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We present a theoretical study of the heat dissipation in single-molecule junctions. In order to
investigate the heat dissipation in the electrodes and the relationship between the transmission
spectra and the electronic structures, we consider a toy model that in which electrodes linked by a
two-level molecular bridge. By using of the Landauer approach, we show how heat dissipation in
the electrodes of a molecular junction is related to its transmission characteristics. We show that in
general heat is not equally dissipated in the left and right electrodes of the junction and it depends
on the bias polarity and the positions of molecule’s energy levels with respect to the Fermi level.
Also, we exploit the C60 molecule as a junction and the results show a good agreement with the toy
model. Our results for the heat dissipation are remarkable in the sense that they can be used to
detect which energy levels of a junction are dominated in the transport process.

PACS numbers: 85.35.Ds, 85.65.+h, 81.07.Nb, 72.10.Di

I. INTRODUCTION

In recent decades, charge transport through single-
molecule and other nano-scale systems are being ac-
tively studied both theoretically and experimentally1,2.
It is suggested that a single-molecule could be a
bridge between two electrodes and behaves as circuit
components3,4. Theoretical perspectives of electronic
transport in single-molecule junctions can play a major
role in understanding and manufacturing novel nanoscale
electronic devices5–8. Two essential aspects of molecu-
lar junctions are thermoelectric effects and heat dissi-
pations that require more investigations due to exper-
imental challenges. Thermoelectric effects involve ba-
sic interplay between the electronic and thermal prop-
erties of a system. A temperature gradient in a con-
ductor causes charge flow and leads to a electric cur-
rent. Theoretical9–23 and experimental2,24–31 works on
thermopower in molecular junctions show that the ther-
mopower reveals some useful information that they can
not be obtained from the standard current-voltage mea-
surements. Charge carrier transport is always accom-
panied by heat dissipation, i.e., Joule heating. In the
recent experimental work32, authors used custom fabri-
cated scanning probes with integrated nanoscale thermo-
couples for studying heat dissipation in the electrodes of
single molecular junctions. They found that when the
transmission through the junction strongly depends on
energy, the heat dissipation in electrodes is unequal and
shows asymmetric behaviors. Furthermore, they showed
that the heat dissipation depends on both bias polarity
and the identity of the majority charge carriers. Also, re-
cently in the theoretical work33 authors expressed the ba-
sic principle that govern the heat dissipation in molecular

∗Two authors have the same collaboration

junctions in more detail. They showed how the heating
in electrodes of a molecular junctions is determined by its
electronic structure. They concluded that heat is asym-
metrically dissipated in electrodes of molecular junctions
and it depends on the bias polarity. Some of their results
obtained by analyzing the heat dissipation in single-level
molecular junctions.

Motivated by ref.33, we report here a detailed theo-
retical analysis of the joule heating in current-carrying
single-molecule junctions. In spite of previous mentioned
work, we consider a two-level molecule (toy model) as a
bridge between two metal electrodes, so each electrode
couples to a molecule with two branches as Fig. 1 shows
it. We show how the heating in the electrodes of a molec-
ular junction is determined by its electronic structure. To
this end, we first obtain exact expression for a transmis-
sion function of a toy model by using of the generalized
Green’s function formalism and then by using of trans-
mission we obtain the relations of heat dissipation in both
electrodes. We verify that in these structures, the ener-
gies of the molecular orbitals, in particular, the highest
occupied molecular orbital (HOMO) and the lowest un-
occupied molecular orbital (LUMO), have a vital role for
the electronic transport through single organic molecules.
We show that the three selections for two energy levels as
LUMO-LUMO, LUMO-HOMO and HOMO-HOMO lead
to different heat dissipations in electrodes. Furthermore,
we show that in contrast with the single-level model used
in33 for benzene-based molecules, heat dissipation in our
model is not always asymmetric. In the next step, as
another molecular bridge, we consider the C60 molecule
that sandwiched between two metal electrodes (Au) via
single and multiple contacts. Our numerical conclusions
for C60, by using of effective single-particle tight-binding
model, is well matched with results of the toy model.

The rest of the paper is organized as follows. In Sec.
II we define a toy model and present a detailed formal-
ism for finding its transmission and its heat dissipation
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FIG. 1: Schematic representation of the two-level model.

characteristics. In Sec. III we present our numerical
results for the toy model. Sec. IV is assigned for numeri-
cal results of a real Au-C60-Au molecular junction based
on tight-binding model. In Sec. V we summarize our
findings and some technical details are presented in the
Appendices.

II. THEORY AND MODEL

We consider the molecule (introduced as a set of en-
ergy levels) placed in between two electrodes (left L
and right R) and plays a role of channel. The elec-
trodes are behaved as free electron reservoirs with ap-
proximately continuous energy spectra. The electronic
transport properties of molecular junctions are govern
by quantum mechanical laws. One of most important
framework for studying theoretical nanoelectronics is a
Landauer frameworks34. Landauer approach is based on
the description of electron transport through elastic scat-
tering model. The thermalized electrons in reservoirs
will be scattered when they come into the channel, but
their transport are completely coherent between the elec-
trodes. One can interpret the conductance of channel as
an elastic scatterer, by the quantum mechanical probabil-
ities of transmission T (E), that corresponds to electrons
with energy E.

A. Transmission and heat dissipation in two-level
(toy) model

Let us consider a two-terminal system with L and R
electrodes linked by two-level molecular junction model
as Fig.1. For this model, the transmission function has
been calculated in38 and authors showed that the trans-
mission can be expressed as sum of three terms as fol-
lowing

T (E) = T1(E) + T2(E) + T12(E), (1)

where for a system with energies εis and level broadening
γis, Tis have a Lorentzian definition

Ti(E) =
γ2i

(E − εi)2 + γ2i
, i = 1, 2 (2)

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

v(V)

Q
L
,Q

R
,Q

T
o
ta

l/
2(µ

W
)

 

 

Q
L

Q
R

Q
Total/2

−2 0 2
10

−3

10
−2

10
−1

10
0

E(eV)

T
ra

n
sm

is
si

o
n

 

 

T
1
+T

2
+T

12

T
1
+T

2

(a)

−6 −4 −2 0 2 4 6
0

20

40

60

80

100

120

140

160

180

v(V)

Q
L
,Q

R
,Q

T
o
ta

l/
2(µ

W
)

 

 

Q
L

Q
R

Q
Total/2

−2 −1.5 −1
10

−2

10
−1

10
0

E(eV)

T
ra

n
sm

is
si

o
n

 

 

T
1
+T

2
+T

12

T
1
+T

2

(b)

−6 −4 −2 0 2 4 6
0

50

100

150

200

250

v(V)

Q
L
,Q

R
,Q

T
o
ta

l/
2(µ

W
)

 

 

Q
L

Q
R

Q
Total/2

−0.4−0.2 0 0.2 0.4 0.6 0.8
10

−2

10
−1

10
0

E(eV)

T
ra

n
sm

is
si

o
n

 

 

T
1
+T

2
+T

12

T
1
+T

2

(c)

FIG. 2: (Color online) The power dissipated in the left elec-
trode QL (black or solid line), the right electrode QR (red or
dashed line) and the half of total power dissipated QTotal/2
(blue or solid line) as a function of bias voltage. (a) upper
panel for case HL, (b) middel panel for case HH and (c) bot-
tom panel for case LL.
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FIG. 3: (Color online) (a) The QL − QTotal/2 as a function
of the bias. It is indicated that for bias about |V0|=3V, QL =
QTotal/2, i.e., symmetric heat dissipated in both electrodes
and for |V0| > 3V the left electrode has a major portion in
total heat dissipation. (b) The power dissipated in the left
lead as a function of the total power for positive and negative
bias. The dashed line correspond to the power dissipated in
a symmetric situation, i.e. QL(V ) = QTotal/2. There is an
intersection point that in which the heat dissipated in left lead
is equal for positive and negative bias and after this point for
positive (negative) bias the left electrode has a major (minor)
portion in total heat dissipation.

and interference enters via

T12(E) = 2γ1γ2
(E − ε1)(E − ε2) + γ1γ2

((E − ε1)2 + γ21) ((E − ε2)2 + γ22)
(3)

We can extend the T12 according to Tis as

T (E) = (1+C1E+C2)T1(E)+(1+D1E+D2)T2(E), (4)

where constants Cis have a following definitions

C1 =
2γ2(ε1 − ε2)

γ1[(ε1 − ε2))2 + (γ1 + γ2)2]
(5)

C2 = 2γ2
ε1ε2 + γ1γ2 + γ21 − ε21

γ1[(ε1 − ε2))2 + (γ1 + γ2)2]
(6)

and constants Dis will obtain by applying ε1 ↔ ε2 and
also γ1 ↔ γ2 exchanges in corresponding Cis. One, who
is interested in the details of the above calculation, can
refer the appendices A and B.

Let us suppose that a voltage bias V is applied across
the system. It causes that the electrochemical poten-
tial of the left and right electrodes shifts such that
µL − µR = ±eV , where e > 0 is the electron charge.
We call positive (negative) bias for plus (minus) sign.
On the other words, for positive (negative) bias electrons
flow from the left (right) electrode to the right (left) elec-
trode. The fact that elastic scattering is not associated
with any energy loss in the junction regions implicitly
reminds that when an electron of energy E tunnels from
the left to the right (in positive bias) releases its excess
energy E − µR in the right lead, while the hole, that is
created behind the electron, is filled up releasing an en-
ergy equal to µL − E in the left lead. More precisely,
these released energies dissipate as a heat in two leads.
According to the calculations have been carried out in
the appendix C or in33, the rate of heat dissipation (heat
per unit of time) in left and right electrodes and the total
heat dissipation are

QL(V ) =
2

h

∫ +eV/2

−eV/2
(eV/2− E)T (E)dE, (7)

QR(V ) =
2

h

∫ +eV/2

−eV/2
(E + eV/2)T (E)dE, (8)

QTotal(V ) =
2eV

h

∫ +eV/2

−eV/2
T (E)dE, (9)

By inserting transmission function (1) in Eq.(9) and tak-
ing the integral, we obtain the explicit expression for the
total power dissipation in two-level model as

QTotal(V ) =
2eV γ1
h

(1 + ε1C1 + C2)

[
arctan(

eV/2− ε1
γ1

) + arctan(
eV/2 + ε1

γ1
)

]
+
eV γ1
h

C1 ln

[
γ21 + (eV/2− ε1)2

γ21 + (eV/2 + ε1)2

]
+ first and second terms with {C ↔ D, ε1 ↔ ε2, γ1 ↔ γ2} (10)

III. NUMERICAL RESULTS FOR TWO-LEVEL
MODEL

Here, we present our numerical results for the power
dissipated in the two-level molecular junction with Au-

electrodes as a function of applied bias. The two levels
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that one should refer to here is derived from the C60-
HOMO quintett and LUMO-triplet37, that we will ob-
tain them in the next section when we consider C60 as
a molecular junction. Accordingly, we define three dif-
ferent cases based on which levels contribute during the
transmission:

• Case HL: HOMO-LUMO, one of the levels is belong
to HOMO and the other is belong to LUMO.

• Case HH: HOMO-HOMO, both levels are belong
to HOMOs.

• Case LL: LUMO-LUMO, both levels are belong to
LUMOs

Although, we know that in35, the measurements of the
Seebeck coefficients were claimed to indicate that, in
Au-C60-Au junctions, the transport is dominated by the
LUMO and in36 it was shown, via STM spectroscopy,
that when C60 was adsorbed on a flat Au surface the
Fermi level was clearly closer to the LUMO than to the
HOMO; but we consider three above cases to show that
heat dissipation can help us to trace the energy levels
that contribute during transmission. Values of the en-
ergy level εi, and broadening γi are given in Table I. The

TABLE I: Energy levels, εi and levels broadening, γi, for C60

Ef = 0

Case (ε1, γ1)eV (ε2, γ2)eV
HL (-1.68, 0.149) (0.1, 0.116)
HH (-1.68, 0.149) (-0.138, 0.026)
LL (0.1, 0.116) (0.25, 0.08)

values in table I have been computed in38 by using DFT.
In all three cases, the power dissipation in left and right
electrodes is asymmetric and the condition (C9) is ver-
ified. A detailed elaboration of Fig.2 (a) shows a cross
point between the power dissipated in left and right elec-
trodes, QL(±V ) = QR(±V ), which it does not happen
in the other two models. This cross point means that
heat is equally dissipated in both electrodes. To further
investigate of the portion of the left electrode in heat
dissipation in case HL, we plotted the QL −QTotal/2 as
a function of the bias in Fig.3. Panel (a) of this figure
shows that, there is a given positive bias about V0 = 3V
in which QL−QTotal/2 = 0 or QL = QTotal/2, i.e., sym-
metric heat dissipated in both electrodes. More precise,
for the positive bias when 0 < V < V0 (V > V0 ) we find
QL < QTotal/2 (QL > QTotal/2), so the portion of the
left electrode in heat dissipation is less (more) than half
of the total heat. This behavior is exactly reversed for
negative bias. Briefly, the main conclusion of these re-
sults reveals when we plot QL as a function of QTotal for
both positive and negative biases in panel (b). There is
a point of intersection that in this point the heat dissipa-
tion in the left lead is equal for positive and negative bias
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FIG. 4: (Color online) Schematic representation of the power
dissipated in a molecular junction. After applying bias volt-
age transport window opens and molecular orbitals in the win-
dow can participate on the transmission processes. Now an
electron tunnels from the left electrode to the right electrode,
so releases its excess energy E − µR in the right electrode.
For those electrons transmitted via the LUMOs more power is
dissipated in the right electrode (see the upper panel). Trans-
mitted electrons leave holes in the left electrode, so the hole is
filled up by dissipating an energy equal to µL − E in the left
electrode. For the hole left behind by electron transmitted
via the HOMOs more power is dissipated in the left electrode
(see the bottom panel).

and after this point for positive (negative) bias the left
electrode has a major (minor) portion in the total heat
dissipation, although before the intersection point, there
is no significant difference between the heat dissipation
for the positive and negative bias.

If we focus on cases HH and LL, their behaviors can
be related to the HOMO and LUMO levels domination
during the electron transmission processes. Indeed, af-
ter turning bias voltage the electrochemical potentials of
the left and the right electrodes are shifted and an energy
window opens for electrons to cross the junction and it re-
sults in a net electron current in the junction. When the
transport window is open through LUMOs, more (less)
power dissipates in right (left) electrode (case HH and see
Fig.2 (b) and when the transport window allows electrons
to cross along the HOMOs less (more) power dissipates
in left (right) electrode (case LL and see Fig.2 (c). A
cartoon to present the scenario is depicted in Fig.4.

IV. HEAT DISSIPATION IN THE C60

MOLECULE JUNCTIONS

We consider a system consists of a C60 molecule at-
tached to one-dimensional gold (Au) electrodes. The
whole system is described within a single electron picture
by a tight-binding Hamiltonian with nearest-neighbor
hopping approximation. The Hamiltonian representing
the entire system can be written as H = HL + VL +
HM + HR + VR where HL/R and HM represent the
left/right electrode and the C60 molecule, respectively.
VL/R defines the coupling between left/right electrodes
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FIG. 5: (Color online) (a) Transmission probability as a func-
tion of energy for one-contact. (b) Current vs voltage charac-
teristics. (c) Half of the total power dissipated in the junction
and the power dissipated in the left lead as a function of the
bias. (d) The power dissipated in the left lead as a function of
the total power for positive (dashed line) and negative (solid
line) bias. The dotted line correspond to the power dissipated
in a symmetric situation, i.e. QL(V ) = QTotal/2.
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FIG. 6: (Color online) (a) The same description as Fig. 5 but
for five-contact.

and the C60 molecule. In our numerical calculation
we used the well-konw Newns-Anderson model for gold
(Au) electrodes, whose self-energies are given by ΓL/R =

VL/RgL/R(E)V †L/R, where gL/R(E) is the surface Green’s

function defined as gL/R(E) = i exp ika/tL/R
4,39. tL/R is

the nearest-neighboring hopping integral in the left/right
electrodes. The hopping strength in C60 molecule de-
pends on the dimerization of the carbon-carbon bonds,

thus we consider different hopping integral elements: t1
for the single bonds and t2 for the double bonds. In
the numerical calculations we set t1 = 2.5eV 4, t2 =
1.1t1, tL/R = t1, EF = 0.0eV, and T = 300K.

Results for one and five-contact have depicted in
Fig.(5) and Fig.(6), respectively. In Fig.5 (a) we have
plotted the logarithmic scale of transmission function
versus the energy of a molecular junction with one con-
tact. For an electron with energy E that comes from
the left connection, the probability of transmission func-
tion reaches its saturated value (resonance peaks) for the
specific energy values. In order to verify the heat dis-
sipation feature in the junction, in Fig.5 (d) we present
the power dissipated in the left lead as a function of the
total power dissipated for negative and positive biases.
Our results are in good agreement with case HH (Fig. 3
(b)) of the simple two-level model. It can be seen that an
intersection occurs between the power dissipated in the
left lead for the negative and positive bias. Here, one can
conclude that the HUMO-LUMO have essential roles in
the electron transport. In Fig.6 we have considered C60

molecule connected to the leads via its pentagon face.
The result shows that the transmission function does not
display any crossing point between the power dissipated
in the left and right electrodes. Therefore, in this case,
the power dissipated in the electrodes shows the asym-
metric feature in the whole range of applied bias. By
comparing panels (c) of Fig. 6 and Fig. 2, we see that
they are similar and so we conclude that the LUMOs
have major roles in the electron transport.

V. CONCLUSION

In summary, we have studied the heat dissipation in
single-molecule junctions. Using the generalized Green’s
function technique and the Landauer formalism, we have
presented a detailed theoretical and numerical analysis
of heat dissipation in the simple two-level toy model. We
have shown how the transmission characteristics can af-
fect on heat dissipation in the two-terminal molecular
junction. We verified that the energies of the molecu-
lar orbitals, in particular, HOMO and LUMO, play a
essential role in the electronic transport through molecu-
lar junctions. We showed that the different selections of
HOMO and LUMO for two energy levels lead to different
heat dissipations in electrodes. Also, we have simulated
C60 molecule sandwiched between Au electrodes based
on tight-binding model and Landauer approach. In or-
der to have a different transmission spectrum for an equal
transport window we have considered both single and
pentagon contact cases. We reached in good agreement
between the behaviors of toy model and C60 molecular
junctions. Indeed, by comparing numerical results of the
toy model and the C60 molecular junctions, one can find
out which energy levels are dominated in the transport
process.
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Appendix A: Transmission for two-level model

The (2×2) matrix for an inverse Green function defines
as

G−1l,k = (E − εl)δl,k − ΣLl,k(E)− ΣRl,k(E) (A1)

where the elements of (2× 2) self-energy matrices define
as follows

Σαl,k(E) =
∑
m

τα,∗m,lg
α(E)ταm,k, α = L,R. (A2)

in which ταl,m denotes the hybridization matrix elements
that connect the two-level, up and down, with the elec-
trodes; gα(E) is a complex valued surface Green’s func-
tion of the uncoupled leads, i.e., the left and right semi-
infinite leads. The coupling matrix Γ(E) also known as
the broadening function, is related to the self-energies
through

Γαl,k(E) = i(Σαl,k − Σα,∗l,k ), (A3)

that from Eq. (A2), one can find

Σα,∗l,k =
gα,∗(E)

gα(E)
Σαl,k (A4)

so the Eq. (A3) can be written as

Γαl,k(E) = i

(
1− gα,∗(E)

gα(E)

)
Σαl,k

= 2(=gα(E))
∑
m

τα,∗m,lτ
α
m,k (A5)

the imaginary part of surface Green’s functions is related
to the contact density of states as

%α(E) = − 1

π
=gα(E) (A6)

so we obtain

Γαl,k(E) = 2π%α(E)
∑
m

τα,∗m,lτ
α
m,k (A7)

One can calculate the transmission from the Green’s
function method, using the relation

T (E) = Tr{ΓLGΓRG†} (A8)

by using of relation (A7), the above equation converts to

T (E) = 4π2%L%RTr(τL,†τLGτR,†τRG†) (A9)

since the trace is invariant under cyclic permutations, i.e.,
Tr(ABCDEF ) = Tr(BCDEFA), so we can rewrite the
above equation as

T (E) = 4π2%L%RTr(τLGτR,†τRG†τL,†) (A10)

because τα = (τα11, τ
α
12) is (1×2) matrix, so the multiplied

τLGτR,†τRG†τL,† is a (1× 1) matrix and equation (10)
simplifies as

T (E) = 2π2%L%R(τLGτR,†)(τRG†τL,†)†

= 2π2%L%R|τLGτR,†|2, (A11)

Suppose a representation with unitary matrix U which
diagonalizes the Green function G to Gd as

Gd = U−1GU =

( 1
E−z1 0

0 1
E−z2

)
(A12)

Thus equation (A11) can be written as

T (E) = |ηLGdηR,†|2 (A13)

This representation will not necessarily diagonalize Γα,
indeed, as we will show, quantum interference effects of-
ten arise from the non-diagonal elements Γα . In this
representation, the effective hybridization matrices are

ηL =
√

2π%LτLU ηR,† =
√

2π%RU−1τR,† (A14)

and Γα is non-diagonal as

U−1ΓαU = ηα,†ηα =

(
|ηα11|2 ηα,∗11 η

α
12

ηα11η
α,∗
12 |ηα12|2

)
, (A15)

The expansion of transmission according to effective hy-
bridization matrices elements is

T (E) =

∣∣∣∣∣ηL11ηR,∗11

E − z1
+
ηL12η

R,∗
12

E − z2

∣∣∣∣∣
2

(A16)

the above equation can be expressed with three following
terms

T (E) = T1(E) + T2(E) + T12(E), (A17)

the two first terms constitute the non-mixing contribu-
tions from each energy level

T1(E) =
|ηL11|2|ηR11|2

|E − z1|2
, T2(E) =

|ηL12|2|ηR12|2

|E − z2|2
(A18)

Interference enters via the third term as

T12(E) = 2<

(
ηL11η

L,∗
12 η

R,∗
11 ηR12

(E − z1)(E − z2)∗

)
(A19)
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Appendix B: Level broadening

According to Eq. (A12) it is straightforward that we
have

det(G−1) =
1

det(Gd)
=

1

det(G)

= (E − z1)(E − z2) (B1)

Tr(G−1) =
1

det(G)
Tr(G) =

1

det(G)
Tr(Gd)

= 2E − (z1 + z2), (B2)

The inverse Green’s function elements of Eq. (A1), can
be rewritten so that the hermitian and anti-hermitian
parts of self-energy, Σ = ΣL + ΣR, appear in inverse
Green’s function elements as follows

G−1l,k = (E − εl)δl,k −
1

2

(
Σl,k(E) + Σ∗l,k(E)

)
− 1

2

(
Σl,k(E)− Σ∗l,k(E)

)
, (B3)

or

G−1l,k = G̃l,k +
i

2
Γl,k (B4)

in which we have used of

Γl,k(E) = i
(
Σl,k(E)− Σ∗l,k(E)

)
, (B5)

G̃l,k = (E − εl)δl,k −
1

2

(
Σl,k(E) + Σ∗l,k(E)

)
(B6)

and G̃l,k is a hermitian part and the last term in (B4) is

the anti-hermitian part of G−1l,k . By using of Eqs. (A2)-

(A7) and (A14), the above equation will be

Γl,k(E) =
∑
m,n,s

Ul,mη
L,†
m,nη

L
n,sU

−1
s,k

+
∑
m,n,s

Ul,mη
R,†
m,nη

R
n,sU

−1
s,k , (B7)

G̃l,k = (E − εl)δl,k −<gL(E)
∑
m

τL,∗m,l τ
L
m,k

− <gR(E)
∑
m

τR,∗m,l τ
R
m,k (B8)

It is clear that both G̃ and Γ are hermitian and so each
trace is real and we have

Tr(G̃) = 2E − (ε1 + ε2)− 2<gL(E)
(
|τL11|2 + |τL12|2

)
− 2<gR(E)

(
|τR11|2 + |τR12|2

)
(B9)

Tr(Γ) = |ηL11|2 + |ηL12|2 + |ηR11|2 + |ηR12|2, (B10)

according to Eq.(B4) we have

Tr(G−1) = Tr(G̃) +
i

2
Tr(Γ), (B11)

and by using of Eqs.(B2) and (B9), after the comparison
of both sides of above equation, one yields the following
conditions

<(z1 + z2) = (ε1 + ε2) + 2<gL(E)
(
|τL11|2 + |τL12|2

)
+ 2<gR(E)

(
|τR11|2 + |τR12|2

)
(B12)

=(z1 + z2) =
1

2

(
|ηL11|2 + |ηL12|2 + |ηR11|2 + |ηR12|2

)
(B13)

If we consider the following definition for z quantity

zi = εi +
i

2
(γLi + γRi ) i = 1, 2 (B14)

where εis are the energy of the two levels and γis are the
broadening by contacts, then according to Eqs. (B12)
and (B13) we reach

ε1 + ε2 = (ε1 + ε2) + 2<gL(E)
(
|τL11|2 + |τL12|2

)
+ 2<gR(E)

(
|τR11|2 + |τR12|2

)
(B15)

1

2

(
γL1 + γR1 + γL2 + γR2

)
=

1

2

(
|ηL11|2 + |ηL12|2 + |ηR11|2 + |ηR12|2

)
(B16)

the above conditions indicate that the real part of self-
energy causes shift in the system energy levels, while the
imaginary part has the effect of level broadening.

In the case of symmetric system-lead coupling, we take

γL1 = γR1 = γ1/2 and γL2 = γR2 = γ2/2, and effective
hybridization matrix elements should satisfy

|ηL11|2 = |ηR11|2, |ηL12|2 = |ηR12|2 (B17)
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so according to Eq. (B13) we obtain

γ1 = |ηL11|2 = |ηR11|2, (B18)

γ2 = |ηL12|2 = |ηR12|2 (B19)

In what follows, we suppose that elements of effective
hybridization matrix are real, so above relations can be
written as

√
γ1 = ηL11 = ηR11, (B20)
√
γ2 = ηL12 = ηR12. (B21)

and equations (A7) and (A8) have explicit expression as

Ti(E) =
γ2i

(E − εi)2 + γ2i
, i = 1, 2 (B22)

T12(E) = 2γ1γ2
(E − ε1)(E − ε2) + γ1γ2

((E − ε1)2 + γ21) ((E − ε2)2 + γ22)
(B23)

the above relation for T12 can be expanded according to
Tis as

T12 = [C1ET1(E) + C2T1(E) +D1ET2(E) +D2T2(E)]
(B24)

where constants Cis have a following definitions

C1 =
2γ2(ε1 − ε2)

γ1[(ε1 − ε2))2 + (γ1 + γ2)2]
(B25)

C2 = 2γ2
ε1ε2 + γ1γ2 + γ21 − ε21

γ1[(ε1 − ε2))2 + (γ1 + γ2)2]
(B26)

and constants Dis will obtain by applying ε1 ↔ ε2 and
also γ1 ↔ γ2 exchanges in corresponding Cis. Finally,
we can express transmission function T (E) as follows

T (E) = (1 + C1E + C2)T1(E) + (1 +D1E +D2)T2(E),
(B27)

Appendix C: Heat dissipation

According to the Landauer approach, the electronic
contribution to the charge current (I) and the energy
current (IE) through the junction can be expressed in
terms of the transmission function for positive bias µL−
µR = eV , as

I(V ) =
2e

h

∫ +∞

−∞
T (E, V )F (E,µL, µR)dE, (C1)

IE(V ) =
2e

h

∫ +∞

−∞
ET (E, V )F (E,µL, µR)dE (C2)

where F (E,µL, µR) = fL(E,µL) − fR(E,µR) and
fL(R)(E, V ) is the Fermi function of the left (right) elec-
trode. Each Fermi function depends on the electrode’s
chemical potential, which in turn is related to the applied

bias. The rate of heat released in the left (right) electrode
with electrochemical potential µL(R) is given by

QL(R) =
µL(R)

e
I − IE , (C3)

Using Eq. (C1) and (C2) we obtain the rate of heat (heat
per unit of time) dissipated in left and right electrodes
as

QL =
2

h

∫ +∞

−∞
(µL − E)T (E, V )F (E,µL, µR)dE

QR =
2

h

∫ +∞

−∞
(E − µR)T (E, V )F (E,µL, µR)dE(C4)

thus total heat dissipation (heat per unit of time) in the
system is

QTotal(V ) = QL(V ) +QR(V )

=
2eV

h

∫ +∞

−∞
T (E, V )F (E,µL, µR)dE = IV

(C5)

Three limits allow simplifications of the above relation.
First, is the limit that two electrodes to be of the same
materials, µL = µR = µ, and the system is in equilib-
rium at zero bias and without loss of generality we set
µ = 0. Moreover, we assume that the electrochemical
potentials are shifted symmetrically with the bias volt-
age, i.e. µL = eV/2 and µR = −eV/2. Second, is the
limit of zero temperature, fL(R)(E, V ) → Θ(−E ± eV ),
where Θ(x) is the Heaviside (step) function. The use of
plus (minus) signs here arises from the positive (nega-
tive) bias. Third, is the low bias limit, where we can
neglect the transmission function’s dependence on the
bias, T (E, V )→ T (E). Applying these limits, we arrive

QL(V ) =
2

h

∫ +eV/2

−eV/2
(eV/2− E)T (E)dE, (C6)

QR(V ) =
2

h

∫ +eV/2

−eV/2
(E + eV/2)T (E)dE, (C7)

QTotal(V ) =
2eV

h

∫ +eV/2

−eV/2
T (E)dE, (C8)

If one concentrates on the bias polarity, it is easy to show
that

QL(R)(V ) = QR(L)(−V ), (C9)

The above relation indicates that the power dissipated
in one of the electrodes can be obtained from the power
dissipated in the other one by simply inverting the bias.
If one checks the behaviour of total heat dissipation with
respect to the inversion of the bias voltage, one obtains

QTotal(−V ) = QL(−V ) +QR(−V )

= QR(V ) +QL(V ) = QTotal(V )(C10)
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thus, the total heat dissipation is a symmetric function
with respect to the inversion of the bias voltage. Also,
for total heat we have

QTotal(V ) = QL(R)(V ) +QR(L)(V )

= QL(R)(V ) +QL(R)(−V ) (C11)

this relation implies that the total power dissipated in
the model is equal to the sum of the power dissipated for

positive and negative bias in a given electrode.

References

1 M.A. Reed, C. Zhou, C. J. Muller, T.P. Burgin, and J. M.
Tour, Science 278, 252 (1997).

2 P. Reddy, S.Y. Jang, R. A. Segalman, and A. Majumdar,
Science 315, 1568 (2007).

3 S. K. Maiti, J. Nanosci.Nanotechnol. 8 4096 (2008).
4 A. Saffarzadeh, J. Appl.Phys. 103 083705 (2008).
5 C. Kergueris, J.P. Bourgoin, D. Esteve, C. Urbina, M. Ma-

goga, and C. Joachim, Phys. Rev. B 59, 12505 (1999).
6 D. Porath, A. Bezryadin, S. de. Vries, and C. Dekker, Na-

ture 403, 635 (2000).
7 J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M.

Mayor, and H. v. Lohneysen, Phys. Rev. Lett. 88, 176804
(2002).

8 A. Nitzan and M. A. Ratner, Science 300, 1384 (2003).
9 M. Paulsson and S. Datt, Phys. Rev. B 67 241403 (2003)

10 F. Pauly, J. K. Viljas and J. C. Cuevas, Phys. Rev. B 78
035315 (2008)

11 S. H. Ke, W. Yang, S. Curtarolo and H. U. Baranger, Nano
Lett. 9 1011 (2009)
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