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In this article we review aspects of charge and heat trans-
port in interacting quantum dots and molecular junctions
under stationary and time-dependent non-equilibrium
conditions due to finite electrical and thermal bias. In
particular, we discuss how a discrete level spectrum can
be beneficial for thermoelectric applications, and inves-
tigate the detrimental effects of molecular vibrations on
the efficiency of a molecular quantum dot as an energy
converter.

In addition, we consider the effects of a slow time-
dependent modulation of applied voltages on the trans-
port properties of a quantum dot and show how this
can be used as a spectroscopic tool complementary to
standard dc-measurements. Finally, we combine time-
dependent driving with thermoelectrics in a double-
quantum dot system – a nanoscale analogue of a cyclic
heat engine – and discuss its operation and the main lim-
itations to its performance.
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1 Introduction Quantum dots are small man-made
structures, with a length scale typically ranging from
nanometres to a few microns. They can be realized
in semiconductor heterostructures [1,2], semiconductor
nanowires [3,4,5], nanotubes [6,7], graphene [8], or even
with single molecules [9,10,11]. The name refers to the
zero-dimensional nature of this class of systems, meaning
that the wave function of charge carriers residing on the
dot is confined in all spatial directions [12]. In a trans-
port setup, a quantum dot is tunnel coupled to source and
drain electrodes and a dc-current is established by apply-
ing a finite source-drain bias voltage. Because of the strong
Coulomb repulsion between electrons localized on the dot
and the relatively weak coupling to the electrodes, charge
carriers are transferred through the device one-by-one, and
transport can even be completely blocked at low voltages.

This phenomenon is known as Coulomb blockade [13].
In addition to the source and drain, there is often a gate
electrode, which is only capacitively coupled to the quan-
tum dot and can be used to electrostatically control the
number of electrons on the dot, as well as the energy cost
of adding more electrons, and thereby the conductance of
the junction. In such a transistor geometry, the electronic
current provides direct information on the quantum level-
structure and classical charging energies of the dot itself.
This generic description provides a good starting point
even for systems as small as a single molecule or atom in
a junction.

Applications of quantum dots as ultra-sensitive detec-
tors [14], thermometers [15] or basic building blocks in
quantum computers [16] have already been considered for
a long time. Lately, the possibility of exploiting their prop-
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2 F. Haupt et al.: Heat transport in quantum dots

erties for energy conversion or cooling applications have
also started to attract considerable attention. As an exam-
ple, a refrigeration scheme based on resonant tunneling
through quantum dots [17] has been recently demonstrated
experimentally [18]. Theoretically, it has been shown that
if a quantum dot is weakly tunnel coupled to a hot and a
cold electrode, it can act as an efficient thermoelectric en-
ergy converter [19,20].

In conductors, heat is carried dominantly by electrons
and the phononic contribution to the heat flow can be of-
ten neglected in first approximation. However, phononic
heat currents set an ultimate limit to the properties of ther-
moelectric devices. Minimizing them is crucial to achieve
efficient energy conversion and for cooling applications.
In molecular quantum dots, phonons (quantized molecular
vibrations), strongly affect not only the thermoelectric but
also the transport properties of the device. In fact, an elec-
tric current can excite vibrations and even drive them out
of equilibrium. This in turn affects the conductance of the
junction, as well as its stability. For electronic applications,
it can therefore be desirable to design (molecular) quantum
dots with good thermal contacts to the electrodes, or other
heat reservoirs.

The study of heat currents is relevant also in the case
of time-dependently driven systems, as it carries informa-
tion on the dissipation associated with the driving [21].
Time-dependently driven quantum dots have attracted a
lot of attention in recent years, for the possibility of re-
alizing quantized charge pumping [22,23,24] and reliable
single-electron sources [25]. These have a realm of appli-
cations, ranging from metrology [26], to solid-state based
quantum information. Spin-pumping has also been demon-
strated [27]. Without thermal driving, time-dependent driv-
ing can be employed as a spectroscopic tool to investigate
the dot. In fact, it has been shown that the charge pumped
through the system in response to the ac-driving is sensitive
to the microscopic detail of the potential landscape of the
dot [23] and, in appropriate modulation setups, it provides
information on the coupling asymmetry [28], or even on
subtle renormalization effects due to tunneling [29]. Fur-
thermore, an ac-driven quantum-dot system can also be op-
erated as a nanoscale cyclic engine, exchanging heat and
work with reservoirs with different temperatures or chem-
ical potentials.

In this review, we discuss recent progress in the theo-
retical understanding of several aspects of charge and heat
flow in quantum dot systems, both with non-equilibrium
conditions induced by a stationary voltage or temperature
gradient and by time-dependent driving of externally ap-
plied fields. The paper is organized as follows.

Section 2 summarizes the master equation approach
employed for calculating the charge, the heat and the spin
current through a quantum-dot device, based on lowest or-
der tunneling processes and an expansion in the driving
frequency.

Section 3 focuses on the thermoelectric effect. The
physical origin of the thermoelectric effect is explained and
the desirable electronic properties of a good thermoelectric
material are discussed, along with the problems involved
in finding real systems exhibiting these properties. In ad-
dition, the different contributions to the phononic heat cur-
rent are discussed in some detail. All these aspects are then
brought together in a simple model of a molecular thermo-
electric device, where the sharp molecular orbitals provide
a large thermoelectric effect, while electron–phonon cou-
pling on the molecule, as well as coupling between quan-
tized molecular vibrations and substrate phonon modes in
the electrodes, give rise to significant losses.

Section 4 discusses time-dependent electronic trans-
port and reviews recent progress on pumping in strongly
interacting dots. Focusing on the slow driving regime, we
exploit the geometric nature of the pumped currents and
write them as the flux generated by a pseudo-magnetic
field. As an application example, we consider a single-
level quantum dot driven by time-dependent gate and bias
voltages, where additional non-equilibrium effects are in-
duced by a finite static bias. We use the pseudo-magnetic
field to describe interaction-induced pumping and to inves-
tigate internal properties of the dot such as spin degeneracy
and junction asymmetry in different regimes of the voltage
bias.

Finally, as a further application example, section 5
investigates the heat current in the presence of time-
dependent driving. For the case of a driven double-dot,
we show that there are regimes where not only the charge
current but also the heat current is quantized, and that in
these regimes the double dot can be regarded as a nanoscale
analog of the Carnot engine.

2 Microscopic model and transport theory The
(molecular) quantum dot setup that we want to describe
can be represented in general as a central device region
that is tunnel coupled to electronic or bosonic reser-
voirs, which can usually be considered non-interacting.
The corresponding Hamiltonian can be written as H =
HD + Hres + Hcoupl, where HD is the Hamiltonian
of the device and is typically governed by many-body
interactions. Without loss of generality, we can write
HD =

∑
ξ Eξ|ξ〉〈ξ|, where |ξ〉 denote the many-body

eigenstates of the device, with energy Eξ. The reservoirs
are described by a quadratic (non-interacting) Hamiltonian
Hres and we assume them to be held at separate equi-
libria with temperatures Tr (and chemical potentials µr,
for the fermionic reservoirs). The coupling term Hcoupl is
bi-linear in the operators of the device and the reservoirs.
The coupling to the reservoirs is quantitatively character-
ized by the coupling strength Γr = 2πνr|tr|2, where tr
is the single-particle tunneling matrix element between
the device and reservoir r, and νr is the density of states
of the latter (~ = kB = e = 1). Both tr and νr are of-
ten assumed to be energy independent (wide-band limit).
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In general, the Hamiltonian of the system H can depend
on time due to some external time-dependent driving, i.e.
H(t) = H(u(t)), where u(t) ≡ {ui(t)} are the driving
parameters.

2.1 Master equation approach The explicit results
presented in the following sections are based on a mas-
ter equation approach (unless mentioned otherwise), where
the state of the device is described in terms of the occupa-
tion probabilities Pξ(t) of its eigenstates. To lowest order
in the tunneling, their evolution is governed by the Marko-
vian master equation

d

dt
P (t) = WtP (t), (1)

with P (t) = {Pξ(t)}. The kernel Wt can be written as
a sum of independent contributions from the reservoirs
Wt =

∑
rWr,t, where the matrix element [Wr,t]ξξ′ ∝

Γr represents the probability per unit time that a tunneling
event from/to reservoir r induces the transition |ξ′〉 → |ξ〉,
as given by Fermi’s golden rule. The subscript t indicates
that these rates have to be evaluated with the parameters of
the Hamiltonian “frozen” at time t.

If the Hamiltonian H is time independent, the evolu-
tion kernel is also time independent Wt → W , and in
the long-time limit the system reaches the stationary state
P (0), which satisfies WP (0) = 0.

Describing the dynamics of a driven systems in terms
of Eq.(1), we implicitly assumed the time scale of the
driving to be much slower than the electron life-time in
the system. In this case, Eq. (1) can be solved by means
of an adiabatic expansion for the occupation probabilities
P (t) → ∑

k≥0 P
(k)
t , where P

(k)
t ∝ (Ω/Γ )k in the case

of harmonic driving [29]. Here, Ω is the driving frequency
and Γ the characteristic tunnel rate of the system. The adia-
batic expansion gives rise to the hierarchy of equations [29,
30]

a) WtP
(0)
t = 0, b) WtP

(k)
t =

d

dt
P

(k−1)
t . (2)

Here, P
(0)
t is the solution of the problem with all pa-

rameters frozen at time t. It represents the steady state
the system would relax into if it could instantaneously
follow the modulation of the time-dependent parameters.
We will therefore refer to it as the instantaneous solu-
tion. Corrections due to retardation effects are encoded
in P

(k>0)
t and are governed by a competition of the time

scales of the driving and of the response time contained in
Wt. The normalization conditions are Tr{P (0)

t } = 1, and
Tr{P (k>0)

t } = 0, where the trace of a vector is defined as
the sum of its components.

The above master equation approach can be rigorously
derived [29,30] starting from a real-time diagrammatic ex-
pansion of the reduced density matrix of the system [31,
32], and it is valid in the regime of weak coupling to the
leads Γ � T = min{Tr} and slow driving Ω � Γ .

2.2 Charge, spin and heat currents We are inter-
ested in the charge, heat and spin currents flowing in re-
sponse to a time-dependent modulation of the parameters
of the Hamiltonian and/or to an external bias voltage or
temperature gradient. The electric current flowing out of
lead r = L,R is found from the derivative of the electron
number Ir(t) = d

dt

〈
Nr
〉
, where Nr =

∑
kσ c
†
rkσcrkσ is

the occupation number operator in lead r = L,R. Sim-
ilarly, the heat and spin currents are defined as Qr(t) =
− d
dt

〈
Hr − µrNr

〉
and Jr(t) = − d

dt

〈
Szr
〉
, respectively,

where Hr =
∑
kσ εrkσc

†
rkσcrkσ is the Hamiltonian of the

lead and Szr =
∑
kσ

σ
2 c
†
rkσcrkσ is the projection of the

lead spin on the quantization axis (chosen along the mag-
netic field if there is one) and σ = ± stands for spin ↑, ↓. A
phononic heat current is defined in the same way, but with
µr = 0 and Hr =

∑
qr ωqrb

†
qrbqr.

The currents can be evaluated directly from the
knowledge of the occupation probability P (t), being
R(t) = Tr{WR

t P (t)}, where R ∈ {Ir, Qr, Jr} and the
kernels WR

t take into account the charge, the heat and the
spin flowing from lead r into the device, respectively. For
weak coupling to the leads (Γ � T ), these kernels read as[

WIr
t

]
ξξ′

= −e(nξ − nξ′) [Wr,t]ξξ′ ,[
WQr

t

]
ξξ′

= {Eξ − Eξ′ − µr(nξ − nξ′)}[Wr,t]ξξ′ ,[
WJr

t

]
ξξ′

= (sξ − sξ′) [Wr,t]ξξ′ . (3)

Here,Eξ, nξ and sξ are the energy, the number of electrons
and the spin in the device in the state |ξ〉, respectively.

In the case of slow harmonic driving, the expansion in
the driving frequency carried out for P (t) results in an
analogous expansion for the current R(t) =

∑
k≥0R

(k)
t ,

where R(k)
t = Tr{WR

t P
(k)
t } is the contribution of order

Ωk to the current. The instantaneous contribution R(0)
t is

the only non vanishing term in the stationary situation, and
it is non-zero only if the system is brought out of equilib-
rium by means of a bias voltage or a temperature gradient.
The first order correction R(1)

t encodes the effects of adia-
batic pumping, and it will be discussed in Sec. 4.1. Higher
order corrections R(k>1)

t can in general be neglected for
the charge and the spin current (R ∈ {Ir, Jr}), as long
as Ω � Γ . This is however not true for the heat cur-
rent [33], where contributions to second order in the driv-
ing frequency Q(2)

r,t account for heating effects due to the
ac-driving, see Sec. 5.2.

3 Thermoelectric devices and heat currents In a
thermoelectric device, an electric current can be generated
as a result of an applied temperature difference ∆T . The
underlying physical mechanism is perhaps easiest to un-
derstand in a ballistic device, where electrons can be trans-
ported between a hot and a cold metallic contact through
a central region without loosing energy, see Figs. 1 (a)-(c).
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4 F. Haupt et al.: Heat transport in quantum dots

The larger smearing of the Fermi surface on the hot side
results in a net current of high-energy electrons tunneling
from the hot to the cold electrode, as well as a net current
of low-energy electrons tunneling in the opposite direc-
tion. Therefore, if the conductance is energy independent
[Fig. 1(a)], the total electric current is zero and only a heat
current flows from the hot to the cold electrode. If, on the
other hand, either high- or low-energy electrons are more
easily transported through the central region [Fig. 1(b)],
the electron currents no longer cancel each other and an
electric current can flow as a result of the temperature dif-
ference, in addition to the heat current. This is the thermo-
electric effect. Thus, a thermoelectric material must have
different transport properties for electrons above and be-
low the Fermi energy.

In an open circuit, the thermoelectric current will lead
to charge accumulation in the electrodes and thereby a
thermoelectric voltage, V , which will eventually be large
enough to stop the net electric current, see Fig. 1(c). The
proportionality constant, S = −V/∆T , is called the See-
beck coefficient or thermopower. The sign of the voltage
depends on the direction of the thermally generated current
and therefore on whether the electron or the hole conduc-
tance is largest.

3.1 Thermoelectric efficiency In order to perform
useful electric work, the setup of Fig. 1 has to be modi-
fied to include an external electric circuit making use of
the extracted power, which can simply be considered as a
resistor, see Fig. 1(d). The efficiency η of a heat to electric
power converter is given by the generated output electric
power, P = IV , divided by the input heat power which
has to be supplied to the hot electrode to keep it hot. If we
neglect other heat losses, the needed input heat is equal to
the heat current Q flowing from the hot to the cold elec-
trode, and

η =
IV

Q
. (4)

Since no heat engine operating between a hot and a cold
heat bath can be more efficient than the ideal Carnot pro-
cess, η is limited from above by ηC = 1− Tc/Th.

Commonly one considers only the linear regime, where
I = GV + GT∆T , where G is the electrical conduc-
tance and GT the thermal conductance. The Seebeck co-
efficient is then S = GT /G and the heat current Q =
(κel + κph)∆T , where κel and κph are the electron and
phonon contributions to the thermal conductance, respec-
tively. A large η is related to a large thermoelectric figure
of merit, ZT , with T = (Tc + Th)/2, given by

ZT =
GS2T

κel + κph
. (5)

In the linear response regime, the relation between ZT and
η is [34]

η =
∆T

Th

√
1 + ZT − 1√

1 + ZT + Tc/Th
. (6)

Today’s best thermoelectrics are heavily doped narrow
bandgap semiconductor materials with ZT ≈ 1. Insert-
ing ZT = 1 in Eq. (6) and assuming Th ≈ Tc, one finds
η ≈ 0.17ηC . Finding bulk materials with high ZT has
proven to be more difficult than initially anticipated. One
reason is that the ratio of the electronic thermal conduc-
tance and the electric conductance in bulk materials fol-
lows the Wiedemann-Franz law [35]

κel

GT
=
π2k2B
3e2

, (7)

and increasing G is therefore accompanied by an increase
in κel. Efforts to maximize the efficiency have instead fo-
cused on reducing κph. The challenge is to achieve this
without affecting G too much, which can be done by intro-
ducing effective phonon-scattering centers in the form of
heavy-ion species with large vibrational amplitudes [36].
Recently, nanoscale engineering has been used to achieve
this goal, e.g., using superlattice structures with an acous-
tic mismatch between the different layers, resulting in in-
terfaces which scatter phonons more efficiently than elec-
trons, which has resulted in impressive figures of merit
(ZT ≈ 2.4 in Ref. [37]). Superlattice structures require
precise nanoscale engineering and are thus not suitable for
large-scale production. Fortunately, it seems like the same
positive effects can be achieved in non-periodic structures,
such as nanocomposite materials consisting of a host ma-
terial filled with nanoparticles [38,39], or by introducing
roughness into Si nanowires [40].

Strictly speaking, Eq. (7) holds only for free elec-
trons, but it is approximately valid in most bulk systems.
Fortunately, several recent studies, see e.g., Refs. [41,
42,43], have shown that the Wiedemann-Franz law com-
pletely breaks down in nanoscale systems. The reason for
this breakdown is either electron–electron interaction, or
quantum confinement leading to effectively one- or two-
dimensional structures. It is therefore useful to for the
moment forget about the phonons (κph → 0) and ask the
question: Which (electronic) material properties would ac-
tually maximize ZT as defined in Eq. (5)? And how large
would this ZT be? This problem was studied and solved
by Mahan and Soho [44]. They showed that the ideal ma-
terial is characterized by the conductivity as a function of
energy being propotional to the δ-function, where the peak
should be localized 2.4kBT above or below the Fermi
level (giving an electron-type or a hole-type thermoelectric
device). In this case, ZT goes to infinity and Carnot effi-
ciency can be achieved (meaning reversible thermoelectric
operation [45,46]). In practice of course κph > 0 and ZT
remains finite. Remembering that the origin of the thermo-
electric effect is an energy asymmetry in the conductivity
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Figure 1 (a)–(c) Explanation of the thermoelectric effect. Red and blue rectangles indicate the conduction bands of the
metallic hot and cold electrodes, respectively. The curved line represents the thermal smearing of the Fermi surface around
the Fermi energy, EF . (a) If the transport properties of the central region are the same for electrons above and below EF ,
the temperature difference only results in an (electronic) heat current Qel, but no net electric current. (b) If, on the other
hand, the conductance G(E) of the central region is larger (or smaller) for E > EF , also a net (thermo)electric current I
results from the temperature difference. (c) If the thermoelectric current is allowed to flow for some time in an open circuit,
a (thermoelectric) voltage V builds up, which eventually cancels the electric current. (d) Sketch of thermoelectric circuit
converting heat power,Q, supplied to the hot electrode, into electric power, P , in an electrically driven device (represented
by a resistor, R).

[Fig. 1(b)], it is rather easy to understand the merits of
a δ function, as it allows perfect energy filtering of the
electrons passing through the material.

Mahan and Soho suggested using rare-earth com-
pounds with very sharp electronic f -levels to achieve a
δ-like conductivity, but correct alignment of these levels
with respect to the Fermi energy is problematic, as is the
phonon contribution to the heat current. A more mod-
ern way of introducing a strong energy asymmetry in the
conductivity is to take advantage of nanostructuring to
reduce the effective dimensionality of the system, since
the density of states in low-dimensional systems is less
smooth. Initial experiments focused on two-dimensional
quantum wells, see e.g., Ref. [47], where the density of
states is constant, with steps whenever a new 2D band
becomes accessible. Also one-dimensional systems, such
as nanowires [48,40] and carbon nanotubes [49,50], have
been investigated, where the density of states has sharp
peaks corresponding to the bottom of the 1D bands. In
quantum dots, which are effectively zero-dimensional,
the density of states has peaks corresponding to the dis-
crete orbitals, and the conductance therefore resembles
the δ-function shape. Several theoretical and experimental
works have investigated the Seebeck effect in quantum dot
devices, see e.g., Refs. [51,52,53,54]. However, quantum
dots made in inorganic materials have level spacings of a
few meV at the most, and the density of states therefore
looks rather smooth at room temperature, which limits the
usefulness for most applications. We will therefore now
turn to molecular devices, since a molecule weakly cou-
pled to electrodes behaves as a quantum dot, but with a
level spacing which can be much larger than kBT also at
room temperature.

First it should be mentioned, however, that achieving
a high ZT is not all that matters for thermoelectric ma-
terials. Even with ZT → ∞, Carnot efficiency can only

be reached in the limit of infinitely slow, reversible oper-
ation, where the device produces zero output power. It is
therefore also interesting to look at intrinsically nonequi-
librium quantities such as efficiency at maximum output
power. Nonetheless, studies have indicated [20] that also in
such cases a δ-like conductivity is desirable. One problem
with a δ-like conductivity is that the actual output power is
rather small. For example, if a zero-dimensional system is
strongly coupled to electrodes to allow for a large current
flow, and thereby large output power, the orbital states are
broadened into Lorentzians, rather than δ functions, result-
ing in a decreased efficiency. Therefore, it was the conclu-
sion of Ref. [55] that one-dimensional systems might be
preferable when a high output power is desired.

3.2 Molecular thermoelectric devices The See-
beck effect was recently measured in single-molecule junc-
tions, using an STM as sketched in Fig. 2(a), see Refs. [56,
57,58]. A gold substrate is covered with the molecules to

Figure 2 (a) Sketch of STM setup used to create single-
molecule thermoelectric junctions. (b) Energy diagram of
hot (red) and cold (blue) electrode, cf., Fig. 1. Between
the electrodes the transmission function of the molecule,
T (E), is sketched, which shows peaks at the positions of
the HOMO and LUMO.
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6 F. Haupt et al.: Heat transport in quantum dots

be measured, which is then heated by passing a current
through it (Joule heating), while the STM tip is kept at the
ambient temperature. Conductance measurements are used
to verify that a molecule is contacted. The tip–substrate
voltage bias and current amplifier are then replaced by a
voltage amplifier, which measures the induced thermoelec-
tric voltage as the tip is slowly retracted from the substrate.
When coupled to the tip and substrate contacts, the HOMO
and LUMO of the molecules studied in Refs. [56,57,58]
are far away from the electrode Fermi levels, transport is
dominated by elastic (energy-conserving) tunneling and
can be described by the Landauer-Büttiker formalism [59,
60,41]. The conductance of the molecular junction is then
proportional to the transmission function at the Fermi en-
ergy, G ∝ T (EF ). Often, T (E) is roughly proportional
to the molecular density of states and has peaks at the
positions of the HOMO and LUMO, see Fig. 2(b). As dis-
cussed above, the thermoelectric effect relies on electrons
above and below the Fermi level having different conduc-
tances and in the zero-temperature limit it can be shown
that

S ∝ 1

T (EF )

dT (EF )

dE
. (8)

Therefore, the sign of the Seebeck coefficient gives an in-
dication of whether the HOMO or LUMO lies closest to
the Fermi level.

The Seebeck coefficients found in Refs. [56,57,58]
were rather modest (|S| < 10 µV/K). Much higher val-
ues can be expected if either the HOMO or the LUMO
lies closer to the Fermi level. Furthermore, a more narrow
width of the transmission peaks increases the derivative of
the transmission function in Eq. (8) and thereby the See-
beck coefficient, provided that the HOMO or LUMO po-
sition is adjusted appropriately. The width of the transmis-
sion peaks is set by the strength of the tunnel couplings to
the electrodes and therefore a weak coupling is desirable to
approach the δ-like conductivity of Mahan and Soho [44].
That a single-molecule junction can indeed, in theory, op-
erate at ideal efficiency was the conclusion of Ref. [19],
and Ref. [20] showed that such a device has a high effi-
ciency even away from equilibrium. If it proves too dif-
ficult to move the HOMO or LUMO close enough to the
Fermi level, or if small enough tunnel couplings cannot be
achieved, an alternative is to use molecules with sharp fea-
tures in the transmission function, for example Fano reso-
nances [61], charge-Kondo resonances [62], ”transmission
supernodes” [63], or interference-related features [64,65],
which also result in a strong energy-dependence of the con-
ductance.

Naturally, a single molecule does not provide enough
output power for an actual application as a power converter.
Instead, a self-assembled molecular monolayer could be
used. However, due to e.g., re-arrangement of molecular
or surface charges or interactions between static molecular
dipole moments [66,67,68], or inter-molecular tunnel-

ing [69,70,71,72], the transport properties of a molec-
ular monolayer may be rather different compared with
single-molecule devices. In addition, a recent theoreti-
cal study [73] showed that Coulomb interactions between
charge carriers transported through neighboring molecules
within a monolayer may significantly broaden the trans-
port resonances. This might have a negative effect on the
thermoelectric efficiency.

3.3 Electron–phonon coupling and phononic
heat currents Having seen that the electronic proper-
ties of molecules hold promise for efficient thermoelectric
power conversion, we now turn to important contributions
to the losses in such devices, namely electron–phonon
coupling and coupling between quantized molecular vi-
brations and substrate phonon modes in the electrodes.

Electron–phonon coupling is the coupling between the
charge on the molecule and its vibrational motion. Due to
the electron–phonon coupling, electrons tunneling through
the molecule can excite it vibrationally [9,74,75,76]. In
a simple picture, such inelastic processes destroy the δ-
like character of the transmission function, since electrons
can tunnel through the molecule at energies other than the
conducting HOMO or LUMO, by either giving off ex-
cess energy into the molecular vibrations, or by absorb-
ing vibrational energy from them. In a thermoelectric de-
vice, the relevant modes are those with a vibrational en-
ergy ~ω ∼ kBT . Modes with much larger energies cannot
be excited and those with much smaller energies do not
contribute as much to heat losses. Thus, as will be substan-
tiated below based on a simple model, in a good thermo-
electric molecule all vibrational modes with ~ω ∼ kBT
should have a small electron–phonon coupling [77].

In addition, the molecular vibrational modes couple
to substrate phonon modes in the electrodes [74]. Essen-
tially, the chemical bond between the molecular anchor-
ing groups and the electrodes acts as a spring, which can
transfer vibrational energy from the phonon modes in the
hot electrode, into the molecular vibrations, and finally
out again into the cold electrode phonons. The resulting
phononic heat current has been analyzed in several the-
oretical works [78,79,80]. A strategy to minimize such
losses is to choose molecules which form strong chemi-
cal bonds to the electrodes (meaning a stiff spring), such
that all molecular vibrations with a significant amplitude
at this bond have frequencies above the highest acoustical
phonons in the electrodes. A strong chemical bond could
be combined with a weak tunnel coupling, as needed to
obtain sharp electronic resonances, e.g., by connecting the
bonding atoms to the rest of the molecule through saturated
carbon atoms, as in a methylene spacer [81]. However, a
molecule in a transport junction has additional low-energy
center-of-mass vibrational modes [82], which are likely be-
low the Debye frequency of the electrodes.

3.3.1 A simple model of a molecule coupled to
phonons To better understand the concepts discussed
above, we now focus on a simple molecular model [77,83],
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which still captures the relevant aspects of electronic and
vibrational degrees of freedom. We model the molecule
as a single spin-degenerate orbital level with energy ε
and onsite Coulomb interaction U and include a single
harmonic molecular vibrational mode with frequency ω.
Furthermore, there is a linear electron–vibration coupling
λph between the electron occupation of the orbital and the
vibrational coordinate. The transport characteristics of this
so-called Anderson-Holstein model, when the molecular
orbital is tunnel coupled to voltage biased source and drain
electrodes, has been analyzed in many works, see e.g., [84,
85,86,87,88,89]. Here we consider instead a thermoelec-
tric junction operated as a heat to electric power converter,
where a hot electrode with temperature Th = T + ∆T
is grounded (chemical potential µh = 0) and a (negative)
voltage −V is applied to the cold electrode (µc = V > 0)
with temperature Tc = T . Note that in an actual de-
vice which also makes use of the converted power, the
voltage is not applied, but rather controlled by the tem-
perature bias and the resistance of the external circuit, see
Fig. 1(d). In addition to the electronic tunnel coupling, we
include a coupling between the coordinate of the local-
ized molecular vibration and a continuum of vibrational
modes in the two electrodes. Electron tunneling between
the molecule and electrode r = h, c is associated with a
rate Γr and the corresponding rate at which vibrational
excitations ”leaks” out from the molecule and into the
electrode phonon modes is denoted by γr. As discussed
above, the maximum efficiency of energy conversion is
expected in the limit of weak electron tunneling and, of
course, weak coupling between molecular vibrations and
electrode phonons, meaning that T � Γr, γr.

In the weak coupling regime, the type of master equa-
tion introduced in Sec. 2 can be used to calculate the
molecular density matrix describing both the electronic
and vibrational state. The interplay between electron and
phonon transport is nontrivial, as these processes interact
via the vibrational distribution on the molecule (which is
not necessarily thermalized). The electric and the elec-
tronic and phononic heat currents can be found as de-
scribed in Sec. 2, and the efficiency is evaluated from
Eq. (4), η = P/Qh, where P = IV with I = −Ih = Ic.
Note that the relevant heat current is Qh since the loss is
given by the heat which must be supplied to keep this elec-
trode hot. The distinction is important since there is no con-
servation of the stationary heat current. Instead, the first
law of thermodynamics guarantees that P = Qh + Qc, so
in fact, to obtain η, one could completely avoid calculating
the electric current and instead calculate only Qh and Qc.

3.3.2 Optimal bias voltage and level position We
start by studying the efficiency and output power at fixed
thermal bias, here chosen to be ∆T = T , as function
of V and ε. The efficiency of a single level quantum dot
(spinless electrons and no vibrational mode) was studied
in Ref. [20], showing that Carnot efficiency is reached in
the equilibrium limit of vanishing current. For vanishing
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Figure 3 (a)–(c) η at ∆T = T , as function of V and ε
for increasing coupling to substrate phonons, γ = 0 (a),
γ = Γ/10 (b), γ = Γ (c). In all plots λph = 1, ω = T ,
U = 10T and the couplings are symmetric, γh = γc =
γ, Γh = Γc = Γ . (d) P as function of V and ε for the
parameters used in (b) (the power depends only weakly on
γ).

couplings to the phonon mode, γr → 0 and λph → 0, this
result remains valid in the non-interacting limit, U = 0, as
well as for very strong interactions, U � T,∆T , while the
efficiency is slightly reduced in the intermediate regime.

With finite λph, but keeping γr = 0, the efficiency is
decreased and never reaches the Carnot value, see Fig. 3(a).
In fact, η vanishes close to the zero electric current line
(boundary of the white area), the reason being that, in con-
trast to the single-level case, the heat current does not van-
ish completely when the charge current does. Inside the
white area the current has been reversed by a too large
voltage bias and flows from high- to low-biased electrode
and therefore does not accomplish any useful electric work
(note that this regime cannot be reached in the thermoelec-
tric circuit of Fig. 1(d)). The maximal efficiency is reached
when the level is far above the Fermi edges of both leads,
where electron transport involves very few thermally ex-
cited states in the heated electrode and electron-induced
vibrational excitations are exponentially suppressed, min-
imizing electronic heat loss. However, in this regime the
current is highly suppressed, leading to a small output
power, see Fig. 3(d). In addition, even a small coupling
to the substrate phonons, γ = Γ/10 in Fig. 3(b), drasti-
cally decreases the efficiency in this low-current regime,
while having a smaller effect in the regime where the cur-
rent is larger (ε is smaller). Thus, even a weak coupling to
substrate phonon modes, γ � Γ , drastically changes the
ideal operating conditions for maximum η by introducing
a heat loss which depends only weakly on ε and V . When
the coupling to the substrate phonons becomes comparable
to the tunnel coupling, γ ≈ Γ in Fig. 3(c), the efficiency is
significantly decreased also in the high current regime.
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Figure 4 (a) η and (b) P as a function of V and ∆T , with
ε = 5T and other parameters as in Fig. 3(b).

3.3.3 Temperature dependence and molecular
heating Next we fix the level position to a value with
both large power and efficiency, ε = 5T , and vary instead
V and ∆T . The resulting efficiency and output power is
shown in Figs. 4(a) and (b) for the same parameters as
in Fig. 3(b). As above, a too large voltage bias compared
to the temperature bias reverses the current and no useful
electric work is accomplished (white areas). The non-linear
thermopower can be defined through V = −S(∆T )∆T
at I = 0, i.e., V is the finite voltage needed to compen-
sate the temperature bias and give zero electric current. As
expected, both efficiency and power are increased by an
increased temperature bias.

Comparing Fig. 4(a) and (b), we see that for a given
temperature bias, maximum efficiency and maximum out-
put power is achieved at almost the same voltage bias. The
reason is seen from the relation P = η (Q

(e)
h + Q

(p)
h ),

where Q(e)
h (Q(p)

h ) is the electron (phonon) contribution to
the heat current. Since Q(p)

h only has a weak (indirect) de-
pendence on the voltage bias, η and P can be simultane-
ously maximized by adjusting the bias when the phonon
heat loss dominates (γ � Γ ). As Fig. 4 shows, this holds
approximately also when γ ∼ Γ .

Ref. [77] investigated also the effects of λph > 1,
which further reduces both η and P , and λph < 1, which
increases η. Furthermore, both low- and high-energy vibra-
tional modes (ω � T or ω � T ), have a much smaller ef-
fect on η. A low frequency mode can essentially be seen as
a broadening of the electronic resonance of width∼ ωλ2ph.
Almost all decrease in efficiency in this case comes from
the coupling to substrate phonon modes. A high-frequency
mode, on the other hand, cannot be excited and therefore
does not contribute at all to electron or heat transport.

4 Time-dependent driving and adiabatic pump-
ing Charge or heat currents in an electric conductor are
typically generated by imposing a voltage or temperature
gradient between the electrodes of a device, as in the case
of Sec.3. However, in a mesoscopic conductor, a dc-current
can flow even without external gradients if some parame-
ters of the system are periodically modulated in time [90].
When the modulation is slow compared to the character-
istic time scales of the system, the transport mechanism is

called adiabatic pumping. In this case, the pumped charge
depends only on the geometry of the pumping cycle in pa-
rameter space, i.e. it is of geometric nature [91,92]. The
interest in adiabatic pumping has various motivations. For
one, in appropriate modulation setups [93,94], the charge
pumped per period is quantized in units of the electron
charge. Adiabatic charge pumps are therefore promising
candidates for a very precise current standard for metrol-
ogy [26]. Furthermore, the controlled emission of single
charges [25] is of interest for quantum information and
electronic analogs of quantum optical effects [95]. In the
opposite case where the transferred charge is not neces-
sarily quantized, the pumping mechanism can be domi-
nated by quantum effects [96]. This yields the possibility
of revealing internal properties of the device which are not
visible from standard transport spectroscopy through sta-
tionary setups. We will discuss examples for this adiabatic
transport spectroscopy in the following sections.

In the last years, adiabatic pumping in solid-state de-
vices has been widely studied both experimentally [97,
98,27,23,99] and theoretically. As long as interactions
can be treated on a self-consistent mean-field level [100],
adiabatic pumping is well described by Brouwer’s the-
ory [101], which is based on a generalization of the
scattering matrix approach for time-dependent phenom-
ena [102]. This formalism has been applied to study
several aspects of pumping in non-interacting systems,
such as dissipation and noise [92,21], and the possibil-
ity of spin-pumping [103,104]. Further works dealt with
different setups, including normal metal-superconductor
hybrid structures [105,106,107], pumping by surface
acoustic waves [108,109], and graphene-based quantum
pumps [110]. Heat currents have been considered as well
in non-interacting electronic quantum-pumps, both in the
limits of adiabatic [21] and non-adiabatic driving [111,
112,113].

For systems dominated by a strong Coulomb inter-
action, the mean-field approach breaks down and new
formulations are necessary to describe pumping. Sev-
eral studies addressed interaction effects in specific se-
tups and regimes. Pumping in interacting quantum wires
has been discussed in Refs. [114,115]. Pumping through
open quantum dots was addressed in Ref. [116,117] by
employing bosonization techniques, while the Keldysh
Green’s function approach has been applied to investigate
pumping in interacting quantum dots [118,119], includ-
ing the Kondo regime [120,121,122]. A diagrammatic
real-time approach [29] was used to investigate several as-
pects of adiabatic pumping through interacting quantum-
dot systems [30,123,124,28,125,126] weakly coupled
to the leads, and served as the basis for non-equilibrium
renormalization group studies that treat the tunneling non-
perturbatively [127].

Interestingly, adiabatic pumping effects, i.e. the occur-
rence of a finite flux in a preferred direction in response to
a slow periodic or random zero-mean perturbation, are rel-
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evant not only in solid-state mesoscopic devices, but also
for ion-channels in cell membranes [128], enzymatic reac-
tions [129] and, stochastic kinetics in general [130].

4.1 Geometric properties of adiabatic pumping
In terms of the master equation approach outlined in Sec. 2,
adiabatic pumping is described by the contribution to the
current to first order in the modulation frequency, R(1)

t

(R ∈ {Ir, Qr, Jr}). To emphasize its geometric aspects
it is useful to introduce auxiliary vector fields in parameter
space [91]. The key observation is that R(1)

t is directly re-
lated to the time derivative of the instantaneous occupation
probabilities,

R
(1)
t = Tr

{
WR

t W̃
−1
t

d
dtP

(0)
t

}
≡ ϕR d

dtP
(0)
t , (9)

where W̃−1
t is a pseudo-inverse of the evolution Ker-

nel [131]. In the second identity we introduced the vector-
valued response coefficients ϕR, which describes for
R = Ir,Qr,Jr, the rate at which charge, heat and spin
respectively, is transferred to lead r due to a change in the
occupation probabilities. The average current pumped per
period T = 2π/Ω, can then be written as a line-integral
over a closed contour ∂Σ in the space of the driving pa-
rameters [131,132]

R̄(1) ≡ T −1
∫ T
0

dtR
(1)
t = T −1

∮
∂Σ

du ·AR(u), (10)

with AR =
∑
ξ ϕ

R
ξ (u)∇P

(0)
ξ (u). The bar indicates that

the average over one driving period has been taken. Here
u =

∑
i uiei is the “position” vector in parameter space

and ∇ =
∑
i ei∂ui . The vector field AR can be inter-

preted as a pseudovector potential defined in the space of
the driving parameters [131], and its components are di-
rectly related to the concept of emissivity [102,119]. From
Eq. (10) it follows directly that at least two independent
driving parameters are required to have a non vanishing
pumped current, R̄(1) 6= 0. In the case of two-parameters
pumping, u = {u1, u2}, using Stoke’s theorem, Eq. (10)
can be written as the surface integral

R̄(1) = T −1
∫∫

Σ

dS ·BR(u), (11)

where BR(u) = ∇ ×AR(u) and dS is the directed sur-
face element in parameter space. The average current R̄(1)

can then be seen as the flux of the pseudo-magnetic field
BR. The advantage of this representation is that BR antici-
pates the conditions for finite pumping without referring to
the specific details of the modulation [131].

The geometric interpretation holds however only to
first order in the driving frequency and cannot be gener-
alized to higher-order contributions, which depend sensi-
tively on how the pumping orbit is traversed.

4.2 Adiabatic transport spectroscopy In this sec-
tion we will show how the geometric interpretation of adi-
abatic pumping can be used for the analysis of adiabatic
transport spectroscopy. As an example we study a single-
level quantum dot in a non-equilibrium regime induced
by the modulation of the dot’s level position and the ap-
plied bias around a finite value. This situation has been ad-
dressed both in non-interacting systems [113,133] within
the context of the scattering matrix theory and, more re-
cently, in a strongly interacting quantum dot weakly cou-
pled to leads [28,131]. We will focus on this last exam-
ple and show that pumping is interaction-induced and can
be used as a spectroscopic tool to access information on
spin degeneracy and junction asymmetry in the quantum
dot, complementing standard dc-spectroscopy (“stability
diagrams”). Based on Sec. 4.1, we describe the interplay
between interaction and non-equilibrium effects in terms
of the pseudo-magnetic fields associated to the charge and
spin currents. To this end, we consider the transport setup
shown in Fig. 5(a). The quantum dot is described by the
Hamiltonian HD(t) =

∑
σ(ε(t) − σ∆/2)nσ + Un↑n↓,

where ∆ is the Zeeman splitting due to an applied external
magnetic field and U is the onsite Coulomb energy. The
level energy of the dot ε(t) is driven by a time-dependent
gate voltage while the electro-chemical potentials in the
reservoirs are controlled by the bias, i.e. µr(t) = ±V (t)/2
for r = {L,R}. These two voltages are slowly driven at
frequency Ω in a circular orbit around a working point
(ε̄, V̄ ).

Following Sec. 2, the charge and spin currents R ∈
{Ir, Jr} are calculated in lowest order in the coupling
to the leads, and we will focus on the adiabatic correc-
tion (linear order in the modulation frequency) to the in-
stantaneous solution. After a full cycle of the modulation,
the net amount of charge/spin transferred to the r-lead is
given by the instantaneous current flowing in response to
the finite, time-dependent bias and the additional pumped
charge/spin, NR = T R̄(1), generated by the delayed re-
sponse. Experimentally, this adiabatic contribution can be
extracted from the total current by using a lock-in tech-
nique. According to Sec. 4.1, it is possible to represent
the average current, and hence NR, in terms of a pseudo-
magnetic field which in this case reads as

BR(u) = ∇ϕRn ×∇〈n〉+ ∇ϕRs ×∇〈Sz〉, (12)

with the driving parameters u = (ε, V ). Instead of occu-
pation probabilities, Eq. (9), we here use the instantaneous
dot’s average charge 〈n〉t and spin 〈Sz〉t, respectively. The
response coefficients ϕRn,t and ϕRs,t determine the amount
of charge/spin leaving the r-lead when either the average
charge or spin in the dot is changed in response to the driv-
ing.

In the non-interacting limit (U = 0), the response co-
efficients turn out to be independent of the driving parame-
ters and hence they yield a zero pseudo-magnetic field such
that the pumped charge and spin completely vanish. Adia-
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10 F. Haupt et al.: Heat transport in quantum dots

batic pumping in the discussed regime is hence interaction-
induced.

The finite pseudo-magnetic field generated by a large
Coulomb charging energy (U � T ) and zero magnetic
field is shown in Fig. 5(b). A finite pumped charge oc-
curs in peaks located around the meeting point of two dot
level resonance lines (dashed lines in the figure); for the
remaining regions BIr (and therefore the pumped charge)
vanishes for the following reasons: (i) When the driving
is far away from any resonance line, the occupation in the
dot remains constant, and its time-derivative is hence zero.
(ii) When the full driving trajectory only crosses a single
resonance line, the response coefficient and the occupation
number depend on the same effective parameter and hence
their gradients are parallel.

The low-bias peaks (labeled by A and C), displayed in
the “stability diagram for the pumped charge” in Fig. 5(b)
are dominant, while the high-bias peaks (B and D) only
emerge when a non-zero asymmetry λ = (ΓL − ΓR)/Γ
between left and right contacts is present. Moreover, the
adiabatic pumping can here be used to directly identify the
nature of the coupling asymmetry: the peaks A and B in
Figs. 5(b), are related to each other by

B(B)
IL

(ε, V ) = λB(A)
IL

(V/2, 2ε). (13)

Since |λ| < 1, the magnitude of the peak B is always
smaller than the one of peak A and its sign is determined by
the sign of the coupling asymmetry λ. For any two modula-
tion curves centered around these points, a change of vari-
ables allows to write N (B)

IL
= λN (A)

IL
, such that the mere

presence of a pumped charge in the high-bias regime in-
dicates an asymmetric coupling to the leads. Interestingly,
this simple relation can be used for a direct quantitative es-
timation of the coupling asymmetry by dividing the inde-
pendently measured values of pumped charges at the points
B and A.

Note that in contrast to metrological applications of
adiabatic pumping, the transferred charge is never quan-
tized here. When the area enclosed by the modulation in
parameter space includes a full peak, the pumped charge
reaches however a plateau whose maximum value, corre-
sponding to λ = 0, is 1/6 in units of the electronic charge.

In the presence of a finite external magnetic field,
Fig. 5(c), the resonances of Fig. 5(b) are split into further
well-separated peaks. Interestingly, regardless of the value
of λ, there is no peak at the zero-bias crossing points (black
arrows). In this regime of the driving, the vector potentials
for the charge and spin currents are irrotational, such that
integration over a closed trajectory yields zero pumping.
The reason for this is that a finite pumped charge requires
not only a modulation encircling the meeting point of two
resonance lines but also a change in the spin degeneracy of
the ground state [28]. This requirement becomes evident
for the crossing at V = ∆, where the spin degeneracy
is effectively recovered through the applied bias. Charge
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Figure 5 (a) Scheme of the transport device. (b) Stabil-
ity diagram for the pumped charge: gate and bias map
of the normalized pseudo-magnetic field for ∆ = 0 and
λ = 0.25. Bottom panels: Normalized pseudo-magnetic
fields for ∆ = 10T associated to the pumped charge (c)
and spin (d) for λ = 0. The chosen Coulomb interaction is
U = 30T .

pumping is hence also an indicator of the spin degeneracy
occuring in the level spectrum of a quantum dot.

4.3 Spin pumping In addition to charge pumping,
the possibility to pump spin is an interesting option due to
its significant robustness against environment decoherence.
As fundamental elements in the realization of spin-based
electronics, spin pumps could operate in a wide range of
setups including ‘turnstile spin pumps’, i.e., quantum dots
in presence of an external magnetic field where the spin
current flows in response to a periodic modulation of the
confining potentials [27,103], or combinations of driving
parameters like the coupling to the leads and the ampli-
tude of the magnetic field [134]. Other interesting exam-
ples exploit the spin polarization in the reservoirs, like het-
erostructures consisting of normal metal and precessing
ferromagnetic leads acting as a spin battery [135,136], or
quantum systems where the spin-orbit coupling is at the
core of the phenomenon [104,137]. In a double quantum
dot coupled to normal metal and ferromagnetic contacts,
pure spin pumping is obtained when modulating the level
positions of the coupled dots [125].

Returning now to the setup of Fig. 5(a), an external
magnetic field (∆ � T ) generates a spin current J (1)

r,t that
flows through the dot in response to the time-dependent
modulation. The above adiabatic spectroscopy of the res-
onance peaks for the pumped charge can also be extended
to the spin degree of freedom, where one could test how
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Figure 6 Absolute value for the spin-resolved pumped
charge NIσL = (NIL + 2σNJL)/2 for peaks A and B in
Figs. 5(c) and (d). Directions for spin-up (solid red) and
spin-down (dashed blue) pumped charge are denoted by
arrows.

the pumped spin relates to the pumped charge at differ-
ent biases. To this end, we consider an external magnetic
field that induces a non-zero adiabatic spin current flowing
through the dot.

In Fig. 5(d) we show stability diagrams for the pumped
spin in the presence of a finite magnetic field, ∆ 6= 0. The
difference between charge and spin fields is particularly
pronounced for a symmetric junction (λ = 0), where pure
spin pumping occurs in the high-bias regime: the pumped
charge peaks B and D at high bias vanish exactly while
those related to the pumped spin remain finite.

In Fig. 6 we show the spin-resolved pumped charge
associated to the peaks of the pseudo-magnetic fields in
Figs. 5(c) and (d). Its sign, independent of λ, fixes the di-
rection of the overall current after one cycle of the driv-
ing, as indicated by the arrows in the figure. In panel (a),
the pumped charge at peak A is fully polarized: transport
of spin down from the right to the left lead causes the net
flow of spin. Panel (b) shows the pumped charge at peak B.
Strikingly, the pumped charge for the two spin orientations
always flow in opposite directions. In the symmetric case
λ = 0, their magnitudes are exactly the same, such that the
total transported charge cancels out while the pumped spin
remains finite. The same qualitative behavior is found also
for the currents around the peak C.

Finally, this analysis can be extended to the remain-
ing peaks in Figs. 5(b)-(d) by using the symmetries of
the pseudo-magnetic fields around the particle-hole sym-
metry point (ε̄, V̄ ) = (−U/2, 0). Specifically, we find an
antisymmetric shape for the pseudo-magnetic field asso-
ciated to the pumped charge, i.e. BIL(−u) = −BIL(u)
whereas the one for the pumped spin is symmetric, i.e.
BJL(−u) = BJL(u).

5 Pumping heat with a driven double quantum
dot In Sec. 3 we considered the performance of a molec-
ular quantum dot as thermoelectric engine in the station-
ary state. The study of quantum-dot devices as nanoscale

engines can be extended to the case of time-dependently
driven systems, where both the specific properties of the
device and the external driving can now be exploited to
perform useful work (e.g. by moving an electron from a
lower to a higher chemical potential) or to cool a reservoir.
In particular, the time-dependent modulation of a quantum-
dot setup allows to realize mesoscopic analogs of cyclic
heat engines that are sequentially coupled and decoupled
to hot and cold reservoirs [138].

Here, we focus on the case of a double-dot pump (see
Fig. 7a) which, differently from the single-dot setup of
Sec. 4.2, permits pumping one electron per cycle even
in the presence of a finite bias [97,99]. Moreover, it
allows for the implementation of an efficient effective
decoupling scheme from the reservoirs. The double dot
is described by the Hamiltonian HD =

∑
r εrnr +

UnLnR + U ′

2

∑
rnr(nr − 1) − tc

2

∑
σ(d†LσdRσ + h.c.),

where nr =
∑
σ d
†
rσdrσ is the occupation number opera-

tor of dot r = L,R and εr the corresponding single-particle
energy, which can be modulated in time by external gates
εr = εr(t). Interactions between electrons in the same or
in different dots are accounted for by U ′ and U , while tc
represents the inter-dot tunneling amplitude. In the fol-
lowing, we will assume the onsite interaction U ′ to be
the largest energy scale in the system – so that each dot
can be at most singly occupied – and consider the case
of strong inter-dot coupling tc � Γ . Finally, we assume
that the system is symmetrically tunnel coupled to two
non-interacting electronic reservoirs, which are in equilib-
rium at the temperatures TL = T + ∆T and TR = T and
chemical potentials µL = −µR = V/2.

The standard “honeycomb” stability diagram of the
double dot is shown in Fig. 7(b), and identifies regions of
different equilibrium occupation numbers for the two dots,
as a function of the energies εL and εR. The regions where
three charge states are degenerate are named triple points.
The pump is operated by applying a sinusoidal voltage to
the local gates of the two dots with a π/2 phase shift be-
tween them, which forces the state of the system to follow
a circular orbit in parameter space, see e.g. Fig. 7(c).

5.1 Quantized charge and heat pumping We con-
sider first the case of pure adiabatic pumping, (∆T = 0,
V = 0 and Ω → 0), where the only relevant contribu-
tions to the currents are those to first order in the driving
frequency Ω, i.e., R(1)(t). As discussed in Sec. 4.1, the
average current R̄(1) has a geometric interpretation and it
can be expressed as the flux of the pseudo magnetic field
BR through the area in parameter space enclosed by the
pumping cycle. The pseudo magnetic fields associated with
charge and heat pumping through the double dot are shown
in Figs. 7(c)-(d). They exhibit features localized at the
triple points. If the pumping orbit is large enough to fully
encircle one of these features, the charge and heat pumped
per period become independent of the details of the pump-
ing cycle and the resulting dc-currents show plateaux with
height Ī(1)L = ± Ω

2π and Q̄(1)
L = ± Ω

2πT ln 2, see Fig. 8.
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Figure 7 (a) Sketch of the potential landscape of a double-
dot setup. (b) Stability diagram of the double dot for the
case V = 0, and ∆T = 0: black lines indicate the bor-
ders of the stability regions for negligible inter-dot cou-
pling. The system of coordinates formed by the detuning
ε = εL− εR and the mean energy E = (εL + εR)/2 is also
shown. (c) Color scale plot of the pseudo magnetic field as-
sociated with charge pumping BIL (normalized to its maxi-
mum value) and sketch of a possible pumping trajectory in
parameter space. (d) Color scale plot of the pseudo mag-
netic field associated with heat pumping BQL

. In panels
(b)-(d): U = 20T , tc = 10T , Γ � T .

While the appearance of plateaux in the charge current
is directly related to the quantization of charge, plateaux
in the heat current reflect the degeneracies occurring in the
double dot. This can be understood by noticing that along
an orbit that fully encloses a triple point, whenever one of
the two dots comes in resonance with its neighboring lead,
the other one is strongly off-resonant, so that particles are
exchanged only with one lead at the time. In this case, the
average heat current flowing from each lead Q̄(1)

r is directly
related to the difference in entropy in the double dot be-
fore and after an electron has tunneled through the r bar-
rier, Q̄(1)

r = T∆S
(0)
r , where, S(0) = −∑ξ P

(0)
ξ lnP

(0)
ξ

is the Shannon entropy of the double dot and the sub-
script r indicates that the entropy difference is between
two charge configurations that differ only by one electron
in dot r [33]. In this case where the double dot states are
spin-degenerate, we have ∆S(0)

r = ± ln 2.
5.2 Double-dot pump as a Carnot engine. An im-

portant feature of the double-dot pump is the possibility
of achieving quantized pumping even in the presence of
a finite bias voltage V or temperature gradient ∆T . This
requires minimizing the contributions of the instantaneous
currents R̄(0), which play the role of leakage currents since
they flow in the direction set by the gradient, irrespec-
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Figure 8 Upper panel: Average pumped charge-current
plotted as a function of the mean energy Ē, for three dif-
ferent pumping orbits. The pumping cycle is defined by:
E(t) = Ē + δE sin(Ωt) and ε(t) = 2δE cos(Ωt), where
E is the mean energy and δε the driving amplitude (see
Fig. 7(b)). Lower panel: same as above, but for the pumped
heat-current. Inset: Average pumped charge and heat cur-
rent for the case of a fully spin-polarized system. In all
panels: ∆T = 0, V = 0 and U = 20T , tc = 10T , Γ � T .

tively of the orientation of the pumping cycle. This can be
achieved by choosing a pumping cycle that fully encircles
a single triple point. The triple point regions are broadened
by V and ∆T . However, as long as they are well separated
from each other, it remains possible to pump one electron
per cycle through the double dot and the heat currents in
each lead exhibit well defined plateaux of height Ω2πTr ln 2,
where Tr is the local temperature of the lead [33]. In other
words, even if the system is globally brought out of equilib-
rium, the heat exchanged solely with one lead obeys Clau-
sius relation Q̄(1)

r = Tr∆S
(0)
r

Ω
2π . This is because along an

orbit that fully encircles a triple point, the double dot is ef-
fectively coupled only to one lead at the time. In the limit
of slow driving Ω → 0, the system has time to equilibrate
with the lead it is coupled to, so that processes that change
the total occupation of the double dot represent isother-
mal transitions between equilibrium states. A pumping cy-
cle that fully encloses a triple point can then be regarded
as a nanoscale analog of the Carnot cycle, in which two
isothermal transitions are connected by two thermodynam-
ically adiabatic transitions, i.e., occurring at constant en-
tropy. The latter transitions accompany the crossing of the
two dots’ levels.

When the double dot is operated between two leads
with different temperatures and same chemical potential,
it acts either as a refrigerator or as heat engine, depend-
ing on the direction of the cycle. In the first case, a power
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Pac has to be provided by the external ac-fields to extract
heat from the cold reservoir. The efficiency of a refrig-
erator is characterized by its coefficient of performance
COP = Q̄cold/Pac, where Q̄cold is the average heat-
flow out of the cold reservoir. Vice versa, if heat is ex-
tracted from the hot reservoir and released in the cold one,
work is performed on the external fields and the double
dot functions as a heat engine. Its performance is charac-
terized by the efficiency coefficient η = (−Pac)/Q̄hot,
with (−Pac) the work per unit time done by the system
on the ac-fields and Q̄hot the heat absorbed from the hot
lead. It is straightforward to show that in the ideal limit in
which leakage currents can be completely neglected: we
have COP = Tcold/(Thot − Tcold) for the case of the
cooling-cycle and η = (Thot − Tcold)/Thot for the heat
engine, meaning that the double-dot pump can be operated
with Carnot efficiency for Ω → 0 [33].

The efficiency of a realistic double-dot engine, is how-
ever limited both by the leakage currents R̄(0) and by dis-
sipative effects associated to a finite driving frequency.
These are captured by the contribution to the currents to
second order in the driving frequency, R̄(2), which for the
heat current is of the order of Q̄(2)

r ∼ δEΩ
2/Γ . This is

the heat dissipated in each cycle due to the injection of hot
electrons or holes into the leads. As discussed in Ref. [33],
it can pose severe limitations to the efficiency of a double-
dot based engine, especially in the regime of small ∆T .
These limitations are less strict if one considers the opera-
tion of a double-dot pump as nanoscale “battery charger”
performing work against a dc-source. In this case efficien-
cies up to 70% of the ideal value can be achieved, see
Ref. [33].
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Phys. Rev. B 79, 033405 (2009).
[62] S. Andergassen, T. A. Costi, and V. Zlatić, Phys. Rev. B
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