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We present a description of the non-equilibrium properties of a microcavity polariton fluid, in-
jected by a nearly-resonant continuous wave pump laser. In the first part, we point out the interplay
between the peculiar dispersion of the Bogolubov-like polariton excitations and the onset of polari-
ton parametric instabilities. We show how collective excitation spectra having no counterpart in
equilibrium systems can be observed by tuning the excitation angle and frequency. In the second
part, we explain the impact of these collective excitations on the in-plane propagation of the polari-
ton fluid. We show that the resonant Rayleigh scattering induced by artificial or natural defects is a
very sensitive tool to show fascinating effects such as polariton superfluidity or polariton Cherenkov
effect. We present a comprehensive set of predicted far-field and near-field images for the resonant
Rayleigh scattering emission.

I. PREFACE

In the last decade, the research group of Professor
Marc Ilegems at EPFL has been working intensively and
enthusiastically on the physics and device applications
of artificial photonic systems, such as semiconductor mi-
crocavities and photonic crystals. In this Festschrift pa-
per, we are going to present a theory of some exotic
physical properties of coherently excited semiconductor
microstructures in the strong exciton-photon coupling
regime. We hope that the rich phenomenology here de-
scribed will contribute to a very pleasant celebration of
his 65th birthday.

II. INTRODUCTION

The behavior of a quantum fluid has played an impor-
tant role in many fields of condensed matter and atomic
physics, ranging from superconductors to Helium flu-
ids [1] and, during the last decade, Bose-Einstein con-
densates of cold trapped atoms [2]. One of the most
dramatic manifestations of macroscopic coherence of an
interacting many-body system is superfluidity [3].
In this paper, we will provide a comprehensive theo-

retical analysis of the predicted non-equilibrium propa-
gation properties of a two-dimensional gas of polaritons
in a semiconductor microcavity in the strong exciton-
photon coupling regime [4, 5]. Thanks to their pho-
tonic component, polaritons can be coherently excited
by an applied laser field and detected through the emit-
ted light. Thanks to their excitonic component, polari-
tons have strong binary interactions, which have been
shown to produce spectacular and rich polariton amplifi-
cation effects through matter-wave stimulated collisions
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[6, 7, 8, 9, 10, 11], as well as spontaneous parametric
instabilities [12, 13, 14, 15, 16, 17, 18]. Recently, a sig-
nificant amount of research has been also focusing on
the quantum optical properties of the polariton emission
in the parametric regime with the possibility of observ-
ing polariton squeezing and polariton pair entanglement
[19, 20, 21, 22, 23, 24, 25, 26].

Here, we are going to present a detailed discussion of
the interplay between the peculiar polariton collective ex-
citations and the rich variety of parametric instabilities,
which occur in presence of a nearly-resonant continuous
wave pump laser. In addition, we are going to discuss
the impact on the propagation properties of a moving po-
lariton fluid and analyze in detail the superfluid regime,
which we predicted in a very recent Letter [27]. As our
system is a strongly non-equilibrium one, the polariton
field oscillation frequency is not fixed by any equation
of state relating the chemical potential to the polariton
density, but it can be tuned by the frequency of the ex-
citing pump laser. This opens the possibility of having a
collective excitation spectrum which has no counterpart
in usual systems close to thermal equilibrium. In par-
ticular, we will analyze the propagation in presence of a
static potential (either for the photonic or exciton com-
ponent), which is known to produce resonant Rayleigh
scattering (RRS) of the exciting laser field [14, 28, 29, 30].
Superfluidity of the polariton fluid manifests itself as a
dramatic collapse of the resonant Rayleigh scattering in-
tensity when the flow velocity imprinted by the exciting
laser beam is slower than the interaction-induced sound
velocity in the polariton fluid. Furthermore, a dramatic
reshaping of the RRS pattern due to polariton-polariton
interactions can be observed in both momentum and real
space even at higher flow velocities, e.g. with the appear-
ance of Cherenkov-like patterns. We will present a rich
set of predicted far-field and near-field images of the res-
onant Rayleigh scattering emission.

http://arxiv.org/abs/cond-mat/0502585v1
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III. HAMILTONIAN AND POLARITON

MEAN-FIELD EQUATIONS

In order to describe a planar microcavity containing a
quantum well with an excitonic resonance strongly cou-
pled to a cavity mode, we will consider the following
model Hamiltonian [31]:

H =

∫

dx
∑

ij={X,C}

Ψ̂†
i (x)

[

h
0
ij + Vi(x) δij

]

Ψ̂j(x)

+
h̄g

2

∫

dx Ψ̂†
X(x) Ψ̂†

X(x) Ψ̂X(x) Ψ̂X(x)+

+

∫

dx h̄Fp(x, t) Ψ̂
†
C(x) + h.c. , (1)

where x is the in-plane spatial position and the field op-
erators ΨX,C(x) respectively describe excitons (X) and
cavity photons (C). They satisfy Bose commutation

rules, [Ψ̂i(x), Ψ̂
†
j(x

′)] = δ2(x−x
′) δij . Note that, for sim-

plicity, we will limit our treatment to the case of polariton
modes with the same circular polarization, which can be
excited by a circularly polarized pump. The approach
here presented can be generalized to the spin-dependent
case by considering appropriate spin-dependent exciton-
exciton collisional potentials.
The single-particle Hamiltonian h

0 reads

h
0 = h̄

(

ωX(−i∇) ΩR

ΩR ωC(−i∇)

)

, (2)

where ωC(k) = ω0
C

√

1 + k2/k2z is the cavity mode energy
dispersion as a function of the in-plane wavevector k and
kz is the quantized photon wavevector along the growth
direction. ΩR is the Rabi frequency of the exciton-cavity
photon coupling. In the following, we will consider a flat
exciton dispersion ωX(k) = ωX . In this framework of
coupled harmonic oscillators, polaritons simply arise as
the eigenstates of the linear Hamiltonian (2). ωLP (UP )(k)
denotes the dispersion of the lower (upper) polariton
branch [Fig.1(a)].
The term proportional to Fp(x, t) in Eq. (1) repre-

sents an applied coherent laser pump spot, which drives
the cavity and injects polaritons. In the following, we
will consider the case of a monochromatic laser field
of frequency ωp and plane-wave profile with in-plane
wave-vector kp. The in-plane wave-vector is linked to
the incident direction by the simple relationship kp =
sin θp ωp/c, θp being the pump incidence angle with re-
spect to the growth direction. This means that an oblique

pump incidence generates a polariton fluid with a non-
zero flow velocity along the cavity plane. For h̄ωp = 1400
meV, an in-plane wavevector kp = 1 (µm)−1 corresponds
to a pump incidence angle of 8.1◦.

The nonlinear interaction term in Eq. (1) is due to
exciton-exciton collisional interactions and, as usual, is
modelled by a repulsive (g > 0) contact potential. The
anharmonic exciton-photon coupling has a negligible ef-

−2 0 2

−2

0

2

4

6

8

10

k
x
 [ (µ m)−1 ]

E
 −

 E
X
 [m

eV
]

(a)

UP

LP

−2 0 2
−3

−2.5

−2

−1.5

−1

−0.5

0

k
x
 [ (µ m)−1 ]

E
 −

 E
X
 [m

eV
]

LP

(b)

FIG. 1: (a): Linear dispersion of the Lower (LP) and Upper
(UP) Polariton branches as a function of kx (ky = 0). Cavity
parameters: h̄ωX = h̄ωC = 1.4 eV, 2 h̄ΩR = 5meV. (b)
Zoom of the LP branch. The dashed line depicts the parabolic
approximation around the bottom of the dispersion.

fect in the regime considered in the present study [31]
and will be neglected for sake of clarity.

Finally, VX,C(x) are the single particle potentials act-
ing on the exciton and photon fields respectively. These
potentials break the translational symmetry along the
cavity plane. The exciton potential VX(x) can be due to
natural interface or alloy disorder in the semiconductor
quantum wells due to unavoidable growth imperfections.
The photonic potential VC(x) can be due to fluctuations
of the cavity length or imperfections in the Bragg reflec-
tors (photonic disorder[24]). More interestingly, VC(x)
can be designed and created deliberately by means of
lithographic techniques.

Within the mean-field approximation, the time-
evolution of the mean fields ψX,C(x) = 〈Ψ̂X,C(x)〉 under
the Hamiltonian (1) is given by:

i
d

dt

(

ψX(x)
ψC(x)

)

=

(

0
Fp e

i(kpx−ωpt)

)

+

[

h
0 +

(

VX(x) + g|ψX(x)|2 − iγX 0
0 VC(x) − iγC

)](

ψX(x)
ψC(x)

)

. (3)

Using the language of the quantum fluid commu- nity, these are the Gross-Pitaevskii equations [2] for our
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FIG. 2: Exciton mean-field energy h̄g|Ψss
X |2 (meV) as a func-

tion of the incident pump intensity (arb. units). Cavity pa-
rameters: h̄γC = h̄γX = 0.1meV, h̄ωX = h̄ω0

C = 1.4 eV,
2 h̄ΩR = 5meV. (a) Bistability curve obtained with the exci-
tation parameters: kp = 0.314 µm−1 (well in the parabolic re-
gion near the bottom of the LP dispersion), h̄ωp−h̄ωLP (kp) =
0.47meV. Circles depict the calculated stable points, while
the dashed line represents the unstable branch. The thresh-
old points A and B are, respectively, due to a single-mode
(Kerr) or a multi-mode (parametric) instability. (b) Op-
tical limiter curve obtained with the same kp, but with
h̄ωp − h̄ωLP (kp) = −0.47meV. In this case, all stationary
solutions are stable.

.

cavity-polariton system. The quantities γX and γC rep-
resent the homogoneous broadening of the exciton and
photon modes respectively. In the present work, we will
be concerned with an excitation close to the bottom of
the LP dispersion, i.e. the region most protected [5] from
the exciton reservoir, which may be otherwise responsible
for excitation-induced decoherence [32].

IV. STATIONARY SOLUTIONS IN THE

HOMOGENEOUS CASE

In the homogeneous case (i.e., VX,C(x) = 0 and trans-
lational invariance along the plane), we can look for
spatially homogeneous stationary states of the system
in which the field has the same plane-wave structure
ψX,C(x, t) = exp[i(kpx−ωpt)]ψ

ss
X,C as the incident laser

pump field. The mean-field equations

(

ωX(kp)− ωp −
i

2
γX + g |ψss

X |2
)

ψss
X +ΩR ψ

ss
C = 0 (4)

(

ωC(kp)− ωp −
i

2
γC

)

ψss
C +ΩR ψ

ss
X = −Fp, (5)

are the non-equilibrium analogous of the state equation,
which in equilibrium systems links the chemical potential
to the particle density. Importantly, we stress that while
the oscillation frequency of the condensate wavefunction
in an isolated gas is equal to the chemical potential µ
and therefore it is fixed by the equation of state, in the
present driven-dissipative system it is equal to the fre-
quency ωp of the driving laser and therefore it is an ex-
perimentally tunable parameter. Hence, the microcavity
polariton system allows us to explore a regime, which is
not accessible in systems close to thermal equilibrium,
such as the ultracold trapped atoms.

V. LINEARIZED BOGOLIUBOV-LIKE THEORY

As usual in the theory of nonlinear systems, stability
of the solutions of Eqs. (4-5) with respect to fluctua-
tions has to be checked by linearizing Eq. (3) around
the stationary state. Perturbations can be produced by
classical fluctuations of the pump field, quantum noise
of the exciton and photon fields as well as the presence
of perturbing potentials VC,X(x), which have not been
considered by the plane-wave solutions in Eqs. (4-5).

In the stability region, the linearized response of the
system to a weak perturbation is analogous to the cele-
brated Bogoliubov theory of the weakly interacting Bose
gas [2]. Let us define the slowly varying fields with re-
spect to the pump frequency as

δφi(x, t) = δψi(x, t) exp(iωpt) , (6)

and let us consider the four-component displacement vec-
tor

δ~φ(x, t) =
(

δφX(x, t), δφC(x, t), δφ
∗
X (x, t), δφ∗C(x, t)

)T
.

(7)
The equation of motion for the four-component displace-
ment vector reads

i
d

dt
δ~φ = L · δ~φ+ ~fpert, (8)

where ~fpert is the inhomogeneous source term produced

by the perturbation. The expression for ~fpert depends on
which kind of perturbation is considered and will be given
explicitly later for the case of a perturbation induced by
the single particle potentials VC,X(x). The linear opera-
tor L is
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L =









ωX + 2g |ψss
X |2 − ωp − iγX

2 ΩR g ψss 2
X e2ikpx 0

ΩR ωC(−i∇)− ωp − iγC

2 0 0

−g ψss ∗ 2
X e−2ikpx 0 −

(

ωX + 2g |ψss
X |2
)

+ ωp − iγX

2 −ΩR

0 0 −ΩR −ωC(−i∇) + ωp − iγC

2









.

(9)
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FIG. 3: Same plot as in Fig. 2, but with pump in-plane
wavevector kp = 1.5µm−1 (close to the inflection point of
the LP dispersion). Pump frequency: (a) h̄ωp − h̄ωLP (kp) =
0.47meV, (b) h̄ωp − h̄ωLP (kp) = −0.47meV. In contrast
to Fig. 2, here both threshold points C and D are due to
parametric instabilities.

A. Stability of the stationary solutions

The stability of the solutions of Eqs. (4-5) can be de-
termined by calculating the imaginary parts of the eigen-
values of the operator L. If all the eigenvalues have
negative imaginary parts (i.e., as it happens in the non-
interacting case), then the solutions are stable. Other-
wise, an instability occurs. If the polariton instability in-
volves only the pump mode, we have the analogous of a
Kerr instability. If the instability is due to pairs of modes
(formation of the so-called signal-idler pairs), we have a
parametric instability (in the field of quantum fluids, this
kind of dynamical instabilities are generally known as
modulational instabilities [33]). In Fig. 2, we have plot-
ted the stationary solutions for the exciton mean-field en-
ergy h̄g |ψss

X |2 (meV) as a function of the incident pump
intensity (arb. units) for realistic microcavity parameters
and with a small pump wave-vector (kp = 0.314 µm−1),
close to the bottom of the LP dispersion. In Fig. 2(a),
we have considered the case of a pump frequency, which
is blue-detuned with respect to the unperturbed lower

polariton energy (ωp > ωLP (kp)). In this case, there is a
clear S-shaped bistability curve[34, 35, 36, 37]. The un-
stable branch, determined through the eigenvalues of the
linear operator L, have been depicted with a dashed line,
while the stable points are represented by circles. The
threshold points A and B are due to a Kerr and to para-
metric instability respectively. By comparison, in Fig.
2(b), we have shown the same quantity, but for a red-
detuned laser frequency (ωp < ωLP (kp)). In this case,
the polariton system behaves as an optical limiter[37],
the absorption is highly sublinear and all the points are
stable. To give a more complete picture, we report in Fig.
3, the analogous calculations, but with a larger wavevec-
tor (kp = 1.5 µm−1), close to the inflection point of the
LP dispersion. It is apparent that, while the shape is
analogous, the boundary between the stable and unsta-
ble branches is modified. In particular, the threshold
points C and D are both due to parametric instabilities.
Note that nice hysteresis loops due to polariton bistabil-
ity have been recently experimentally demonstrated in
the case kp = 0 [34] and for a pump wavevector close to
the inflection point of the LP dispersion [36].

B. Complex energy of the collective excitations

The spectrum of the collective excitations (Bogoliubov
modes in the quantum fluid terminology) can be obtained
from the eigenvalues of the operator L. As the system is
translationally invariant along the plane (we are consider-
ing the homogeneous case VX = VC = 0) , the wavevector
k is a good quantum number and the eigenvectors of L
have a plane-wave form

δ~φ±j,k(x) =









u±j,X,k e
ikx

u±j,C,k e
ikx

v±j,X,k e
i(k−2kp)x

v±j,C,k e
i(k−2kp)x









, (10)

satisfying the reduced eigenvalue equation

(

(ω±
j (k)− ωp)1− L̃(k,kp)

)

·









u±j,X,k

u±j,C,k

v±j,X,k

v±j,C,k









= 0 , (11)

where
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L̃(k,kp) =









ωX + 2g |ψss
X |2 − iγX

2 ΩR g ψss 2
X 0

ΩR ωC(k) − iγC

2 0 0

−g ψss ∗ 2
X 0 2ωp −

(

ωX + 2g |ψss
X |2
)

− iγX

2 −ΩR

0 0 −ΩR 2ωp − ωC(2kp − k)− iγC

2









. (12)

For each k, the spectrum is composed by four branches.
For each polariton branch j ∈ {LP,UP}, two ± branches
exist, which are related by the symmetry

ω−
j (k) = 2ωp − ω+

j (2kp − k). (13)

Now, we wish to point out and list clearly the relevant
properties and symmetries in this problem. These prop-
erties will be later discussed in detail through a set of
comprehensive examples and elucidations.
(i) The collective excitations are characterized by the

pump-induced coherent coupling between a generic mode
with wavevector k and the ”idler” wavevector 2kp − k.
This corresponds to the elementary process {kp,kp} →
{k, 2kp−k}, i.e. the conversion of two pump excitations
into a signal-idler pair (to use the quantum optics ter-
minology of parametric oscillators) with the same total
momentum.
(ii) The ”idler” branch ω−

LP (k) is the ”image” of

the ordinary branch ω+
LP (k) under the simultaneous

transformations[38] k → 2kp − k and ω → 2ωp − ω. The

same relationship holds for the UP branches ω±
UP (k).

(iii) The matrix L̃(k,kp) is characterized by an anti-

hermitian coupling between k and 2kp−k. This feature is
typical of parametric wave-mixing coupling (in the quan-
tum optics language) or Bogoliubov theory (using the
quantum fluid literature terminology).

(iv) The four branches of eigenvalues ω±
UP,LP (k) are

complex. As the real parts, the imaginary parts of the
eigenvalues depend both on k and on the pump param-
eters. In the stability region, all imaginary parts are
negative.

(v) In case of resonant excitation of the lower branch,
provided that the interaction energy g |ψss

X |2 is much
smaller than the polaritonic splitting ωUP −ωLP , there is
no significant mixing between the LP and UP branches.
Hence, a simplified approach consists in neglecting the
contribution of the upper branch. With this approxi-
mation, the branches ω±

LP (k) are the eigenvalues of the
simplified matrix

L̃LP (k,kp) =

(

ωLP (k) + 2gLP |ψss
LP |2 −

iγLP (k)
2 gLP ψ

ss 2
LP

−gLP ψ
ss ∗ 2
LP 2ωp −

(

ωLP (2kp − k) + 2gLP |ψss
LP |2

)

− iγLP (k)
2

)

, (14)

where the stationary lower polariton field is written as
a linear superposition of the exciton and cavity photon
fields, namely

ψss
LP = XLP (kp)ψ

ss
X + CLP (kp)ψ

ss
C , (15)

being |XLP (kp)|2 and |CLP (kp)|2 the exciton and pho-
ton fractions of the lower polariton mode with the pump
wavevector. The effective interaction strength

gLP = g |XLP (kp)|2XLP (k)XLP (2kp − k) (16)

takes into account for the exciton fraction of the involved
lower polariton modes (pump, signal and idler). The
polariton linewidth is given by γLP (k) = |XLP (k)|2γX +
|CLP (k)|2γC .
(vi) When the diagonal elements of L̃LP (k,kp) are

equal, it is easy to verify that ℜ[ω+
LP (k)] = ℜ[ω−

LP (k)],

while ℑ[ω+
LP (k)] 6= ℑ[ω−

LP (k)]. This means that the para-
metric coupling produces a splitting of the imaginary

parts of the two LP branches, while the real parts are the
same. If the difference between the diagonal elements of
L̃LP (k,kp) is small compared to the coupling gLP |ψss

LP |2,
then the same property holds. In other words, the dis-
persions of the two branches ω+

LP (k) and ω
−
LP (k) stick to-

gether, while their imaginary parts are split. One branch
is narrowed with respect to the linear regime, while the
other is overdamped. Analogous properties occur for the
exact eigenvalues of the 4× 4 matrix L̃(k,kp), which are
reported in all the figures of this paper.

1. Excitation near the inflection point of the LP dispersion

In the following, we will show the exact eigenval-
ues (obtained by numerical calculations) of the matrix

L̃(k,kp) in Eq. (12) as a function of the excitation pa-
rameters (pump frequency, wavevector and intensity).
We will focus on the subtle interplay between the dra-
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Cavity parameters as in the previous figures.
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matic modification of the energy dispersions (depend-
ing on the real part of the eigenvalues) and the onset of
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stability, because the imaginary parts are modified at the
pumped mode only. This stable point is close to the inversion
point A in Fig. 2(a).

the parametric instabilities (depending on the imaginary
part).

As a first example, we consider the case of nearly-
resonant excitation close to the inflection point of the
LP dispersion (see Fig. 4). The pump frequency has
been taken slightly blue-detuned with respect to the po-
lariton energy in the linear regime. In Fig. 4(a) the exact
dispersions of the four polariton Bogoliubov branches is
shown. The upper polariton branches are energetically
far away and play a negligible role, while the relevant
physics concerns the lower polariton branches ω±

LP only.
The corresponding imaginary parts are shown in 4(b).
It is apparent that there is a dramatic modification of
the imaginary part around the wave-vectors kx = 0 and
kx = 2kp. Although the stationary solutions are here
stable (negative imaginary parts), we can see that we are
close to a parametric instability. In fact, there is one
branch, whose imaginary part is not far from zero. Note
that the imaginary parts are split at kp as well, even if
in a much weaker way. This is a precursor of a Kerr (or
single-mode) instability.

In Fig. 5, we give another example, with the same
excitation parameters as in Fig. 3 (a) and with an exciton
mean-field energy h̄g|Ψss

X |2 = 0.699meV. In this case, we
have an unstable solution, because, as shown in Fig.5(b),
there are modes with positive imaginary parts. On the
bistable curve of Fig. 3(a), we are here just beyond C.
The instability being of parametric (or multi-mode) type,
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FIG. 7: (a) Exact energy dispersions ℜ[h̄ω±

LP ] of the lower
polariton Bogoliubov branches measured with respect to the
pump photon energy h̄ωp (meV). (b) Corresponding imag-
inary parts (meV). Excitation parameters: kp = 0, h̄ωp −
h̄ωLP (kp) = 0.532meV, h̄g|Ψss

X |2 = 1.2meV.

note that the point C is close but does not coincide with
the inversion point of the bistable curve. In Fig. 5(a),
we can see that the branches ω±

LP stick together in the
wavevector region where the parametric instability takes
place.

2. Excitation near the bottom of the LP dispersion

Here, we consider the case of a smaller pump excitation
wavevector and energy , such as to excite the LP branch
close to the bottom of its dispersion. In this region, as
shown by Fig. 1(b), the dispersion of the unperturbed
lower polariton branch is parabolic. In order to stress the
non-trivial effects here predicted, we start by showing a
spectacular case, depicted in Fig.6. The excitation pa-
rameters correspond to Fig. 2(a) with the exciton mean-
field energy h̄g|Ψss

X |2 = 1.02meV, i.e., a point close to
the threshold point A for the Kerr instability. The dis-
persions of the branches ω±

LP in Fig.6(a) have a corner
at the pump wavevector. This dispersion is reminiscent
of the celebrated Bogoliubov linear dispersion in super-
fluid helium and in the atomic condensates. If we look
at Fig.6(b), we realize that the modification of the imag-
inary part is peaked around the pump wavevector itself.
Using the quantum optics language, this is the precur-
sor of a Kerr instability, because it involves the pumped
mode only.
In Fig. 7, we give another example, which has no

analog in equilibrium systems. Here, we have a blue-
detuned pump at normal incidence, namely kp = 0,
h̄ωp − h̄ωLP (kp) = 0.53meV and h̄g|Ψss

X |2 = 1.2meV.
In Fig. 7(a), we can clearly see that the dispersion of the
polariton collective excitations is flat around the pump
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FIG. 8: (a) Exact energy dispersions ℜ[h̄ω±

LP ] of the lower
polariton Bogoliubov branches measured with respect to the
pump photon energy h̄ωp (meV). (b) Corresponding imagi-
nary parts (meV). Excitation parameters: kp = 0.314 µm−1

(along the x-axis), h̄ωp − h̄ωLP (kp) = 0.04meV, h̄g|Ψss
X |2 =

0.04meV.
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FIG. 9: (a) Exact energy dispersions ℜ[h̄ω±

LP ] of the lower
polariton Bogoliubov branches measured with respect to the
pump photon energy h̄ωp (meV). (b) Corresponding imagi-
nary parts (meV). Excitation parameters: kp = 0.314 µm−1

(along the x-axis), h̄ωp − h̄ωLP (kp) = 0.47meV, h̄g|Ψss
X |2 =

0.04meV.

wave-vector. For the parameters of Fig. 7(b), the imag-
inary parts are all negative, which implies stability, but,
as in Fig.6(b), we are not far from the onset of a Kerr
instability. Note that in Fig. 8, we have an analogous
situation, but with a finite pump wavevector. As shown
by Fig. 8(a), the branches ω±

LP stick together around the
pump wavevector, with a dispersion exactly linear.
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In Fig. 9(a), we show the dispersions for a stable point,
which is close to the threshold point B in Fig. 2(a).
Note that here the exciton mean-field energy is consider-
ably smaller than the pump detuning. Hence, the branch
sticking occurs in a limited portion of momentum space,
where the imaginary parts are affected, as shown in Fig.
9(b).
Finally, in Fig. 10(a), we give another different ex-

ample, with a full gap between the branch ω+
LP and the

branch ω−
LP . In Fig. 10(b), we can see that the imagi-

nary parts of the eigenvalues are unchanged with respect
to the linear regime. Indeed, for these excitation param-
eters (see the caption of Fig. 10), the microcavity has an
optical limiter behavior similar to the one in Fig. 2(b)
and no instability occurs if the pump intensity is further
increased.

3. Simplified analytical model for excitation close to the

bottom of the LP dispersion

Now, after having shown a few examples of the rich
spectra of non-equilibrium collective excitations and the

variety of interaction-induced polariton instabilities, we
present here a simple approximated approach, which al-
lows us to grasp effectively the physics contained by the
eigenvalues of the matrix in Eq. (12). In particular,
we consider the case of negligible mixing with the UP
branches, which allows us to focus our analysis on the
simpler 2 × 2 matrix in Eq. (14) instead of the 4 × 4
matrix in Eq. (12). Moreover, we consider a pump ex-
citation close to the bottom of the LP dispersion, where
the dispersion is approximately parabolic (see Fig. 1(b)),
i.e.,

ωLP (k) ≃ ωLP (0) +
h̄k2

2mLP

, (17)

where mLP is the effective mass of the LP dispersion.
Under these assumptions, the spectrum of the LP Bo-
goliubov excitations can be approximated by the simple
expression

ω±
LP ≃ ωp + δk · vp −

iγLP

2
±
√

(2 gLP |ψss
LP |2 + ηδk −∆p)(ηδk −∆p), (18)

where δk = k− kp,

ηδk =
h̄ δk2

2mLP

, (19)

the pump mode flow velocity is vp = h̄kp/mLP and the
interaction-renormalized pump detuning

∆p = ωp − ωLP (kp)− gLP |ψss
LP |2. (20)

In the case of resonant exciton-photon coupling (i.e.
ωC(0) = ωX) and small wavevectors, the excitonic
fraction of the lower polariton mode is approximately
0.5. Under these assumptions, we have |ψss

LP |2 ≈
2|ψss

X |2 and gLP ≈ g/4 [see Eqs. (15-16)]. Therefore,
gLP |ψss

LP |2 ≈ 0.5 g|ψss
X |2, i.e. the mean-field interac-

tion energy ”felt” by the lower polariton is half of the
mean-field energy for the exciton field. Note that there
are three different cases, according to the value of ∆p

defined in Eq. (20).
(i) ∆p = 0. In this resonant situation, the ± branches

touch at k = kp. The effect of the finite flow velocity
vp is to tilt the standard Bogoliubov dispersion [2] via
the term δk · vp. While in the non-interacting case the
dispersion is parabolic, in the presence of interactions
[Fig.6(a)] its slope has a discontinuity at k = kp. On
each side of the corner, the + branch starts linearly with
group velocities respectively given by vr,lg = cs ± vp, cs
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FIG. 10: (a) Exact energy dispersions ℜ[h̄ω±

LP ] of the lower
polariton Bogoliubov branches measured with respect to the
pump photon energy h̄ωp (meV). (b) Corresponding imagi-
nary parts (meV). Excitation parameters: kp = 0.314 µm−1

(along the x-axis), h̄ωp − h̄ωLP (kp) = 0.25meV, h̄g|Ψss
X |2 =

0.6meV.

being the usual sound velocity of the interacting Bose gas
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cs =
√

h̄ gLP |Ψss
LP |2/mLP . (21)

On the hysteresis curve of Fig.2(a), the condition ∆p = 0
corresponds to the inversion point A.
(ii) ∆p > 0. In this case, the argument of the square

root in (18) is negative for the wavevectors k such that
∆p > ηδk > ∆p−2 g|Ψss

X |2. In this region, the ± branches
stick together [31] (i.e. ℜ[ω+

LP ] = ℜ[ω−
LP ]) and have an

exactly linear dispersion of slope vp as in Fig. 8(a) and
in Fig. 7(a). The imaginary parts are instead split, with
one branch being narrowed and the other broadened [31,
38]. Increasing further the pump density, the multi-mode
parametric instability [38] sets in, corresponding to the
point B in Fig. 2(a).
(iii) ∆p < 0. In this case, as it is shown in Fig.10,

the branches no longer touch each other at kp and a full
gap between them opens up for sufficiently large values
of |∆p|. In Fig. 2(a), the region ∆p < 0 is indicated.

VI. RESPONSE TO A STATIC POTENTIAL:

RESONANT RAYLEIGH SCATTERING

The dispersion of the polariton elementary excitations
is the starting point for a study of the microcavity re-

sponse to a perturbation. In particular, we shall con-
sider here a moderate static disorder as described by the
potential VC,X(x). In this case the perturbation source
term for the equations of the linearized theory (see Eq.
8) is the time-independent quantity

~fd(x) =







VX(x)φssX
VC(x)φ

ss
C

−VX(x)φss ∗
X

−VC(x)φss ∗
C






. (22)

The induced perturbation of the exciton and photon
fields is given by the expression

δ~φd(x) = −L−1 · ~fd(x) . (23)

We remind you that, as shown by Eq. (9), L is an
operator depending on the two-dimensional spatial gra-
dient ∇. It is convenient to perform a spatial Fourier
transform, which leads to the algebraic result









δφ̃X(k)

δφ̃C(k)

δφ̃∗X(2kp − k)

δφ̃∗C(2kp − k)









= −(L̃(k,kp)− h̄ωp)
−1 ·









ṼX(k)φssX
ṼC(k)φ

ss
C

−ṼX(k− 2kp)φ
ss ∗
X

−ṼX(k− 2kp)φ
ss ∗
C









, (24)

where the eigenvalues of the matrix L̃(k,kp), defined in
Eq. (12), are the 4 branches of polariton Bogoliubov ex-
citations. The perturbation potentials VC,X(x) break the
planar translational symmetry of the microcavity system,
thus exciting polariton modes with in-plane wavevectors
different from the pump wavevector kp. However, being
VC,X(x) static, the resonant excitation concerns only Bo-
goliubov modes whose frequency is equal to ωp (within
the polariton homogeneous linewidth). The observable
quantity is

IRRS(k) ∝ |δφ̃C(k)|2 , (25)

i.e., the perturbation-induced intensity of the photonic
field, which is proportional to the far-field images of the
resonant Rayleigh scattering signal [14, 24, 29].

A. Weak excitation regime and elastic RRS ring

In the following, we will show a few applications of Eq.
(24), using the perturbation potentials depicted in Fig.
11. Here, we have considered a single photonic defect
(depth 1 meV, width 1.5µm) for the in-plane photonic
potential VC(x) [see Fig.11(a)] and a disordered excitonic
potential [see Fig.11(b)]. We point out that these poten-
tials are just an example and that Eq. (24) can be read-
ily applied for an arbitrary set of perturbation potentials
(see, e.g., the cover of this special volume). In the nu-
merical applications here reported, we have considered
a 256 × 256 spatial grid and a squared box (400µm ×
400µm), with the photonic dot at the center of the box.
In Fig. 12, we show the results for the weak excita-

tion regime, where the many-body effects produced by
polariton-polariton interactions are negligible. In this
linear regime, we have the conventional unperturbed dis-
persions of the lower and upper polariton branches. In
Fig. 12(a), we have considered the case of resonant exci-
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FIG. 11: Single particle potentials considered in the numerical
calculations. Note that this is a zoom around the origin of
the 400µm × 400µm box (with a 256× 256 grid) used for the
numerical calculations. Top panel: Photonic potential VC(x)
(meV) (it can model an artificial or natural point defect at
the origin x = y = 0). Bottom panel: Excitonic potential
VX(x) (disordered spatial fluctuations of the exciton energy).
The gray color scale is different with respect to the top panel.

tation close to the bottom of the LP branch, where the
dispersion is parabolic. In Fig. 12(b), the intensity of
the resonant Rayleigh scattering is shown, displaying the
well known elastic ring. In fact, in the linear regime, the
solutions of the equations ωLP (k) = ωp are k-points on
a circle, because the unperturbed polariton dispersion
depends on |k| only. The speckles on top of the elas-
tic ring are due to the random nature of the excitonic
potential.The width of the ring is due to the finite homo-
geneous broadening of the polariton modes. Note that,
in order to excite the elastic ring corresponding to the
wavevector kp, the Fourier component ṼC,X(kp) of the
static potentials need to be finite. This condition is eas-
ily fulfilled by a typical excitonic disordered potential or
by a photonic defect whose width is of the order of 1 µm.

In Fig. 13, we show the corresponding spatial pattern.

FIG. 12: Energy dispersion of the LP branches in the
weak excitation regime.(b) Intensity (arb. units) of the pho-

tonic resonant Rayleigh scattering signal |δφ̃C(k)|
2. Ex-

citation parameters: kp = 0.4 µm−1 (along the x-axis),
h̄ωp − h̄ωLP (kp) = 0meV, h̄g|Ψss

X |2 = 0.0001meV. The pho-
tonic and exciton potentials are those shown in Fig 11. The
speckles of the elastic RRS ring are due to the disordered ex-
citonic potential. The chosen plot range is such that a few
speckles saturate the gray scale.

FIG. 13: Spatial profile of the normalized cavity photon den-
sity, i.e., IC(x)/I

hom
C . Excitation parameters and potentials

as in Fig. 12. The coherent diffusion pattern induced by the
point defect at the origin is the main feature on top of the
random landscape produced by the exciton disorder.
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FIG. 14: Superfluid regime. Same parameters as in Fig. 12,
but with h̄ωp− h̄ωLP (kp) = 0.467meV, h̄g|Ψss

X |2 = 1meV. In
this superfluid regime, the RRS elastic ring has collapsed.

FIG. 15: Spatial profile of the normalized cavity photon den-
sity in the superfluid regime. Excitation parameters as in Fig.
14. To compare with the normal (weak) excitation regime, see
Fig. 13.

Precisely, we have plotted the normalized quantity

IC(x)

IhomC

=
|φssC eikpx + δφC(x)|2

|φssC |2 , (26)

i.e., the total photon field intensity (homogeneous solu-
tion + potential-induced perturbation) normalized to the
intensity of the homogeneous solution without the poten-

tial. For the considered potentials in Fig. 11, the dom-
inant feature is due to the photonic point defect. The
polariton plane wave driven by the pump is coherently
scattered by the photonic defect (located at the posi-
tion x = y = 0), producing a peculiar interference pat-
tern, characterized by parabolic wavefronts. In fact, the
polariton field scattered by the point defect is a cylin-
drical wave. Hence, if we consider only one defect and
kp is along the x-direction, the total field has the form

f(x) = eikpx + βeikp

√
x2+y2

. The constant phase curves

are given by the condition kpx + kp
√

x2 + y2 = 2πn,
whose solutions describe parabolic wavefronts with a
symmetry axis oriented along the x-direction, as nicely
depicted by the exact solution in Fig. 13. Due to the
presence of the exciton potential, additional disordered
features are superimposed on the main interference pat-
tern produced by the photonic point defect.

B. Superfluid regime

In presence of interactions, we have seen that the spec-
trum of polariton Bogoliubov excitations is dramatically
different from the unperturbed case. This manifestation
of polariton many-body physics can be probed in a sen-
sitive way by the resonant Rayleigh scattering emission.
In Fig. 14, we start by considering the most spectacu-
lar regime of polariton superfluidity. This regime can be
achieved when the pump is resonant with the interaction-
renormalized polariton dispersion at the pump wavevec-
tor (∆p = 0) and when the sound velocity cs [see Eq.
(21)] of the interacting polariton fluid is larger than the
flow velocity vp = h̄kp/mLP imprinted by the pump
beam. This situation is more favorable to obtain for ex-
citation close to the bottom of the LP dispersion, imply-
ing smaller pump flow velocity vp and smaller excitation
density necessary to have cs > vp. As depicted by Fig.
14(a), in this case, the equation ℜ[ω±

LP (k)]− ωp = 0 has
no solutions for k 6= kp, meaning that no final states are
available for the elastic scattering induced by the static
potential. As a dramatic consequence, the elastic ring
in Fig. 12(b) collapses. As shown in Fig. 14(b), only
a weak emission around the pump wavevector kp is left,
due to non-resonant processes, which are allowed by the
finite broadening of the polariton modes.
The real space pattern is shown in Fig. 15, showing

that the effect of the disorder remains localized around
the defect positions. Hence, the polaritonic propagation
is superfluid. In analogous way to liquid Helium and
atomic condensates [1, 2], we can state that the polariton
fluid has a superfluid behaviour according to the Landau
criterion, if and only if both following conditions are sat-
isfied
(a) ω+

LP,UP (k) > ωp for every k 6= kp.

(b) ωp > ωLP (0), i.e. there is an elastic ring in the
weak excitation regime.
We point out that the condition (b) is necessary to
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have a meaningful definition of polariton superfluidity.
In fact, if ωp < ωLP (0), already in the weak excitation
regime there are no real states at the pump energy and
there is no resonant Rayleigh scattering elastic ring. Note
that the conditions (a) and (b) are achieved not only in
the resonant case ∆p = 0. Within the parabolic approx-
imation in Eq. (18), conditions (a) and (b) are satisfied
when ∆p ≤ 0 and

−gLP |ψss
LP |2 −

mLP v
2
p

2h̄
< ∆p < gLP |ψss

LP |2 −
mLP v

2
p

h̄
.

(27)
The calculations here reported show the robustness of

the superfluid flow with respect to elastic processes, such
as the scattering on static defects. As the Landau cri-
terion for superfluidity involves also inelastic processes
(e.g., emission of crystal phonons or heating of residual
free carriers), it is important to note that whenever the
superfluidity condition (a) for elastic scattering is ful-
filled, then it is satisfied a fortiori also for the inelastic
channels. In fact, the stability of the mean-field solu-
tion implies that almost no Bogoliubov quasi-particles
are present above a stable mean-field solution, so when-
ever ω+

LP (k) > ωp, no final states are available for the po-
lariton system to lower its energy by transferring energy
to its environment. This is here assumed to be at almost
zero temperature, so that it can only absorb energy from
the polariton system. Friction is therefore absent in this
regime.
On the other hand, at a finite temperature of the crys-

tal a thermally excited ”normal” component can appear
in the polariton fluid because of its heating due the inter-
action with the phonon bath and the residual free carri-
ers. As it happens in liquid Helium, this normal compo-
nent experiences a finite friction when flowing onto the
defect. However, its magnitude vanishes at low temper-
atures, and in any case it does not affect the superfluid-
ity of the co-existing superfluid component in a two-fluid
picture.

C. Precursors of parametric instabilities and

branch sticking

In the case ∆p > 0 (i.e., pump frequency higher than
the renormalized frequency of the pumped mode), the
resonant Rayleigh scattering response is completely dif-
ferent, as shown in Fig. 16 and 18. In this regime, the
two LP branches stick together, while there is a splitting
of their imaginary parts [see, e.g., the analogous situa-
tion in Fig. 8 and Fig. 9]. Such a scenario represents the
precursor of a multi-mode parametric instability, which
can be triggered by further increasing the excitation den-
sity. In contrast to the superfluid regime, a deformed
RRS ring is apparent in Fig. 16(b) and Fig. 18(b). In
particular, depending on the topology of the k-space re-
gion where the LP branches stick, the RRS intensity is
strongly amplified either on a segment parallel to y in-
cluding the point kp [Fig.16(b)], or around two points of

FIG. 16: Same parameters as in Fig. 12, but with h̄ωp −
h̄ωLP (kp) = 0.1meV, h̄g|Ψss

X |2 = 0.07meV. Branch sticking
and amplified RRS are precursors of a parametric instability.

FIG. 17: Spatial profile of the normalized cavity photon den-
sity. Excitation parameters as in Fig. 16. Note that the gray
scale of this plot is saturated in the region around the point
defect at the origin.

the straight line parallel to y and passing through the
point kp [Fig. 18(b)]. The main consequence of this in
the real-space pattern of Fig. 17 is an overall amplifica-
tion of the density modulation induced by the defect, in
stark contrast with the superfluid regime. In particular,
note the long ”shadow” in the downstream direction with
respect to the central defect, which extends to relatively
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FIG. 18: Excitation parameters: kp = 0.314 µm−1 (along the
x-axis), h̄ωp − h̄ωLP (kp) = 0.47meV, h̄g|Ψss

X |2 = 0.075meV.
Note that the gray scale of this plot is saturated around the
two brightest points. Here, we consider the situation of a
dominant photonic potential (VX = 0).

FIG. 19: Spatial profile of the normalized cavity photon den-
sity. Same parameters as in Fig. 18.

far distances thanks to the linewidth narrowing effect.
In Fig.19, the shadow of the defect is even more pecu-
liar, showing a series of fringes parallel to the x direction.
These can be explained in terms of the interference be-
tween the pump and the two peaks in k-space shown in
Fig.18(b).

FIG. 20: Cherenkov regime. Parameters: ωX = ωC(0) −
1meV, kp = 0.7µm−1 (along the x-axis), h̄ωp − h̄ωLP (kp) =
0.599meV, h̄g|Ψss

X |2 = 1meV. Here, we consider the situation
of a dominant photonic potential (VX = 0).

FIG. 21: Spatial profile of the normalized cavity photon den-
sity. Same parameters as in Fig. 20. The photonic point
defect produces Cherenkov-like wavefronts. Note that, in or-
der to show the peculiar shape of the wavefronts, the gray
scale of this plot is saturated in the region around the point
defect.

D. Cherenkov regime

Here, we consider the opposite case ∆p ≤ 0, but with
an excitation density which is not high enough to enter
the superfluid regime characterized by the condition in
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FIG. 22: Parameters: ωX = ωC(0), kp = 0.7µm−1 (along the
x-axis), h̄ωp − h̄ωLP (kp) = 0.3meV, h̄g|Ψss

X |2 = 0.6meV.

FIG. 23: Spatial profile of the normalized cavity photon den-
sity. Same parameters as in Fig. 22. The gray scale of this
plot is saturated in the region around the point defect.

Eq. (27). For the sake of clarity, as we have already done
for Fig. 18 and Fig. 19, we take here VX = 0, so to con-
centrate on the effect of a single defect. This situation
can be realistically realized, e.g., when there is a single
photonic defect (natural or artificial) which is dominant
over the background excitonic disorder. In Fig. 20(a),
we consider the resonant case (∆p = 0), with a polari-
ton sound speed cs < vp. As shown in Fig. 20(b) the
weak excitation elastic RRS ring is replaced by an asym-

FIG. 24: Parameters: ωX = ωC(0), kp = 0.7µm−1 (along the
x-axis), h̄ωp − h̄ωLP (kp) = 0.2meV, h̄g|Ψss

X |2 = 0.6meV.

FIG. 25: Spatial profile of the normalized cavity photon den-
sity. Same parameters as in Fig. 24. The gray scale of this
plot is saturated in the region around the point defect.

metric pattern, which is strongly deformed and shows a
singularity at the pump wavevector. The aperture angle
2θ of the singularity at kp satisfies the simple condition
cos θ = cs/vp. In this cs < vp regime where the polariton
fluid is moving at a supersonic speed, the defect produces
a peculiar real-space pattern (Fig. 21) showing linear
Cherenkov-like wavefronts [39, 40]. The aperture 2φ of
the Cherenkov angle has the usual value sinφ = cs/vp.
This behavior is easily understood from a physical stand-
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point as follows: a moving fluid propagating along the
positive x direction in the presence of a static defect is
equivalent, under a Galilean transformation, to a defect
moving in the negative x direction in a fluid at rest. This
situation is a familiar one, as it corresponds to the wave-
fronts created by a moving duck on the surface of a lake.
The rounded region on the left-hand side of the k-space
pattern in Fig. 20(b) was not present in the standard the-
ory of Cherenkov emission in non-dispersive media [39]
and it is due to the fact that the Bogoliubov dispersion is
linear only in the neighborhood of kp and then it bends
upwards. A remarkable consequence of this property is
the oscillatory perturbation shown by the real-space pat-
tern upstream with respect to the defect, as apparent in
Fig.21.
In the case ∆p < 0, the branches ω+

LP and ω−
LP are

disconnected, as well as the corresponding RRS emission
pattern, as depicted in Fig. 22. The real-space wave-
fronts shown in Fig. 23 are still Cherenkov-like, since the
separation between the two branches is relatively small.
The situation of Fig. 24 and 25 is instead different,

with a full gap opened between the two LP branches.
The k-space emission is then concentrated around the
point ka where the Bogoliubov dispersion touches the line
ω = ωp. Correspondingly, the near-field pattern shows a
localized perturbation around the defect, with a peculiar
stripe pattern. This pattern is due to the interference
of the Rayleigh scattering at ka and the pump beam at
kp, so that the wavevector corresponding to the fringes
is equal to kp − ka.

VII. CONCLUSIONS

In conclusion, in this Festschrift paper, we have pre-
sented a comprehensive analysis of the exotic collec-
tive excitations of a moving polariton fluid driven by a

continuous-wave optical pump, which were recently pre-
dicted in a short Letter[27]. We have analyzed in detail
the interplay between the non-trivial dispersions of the
polariton Bogoliubov excitations and the onset of single-
mode (Kerr) or multi-mode (parametric) instabilities.
We have studied the propagation of the polariton fluid
in presence of static perturbation potential acting both
on the photonic and exciton component of the polariton
field. In particular, we have shown the strict connection
between the dispersion of the elementary excitations in
a quantum fluid of microcavity polaritons and the in-
tensity and shape of the resonant Rayleigh scattering on
defects. We have pointed out some experimentally acces-
sible consequences of polaritonic superfluidity for realis-
tic microcavity parameters. In addition, we have shown
that in the present non-equilibrium system, it is possible
to have spectra of collective excitations, which are not ac-
cessible in systems close to the thermal equilibrium, such
as superfluid helium or the ultracold atomic condensates.
These spectra of excitations can be dramatically changed
by tuning the pump excitation parameters, namely its
frequency, incidence angle and intensity. We have shown
a very rich phenomenology in the far-field and near-field
images of the resonant Rayleigh scattering emission.
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Phys. Rev. A 69, 031802 (2004).

[22] J. Ph. Karr, A. Baas, and E. Giacobino, Phys. Rev. A
69, 063807 (2004).

[23] C. Ciuti, Phys. Rev. B 64, 245304 (2004).
[24] W. Langbein, Proc. 26th Int. Conf. on the Physics of

Semiconductors; ICPS 26 (Edinburgh, UK, 2002).
[25] W. Langbein, Phys. Rev. B 70, 205301(2004).
[26] S. Savasta, O. Di Stefano, V. Savona, W. Langbein,

cond-mat/0411314.
[27] I. Carusotto and C. Ciuti, Phys. Rev. Lett. 93, 166401

(2004).
[28] H. Stolz, D. Schwarze, W. von der Osten, and G.

Weimann, Phys. Rev. B 47, 9669 (1993).
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