
@0

0
0

1
A ,

0
B@
��11 ��12 ��13

��T
12 ��22 ��23

��T
13 ��T

23 ��33

1
CA
3
75, where

��11 D �11,

��12 D cov
�
O�KM ��KM, Ǒ� � ˇ�

�
D cov

�Xn

iD1
'i ,
Xn

iD1
 �i

�

D
Xn

iD1
'i 
�
i ,

��13 D cov
�
O�KM ��KM, OSKM.t0/� SKM.t0/

�

D cov
�Xn

iD1
'i ,
Xn

iD1
�i.t0/

�
D
Xn

iD1
'i�i.t0/,

��22 D I��1.ˇ�/,

��23 D cov
�
Ǒ� � ˇ�, OSKM.t0/� SKM.t0/

�

D cov
�Xn

iD1
 �i ,

Xn

iD1
�i.t0/

�
D
Xn

iD1
 �i �i.t0/,

��33 D S.t0/
2
Xn

iD1

Z t0

0
dNi.t/=fYi.t/ŒYi.t/� dNi.t/
g.

 �i D I��1.ˇ�/U�i

�
Ǒ�
�

.

Applying function delta method, O��H D O�KM C O�
�
P D O�KM CZ 1

�

OS�P .t; t0, Ǒ�/dt. As Ǒ� ! ˇ�, OS�P .t; t0, Ǒ�/ ! S.tjt > t0/. We

have O��P ! �P and can obtain O��H ��� N.0, ��H /, where

��H D �
�
11C 2��12

@ O��P
@ˇ�
C
@ O��T

P

@ˇ�
��22

@ O��P
@ˇ�
C 2��13

@ O��P
@SKM.t0/

C 2
@ O��T

P

@ˇ�
��23

@ O��P
@SKM.t0/

C
@ O��T

P

@SKM.t0/
��33

@ O��P
@SKM.t0/

Similarly, all terms mentioned in the preceding text can be esti-
mated consistently by their sample counterparts. Z-test could be
used for the hypothesis testing.

3. SIMULATION STUDY

We conducted a simulation study to assess the asymptotic prop-
erties of the hybrid estimator in Section 2. Data were generated
randomly from four scenarios. In the first scenario, the data were
generated from a Weibull distribution S.t/ D expf�.t=e�/1=� g
with parameters � D 1.5 and � D 1.2. In the second and fourth
scenarios, the data were created from a piecewise Weibull distri-
bution with parameters �1 D 2.2 and �1 D 2.0 when t < 5, and
�2 D 2.5 and �2 D 0.4 when t � 5. In scenario 3, data were from
an exponential distribution S.t/ D expf��tg with � D 0.2. Event
time Ti (nD 100, 200, 300) was generated from one of these distri-
butions. Independent censoring Ci was generated from uniform
distribution between (a, b), where a and b values vary (Table I)
to achieve 20% and 30% censoring. The observed survival time
was defined as Xi D min.Ti , Ci/. Any Ti greater than b was cen-
sored because Ci 2 .a, b/. For each sample, if Ti < b for all i, then
the adjacent time � D max.Xi/ < b. Otherwise, if one or more
than one Ti � b, then � D max.Xi/ D b. As a result, the adjacent

time � may vary among replications but would always be less than
or equal to b. t0 and � are different. Time t0 is the cutoff beyond
which a chosen parametric form is fit in (2.3). Time � is the max-
imum observation time, from which the extrapolated tail starts
and goes to infinity. One thousand replications were generated
for each scenario.

For all four scenarios, the true distribution forms were used as
SP.t/ to fit the curve. For scenarios 1 and 2, SP.t/ were estimated
on the basis of all data. In other words, hybrid estimator (2.1) was
used to estimate mean survival time. Note that, for scenario 2, we
fit a piecewise Weibull distribution to all data to obtain SP.t/, and
we did not force the tail to be adjacent to the Kaplan–Meier curve.
Therefore, the mean survival was still estimated using estimator
(2.1). For scenarios 3 and 4, only the data beyond time t0 D 5
were used to fit SP.t;ˇ�jt > t0/, and then the parametric form was
attached to the Kaplan–Meier estimate at time t0, SKM.t0/, to form
the final function S�P .t; t0,ˇ�/ D SKM.t0/SP.t;ˇ�jt > t0/. In other
words, hybrid estimator (2.3) was used to estimate mean survival
time. For all four scenarios, the adjacent time point � is chosen to
be the maximum survival time observed. The percent bias, cov-
erage probability, empirical standard error (ESE), and asymptotic
standard error (ASE) of the mean survival estimate were calcu-
lated (Table I). ESE is the sample standard error of mean lifetime
estimate across all replications. ASE is the average of the derived
asymptotic standard error based on our method from each of the
replications.

In all four scenarios, the biases of the hybrid estimator were
close to 0 (< ˙3%). The ESE were closed to the ASE. The cover-
age probabilities were close to the desired level of 95%. As the
sample size went up or the censoring rate went down, the bias
and the standard error became smaller and smaller. The choices
of 75 percentile and 95 percentile time as the adjacent time point
� resulted in similar findings (data not shown). Therefore, the
asymptotic properties derived in Section 2 were verified.

To study the robustness of the hybrid estimator to mis-
specification of the underlying data distribution, we generated
data from Weibull (scenarios 5 and 6, Table II), log-logistic (sce-
nario 7), and log-normal (scenario 8) distributions and estimated
mean survival time by using the hybrid estimator (2.3) with expo-
nential distribution fit to the local data at the tail. Log-logistic
survival function was expressed as S.t/D 1=f1Cexp.��=�/t1=� g.
Log-normal density function was shown as f .t/D expf�Œlog.t/�
�
2=2�g=

p
2�� . It was already shown in Su and Fang [17] that the

hybrid estimator (2.1) was not robust to mis-specification of the
underlying data distribution and therefore not investigated here.

For all four scenarios, the percent biases of the mean survival
were small (<5.6%). The ESE was close to ASE, which indicated
that the derived formulas of the asymptotic of the hybrid esti-
mator were valid. However, the coverage probabilities were less
than 95% for log-logistic and log-normal distributions and associ-
ated with larger biases (�3.21% and�5.56%, respectively). These
results suggest that the hybrid estimator (2.3) is fairly robust to
mis-specification of the underlying data distribution, although
the biases in parameter estimates are inevitable.

4. EXAMPLE

As an illustration, we estimated the mean survival time with the
hybrid estimator for data generated from a randomized, placebo-
controlled, multi-center, phase III clinical trial. Patients in the con-
trol arm received drug A. Patients in the treatment arm received
drug B. The primary end point in the trials was a time-to-event

Pharmaceut. Statist. 2012, 11 135–140 Copyright © 2012 John Wiley & Sons, Ltd.
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Table I. Bias and coverage probability of the hybrid mean survival estimator in the simulation study.

True distribution n Censoring % Censoring interval (a, b) Bias/true % ESE ASE CP

Scenario 1: 100 20 (5, 12) 0.55 0.751 0.743 0.94
Weibull 30 (2, 12) 0.68 0.813 0.824 0.95
(�D 1.5, � D 1.2) 200 20 (5, 12) 0.38 0.518 0.516 0.95

30 (2, 12) 0.57 0.564 0.563 0.95
300 20 (5, 12) 0.88 0.425 0.423 0.95

30 (2, 12) �0.18 0.456 0.453 0.94

Scenario 2: 100 20 (8, 16) 1.70 0.818 0.869 0.96
Weibull 30 (5, 16) 2.21 0.871 0.917 0.96
(�D 2.2, � D 2.0)C 200 20 (8, 16) 0.97 0.477 0.525 0.96
Weibull 30 (5, 16) 1.37 0.568 0.556 0.96
(�D 2.5, � D 0.4) 300 20 (8, 16) 0.82 0.396 0.421 0.96
joint at tD 5 30 (5, 16) 0.59 0.422 0.423 0.95

Scenario 3: 100 20 (6, 10) 1.61 0.658 0.662 0.95
Exponential 30 (4, 10) 2.54 0.803 0.773 0.94
(�D 0.2) 200 20 (6, 10) �0.98 0.446 0.453 0.96
t0 D 5 30 (4, 10) 1.81 0.531 0.521 0.95

300 20 (6, 10) 1.05 0.351 0.367 0.96
30 (4, 10) 0.93 0.409 0.412 0.96

Scenario 4: 100 20 (8, 16) 0.01 0.671 0.656 0.95
Weibull 30 (5, 16) 0.40 0.756 0.688 0.94
(�D 2.2, � D 2.0)+ 200 20 (8, 16) �0.75 0.470 0.448 0.94
Weibull 30 (5, 16) �0.60 0.507 0.470 0.93
(�D 2.5, � D 0.4) 300 20 (8, 16) �0.74 0.390 0.364 0.94
joint at tD 5 30 (5, 16) �0.71 0.410 0.379 0.93

Hybrid estimator (2.1) was used in scenarios 1 and 2, and hybrid estimator (2.3) was used in scenarios 3
and 4.
ESE, empirical standard error; ASE, asymptotic standard error; CP, coverage probability.

Table II. Robustness of the hybrid mean survival estimator in the simulation study.

True distribution t0 n Censoring % Censoring interval (a, b) Bias/true % ESE ASE CP

Scenario 5: 12 200 20 (12, 18) 2.41 0.410 0.422 0.94
Weibull (�D 2.5, � D 0.4)

Scenario 6: 5 200 20 (2, 10) 0.05 0.372 0.392 0.96
Weibull (�D 0.8, � D 1.4)

Scenario 7: 4 200 20 (2, 7) �3.21 0.239 0.230 0.84
Log-logistic (�D 0.8, � D 0.4)

Scenario 8: 4 200 20 (2, 7) �5.56 0.455 0.437 0.81
Log-normal (�D 0.3, � D 1.2)

Hybrid estimator (2.3) with exponential distribution fit to the tail was used in this table.
ESE, empirical standard error; ASE, asymptotic standard error.

variable, progression-free survival (PFS), defined as the duration
from randomization to disease progression or death, whichever
occurred first. The primary objective was to compare the PFS time
between the two arms.

The difference in median PFS time was 1.1 months with a
confidence interval of (0.4, 2.6) from Kaplan–Meier estimate,

which indicates a small benefit of adding B to A. However, the
hazard ratio estimated from a Cox regression model was 0.68,
and the p-value was 0.0002 from the log-rank test. The hazard
ratio indicates a reasonably large magnitude of risk reduction
(32%), and the p-value suggested that the survival functions
were significantly different for the two groups, which were not1
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reflected by the difference in median survival. Further evaluation
of the Kaplan–Meier plot revealed that the curves came together
at 50% of survival probability although separated elsewhere.

Above phenomenal was not uncommon in survival analysis.
Another example can be found in the prescription information
of Vectibix®, a drug for metastatic colorectal cancer [18]. The
Kaplan–Meier curves for the primary end point (progression-free
survival, PFS) in the registration trial of Vectibix® showed an inter-
esting pattern where the survival curve for the treatment arm was
well separated from the control arm, whereas two curves were
very close at the median time. The log-rank test indicated a sig-
nificant improvement in PFS (p < 0.0001), whereas the difference
in medians was close to 0. In such case, researchers used mean
survival time to measure the magnitude of treatment benefit.
Calculating mean survival time was possible for that trial as the
follow-up period was long enough for the survival curves in both
arms to drop to 0 at the end.

For our example, the last observation of the control arm on
the Kaplan–Meier curve was censored, and the curve did not
drop to 0. Therefore, only restricted mean survival could be esti-
mated. Instead, we estimated the mean survival with the hybrid
estimator. A wide choice of distributions including Weibull, expo-
nential, log-logistic, logistic, and log-normal were explored to fit
the data overall or by method (2.1). We evaluated the model fit-
ting through Cox–Snell residual plots [16]. However, none of them
gave satisfying fitting, which meant that the hybrid mean sur-
vival estimator (2.1) cannot be applied, and we had to try the
estimator (2.3). It was observed that the hazard rate seems to
change after month 6. Thus, an exponential distribution was fit
to the curve beyond t0 D 6 months. The adjacent time point �
was chosen to be 15 months because sample survival was only
5% beyond that time point. In other words, the extrapolated tail
was used to estimate the survival curve beyond � to obtain a
hybrid survival curve for mean survival calculation. Figure 1 (I)
presents the Kaplan–Meier estimate and the fitted distribution
function that was used to extrapolate the survival curve beyond
� . Figure 1 (II) shows the whole hybrid curve used to estimate
mean lifetime. Fitted distributions and parameters were listed in
Table III along with the hybrid mean survival estimated for each
arm and difference between the two arms. The estimated differ-
ence in hybrid mean survival is 2.2 months. This magnitude better
reflects the observed benefit from the estimated hazard ratio and
the log-rank test.

5. DISCUSSION

In this article, we estimated mean survival time with a hybrid esti-
mator in two forms of (2.1) and (2.3) on the basis of an extrap-
olated Kaplan–Meier survival curve beyond the last observation.
This hybrid estimator of mean survival was shown to be unbiased
and followed a normal distribution. A closed formula of the vari-
ance estimate for the hybrid estimator was derived and shown
to provide the right coverage probability in the simulation study.
Estimating the variance of a hybrid estimator such as ours has
always been a challenge in the literatures and is usually obtained
using re-sampling method [13]. The closed formula derived here
will benefit researchers and software developers.

Traditionally, median survival is used as the standard measure
of the center of data distribution, whereas mean survival is rarely
acceptable because of censoring and skewed distribution of sur-
vival data. In some situations, such as adjuvant oncology trials,
the event rate is so low that the median survival time cannot be

( I )

Progression-Free Survival (Month)

(II)

Progression-Free Survival (Month)

Figure 1. Kaplan–Meier estimate and fitted parametric curve for a phase III clinical
study (see Table III for distribution and parameter values).

estimated. Mean survival is used instead, for example, calculating
quality-adjusted lifetime and assessing relative cost-effectiveness
in health economics [19]. One of the reasons that mean survival
has not been widely used in the medical community is that it is
difficult to estimate because of censoring and insufficient follow-
up. Restricted mean survival was an alternative. However, choos-
ing the restriction time is hard to justify and explain. The hybrid
estimator provides an option to estimate mean survival without
having to choose a restricted time, which will make the concept
of mean survival easier to understand for patients. Using differ-
ence in mean survival to quantify the treatment benefit presents
certain advantages in some situations as shown in the example.

The statistical inferences derived in the article can be easily
extended to the calculation of quality-adjusted survival, which is
essentially a weighted mean survival time. It is a major challenge
in patient-reported outcome research that the quality-adjusted
survival calculated on the basis of restricted mean survival
cannot be extended to the point beyond restriction time T .
Gelber et al. [13] investigated the quality-adjusted survival based
on the extrapolated survival curves and obtained the confidence
interval from bootstrap. Their estimator is essentially the same as
our estimator (2.3).

The main limitation of the hybrid estimator is that the perfor-
mance of the hybrid estimator depends on the goodness of fit of
the parametric model. Certain model diagnosis has to be done
[16]. The hybrid estimator (2.3) has certain advantages and flexi-
bility that could achieve better model fitting. It is more important
to obtain a good fitting at the tail part of the survival curve. If
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Table III. Hybrid mean survival estimation for progression-free survival in the example.

Exponential Estimated Hybrid mean
parameter � KM value Survival function of Median Difference in median survival Difference (95% CI,

Treatment beyond t0 D 6 at t0 D 6 the extrapolated tail (month) (95% CI, month) (SE, month) p-value month)

ACPL 0.216 0.702 0.702*exp(�0.216 t ) 8.0 8.5 (0.37)
1.1 (0.4, 2.6) 2.2 (0.9, 3.5)

ACB 0.156 0.808 0.808*exp(�0.156 t ) 9.1 10.7 (0.56) 0.0005

The difference in medians is obtained via bootstrap method.
PL: placebo.

there is no appropriate parametric model that provides good fit-
ting of the survival curve, especially at the tail part, one should
avoid using the hybrid estimator and pursue restricted mean sur-
vival or median survival time instead. It is important to point
out that all extrapolations beyond observed range of data are
associated with untestable assumptions. Should the true distribu-
tion beyond last observed time change significantly, the hybrid
mean survival estimator would provide biased estimate. In addi-
tion, the formulas in this article cannot be used without individual
patient-level data. In the absence of individual patient-level data,
one must turn to other methods, such as method of moments or
regression analysis.

It is important to point out that it is not acceptable to use
a hybrid estimator as an alternative to designing for sufficient
follow-up period. In situations where it is difficult to have a suf-
ficient follow-up period, such as adjuvant oncology trials, the
hybrid estimator of mean survival could be considered as an alter-
native. Future research in this area includes exploring the possi-
bility of deriving a robust variance estimator of the hybrid mean
survival.
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