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Abstract

Protein loops are often involved in important biological functions such as molecular recognition,
signal transduction, or enzymatic action. The three dimensional structures of loops can provide
essential information for understanding molecular mechanisms behind protein functions. In this
paper, we develop a novel method for protein loop modeling, where the loop conformations are
generated by fragment assembly and analytical loop closure. The fragment assembly method
reduces the conformational space drastically, and the analytical loop closure method finds the
geometrically consistent loop conformations efficiently. We also derive an analytic formula for the
gradient of any analytical function of dihedral angles in the space of closed loops. The gradient
can be used to optimize various restraints derived from experiments or databases, for example
restraints for preferential interactions between specific residues or for preferred backbone angles.
We demonstrate that the current loop modeling method outperforms previous methods that
employ residue-based torsion angle maps or different loop closure strategies when tested on two
sets of loop targets of lengths ranging from 4 to 12.
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l. INTRODUCTION

Prediction of the native structure of a protein from its amino acid sequence is one of the
most important problems in protein science. However, modeling the native structure based
solely on physico-chemical energy functions remains an unsolved problem [1-3]. Therefore,
bioinformatics approaches that utilize information extracted from the database of known
structures are widely used in practice. When experimental structures of homologous
sequences are available, these structures can be used as templates [4,5]. However,
homologous proteins still have gaps or insertions in sequences, referred to as loops, whose
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structures are not conserved during evolution. Since the templates give no structural
information on these regions, the loops have to be modeled ab initio.

Although the length of a loop region is generally much shorter than that of the whole protein
chain, modeling a loop poses a challenge not present in the global protein structure
prediction, in that the modeled loop structure has to be geometrically consistent with the rest
of the protein structure. The condition of such consistency imposes constraints on the
possible values of the loop dihedral angles, called the loop closure constraint, when the bond
lengths and bond angles are kept close to canonical values. In many loop modeling methods
developed so far, conformations are generated without explicit loop closure constraint. The
gap in the chain is reduced afterwards either by screening out conformations with large gaps
or by minimizing an energy term penalizing the gap [6-13].

On the other hand, conformations satisfying the loop closure constraint can be generated by
using analytical loop closure [14-24]. Among these methods, the polynomial formulation
developed in Ref. [20,21] has the combined advantage of simplicity and generality, and can
be applied to closing loops by rotation of torsion angles of non-consecutive residues.
Iterative loop closure methods have also been developed [25-28]. An analytical loop closure
approach is natural and efficient in that minimization of an arbitrary gap penalty is
unnecessary since loops are restricted to be closed in a purely geometric way, and there is no
small remaining chain break that needs to be ignored or reduced afterwards. In a sampling
test on thirty loop targets of lengths ranging from four to twelve residues and an
optimization test on an eight-residue loop, it was shown that loop sampling can be
performed much more efficiently when analytical loop closure is employed [20]. Analytical
loop closure was also combined with the Rosetta energy function [24] and was shown to
predict loop structures more accurately than the previous Rosetta method that employs an
iterative loop closure method [29].

The loop conformational space can be further reduced by using fragment assembly.
Fragment assembly methods have been applied widely and successfully to protein structure
prediction when structural templates are not available [13,30-45]. In a fragment assembly
method, local structures are limited to those of short fragments collected from a structure
database, and the global structure is modeled by searching for the lowest free energy state
among the states with such local structures.

In this work, we combine the two approaches, analytical loop closure and fragment
assembly, for efficient protein loop sampling. Since an initial loop conformation generated
by fragment assembly alone does not close the loop in general, backbone torsion angles are
perturbed so that the analytical loop closure equation is satisfied. A torsional energy
function can be minimized at the same time to confine the angle changes that accompany
loop closure within a desired range. In order to perform this task efficiently, we develop an
analytic formula for the gradient of a function of backbone dihedral angles in the space of
closed loops.

Prediction results on eight short protein loops using a preliminary version of the current
method was reported in Ref. [30], where a Monte Carlo search was used to find
conformations minimizing a deviation from the original fragment angles. In this work, by
developing a general formula for the analytic gradient of a function of dihedral angles that
satisfy the loop closure constraint, such minimization can be performed much more
efficiently.

We demonstrate the performance of our method by loop reconstruction tests on the 30 loops
proposed by Canutescu and Dunbrack [27] and the 317 loops developed by Fiser et al. [46].
We found that the sampling efficiency is significantly improved compared to four different
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previous methods [7,20,27,47]. By combining our sampling method with a statistical
potential DFIRE [48,49] the loop prediction accuracy could also be improved.

IIl. METHODS

A. Collection of Fragments and Structure Database

For each residue of a target loop, a seven-residue window centered on the residue is
considered. For each window, two hundred fragment structures of length seven with similar
sequence features are collected from a non-redundant structure database, as described below.
The structure database was constructed by clustering an ASTRAL SCOP (version 1.63) set
S0 that no two proteins in the database have more than 25 % sequence identity with each
other [50-52]. The resulting set consists of 4362 non-redundant protein chains and total of
905684 residues. In order to perform a fair benchmark test, we did not use fragments
obtained from proteins homologous to the target proteins in this work. To elaborate, we
removed the proteins with E-value less than 0.01 after a BLAST search [53] with the whole
sequence containing the target loop.

The sequence features to be compared for fragment selection are the sequence profiles
obtained from a PSI-BLAST search. A sequence profile is a set of position-dependent
mutation probabilities of the protein residues to other amino acids, obtained from local
alignment of a given sequence with related sequences in a sequence database. The PSI-
BLAST profile contains evolutionary information that cannot be obtained directly from the
raw sequence, and it has been widely used for local structure prediction [51,52,54] as well as
for global structure prediction by fragment assembly methods [13,30,32-45].

Since we consider windows of size seven, the sequence features for each window form a
matrix of size 7 x 20. The distance between two sets of sequence features A and B is defined
as

7 20

@ _ p®
Dy=) ) wilP = Pyl

i=1 j=1 (1)

(A) . . . .
where P;;" is a component of the sequence feature set A, and w;j is a weight parameter. Since
the end-regions of a fragment is often cut off during fragment assembly, as explained in the
next subsection, the structure of the central region is more frequently used. We thus place
higher weight on the central region by using the formula

w;=i(8 —i). (2

Two hundred fragments of seven residues that have the shortest distances from the target
loop sequence for each window are then collected for fragment assembly. It must be noted
that for the terminal residues of the loop, the windows contain residues in the framework
region. Therefore, the sequence features used for collecting the fragments contain
information on the framework region as well.

B. Fragment Assembly for the Loop Region

The fragments obtained as above are assembled to construct loop conformations.
Conformations are generated by sequentially adding randomly chosen fragments starting
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from the N-terminal region of the loop. A new fragment is joined to the growing loop
conformation only if they share at least one residue with close dihedral angles. Two sets of
dihedral angles (¢1, w1) and (¢, w») are considered to be close if

[p1 — al+l1 — Y| < 30°. )

The comparison of dihedral angles is made between the first w — 1 residues of the new
fragment and the last w — 1 residues of the current partial loop conformation, where w is the
the fragment length. As mentioned above, w = 7 is used in this work. If we find a residue
that satisfies the condition Eq. (3), the new fragment is added starting from the next residue
position, and the length of the partial loop is increased by 1. This assembly procedure is
illustrated in Fig. 1. When there is no position satisfying the condition Eq. (3), another
fragment is selected from the fragment set. If no fragment can be added at the current step,
the assembly procedure goes back to the previous loop conformation with one less residue,
and another fragment is chosen randomly. For a loop of length L, conformations of length L
+ 8 are generated to utilize information in the fragments including framework residues. The
structures outside the loop region are discarded in the subsequent analysis.

Since the joining of new fragments usually occurs in the middle of the fragments, only parts
of the 7-residue-long fragments are used in the assembly, as illustrated in Fig. 1. The
average length of the actually inserted part of fragments by the current method is 1.9 for the
conformations generated for the Fiser loop set [46], as shown in Table I. One can see that
the sizes of the inserted fragments do not depend much on the target loop length.

By joining the fragments only at close values of dihedral angles, we concentrate on more
realistic structures that resemble those found in the structure database even near fragment
junctions. In this way, the conformational search space is reduced significantly [39-45]
compared to other fragment assembly methods that do not require such condition. Due to
this fact, a random sampling method tested in this study performs very well for the sizes of
the loops considered here (up to 12 residues), as presented in the Results and Discussion
section. A set of 5000 conformations was generated for each loop target in the Canutescu
and Dunbrack set to compare with several previous methods. Initial 4000 conformations
were generated for the test on the Fiser set [46], out of which a final set of 1000
conformations were selected after a screening procedure to compare with the RAPPER
method [7]. There is no difficulty in increasing the number of sampled conformations
because the whole procedure is very efficient, and the method may also be combined with
more extensive search methods, especially for loops longer than those considered here.

C. Analytical Loop Closure and Analytical Gradient

Conformations for a protein loop generated by the fragment assembly method alone do not
satisfy the loop closure constraint in general. Therefore, the backbone torsion angles of the
loop must be rotated so that the loop structures correctly fit into the rest of the protein
structure. Since the minimum number of backbone torsion angles that has to be rotated for
loop closure is six, we first perform an initial loop closure by randomly selecting three
residues and computing their six backbone dihedral angles (three ¢ and three y angles) by
solving the analytical loop closure equation [20,21]. Among N loop dihedral angles, the N —
6 unperturbed ones are from the database fragments. However, the six dihedral angles
perturbed for the closure may deviate from the initial fragment angles significantly or may
even fall into Ramachandran-disallowed regions [55] in some cases, depending on the initial
conformation. Such a problem can be alleviated by distributing the torsion angle changes
from the initial six angles to all the available torsion angles, resulting in small changes for
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many angles instead of large changes for a few. The angle changes can be distributed by
minimizing an energy function that guides the dihedral angles into desirable regions in the
space of closed loop conformations.

The loop closure procedure adopted in this work is as follows. We first perform initial loop
closure by randomly selecting three residues and compute their six backbone dihedral angles
(three ¢ and three  angles) by solving the analytical loop closure equation [20,21]. As an
optional next step, we adjust all the torsion angles simultaneously to minimize the following
measure for deviation from Ramachandran-allowed regions

n
i:Ruma = ZfRamu (¢/’ d//)
=1 (4)

under the loop-closure constraint, where frama(#, v) is an energy function for a residue that
represents a Ramachandran plot, and n is the number of loop residues that are neither
glycine nor proline. The function frama(#, ¥) is a sum of the Lennard-Jones and Coulomb
interactions among the non-side chain atoms within a dipeptide, as developed in Ref. [56]
with the CHARMMZ22 parameters [57]. The same form of frama is used for the 18 amino
acids that are neither glycine nor proline. The two-dimensional energy contour of the
dipeptide energy function has been shown to reproduce the dihedral angle distribution in the
structural database much better than the hard-sphere repulsion potential energy of
Ramachandran et al. [55]. We allowed free changes for the glycine angles because of their
flexibility and fixed proline angles at the fragment angles because of the ¢ angle rigidity.
Separate frama functions for glycine, proline, and pre-proline residues such as in Ref. [58]
may also be used if desired. Minimization of the function Fram, enforces the torsion angles
to lie within the allowed regions of the Ramachandran map for each residue.

Among the N variable torsion angles, {¢1, ¢2, 3, -, ¥n—1, oN}, Only N — 6 of them are
independent under the loop closure constraint, and the minimization is performed in the N —
6 dimensional space of closed loops. For simplicity we choose {¢7, ¢g, -, ¢n} as the
independent variable used for minimization, called the driver angles, and express the
remaining 6 adjuster angles in terms of the driver angles. We then derive a formula for the
gradient of Frama in the N — 6 dimensional space using chain rules as follows.

Let us denote the axis of gj-rotation by a unit vector I'j, and label the atom at the N-terminal
of the rotation axis by i, as depicted in Fig. 2. For any atom j located in the C-terminal
direction of the chain relative to the atom i, the variation of its position dRj; due to an
infinitesimal change of gj, dgj, is given by

dR;j=dp;(T'; X R;}), (5)

where Rjj is the position of the atom j relative to i.

Since the Cartesian coordinates of atoms in the framework region, the region outside the
loop, are fixed under the loop closure constraint, dR; = X dR;; = 0 for any atom j in the
framework. In the current convention, the framework region at the N-terminal side of the
loop is unaffected by the change of loop dihedral angles, and the C-terminal framework
moves as a rigid body in the absence of the loop closure constraint. It is therefore necessary
and sufficient to impose the following constraint for three distinct atoms A, B, and C in the
C-terminal framework region:
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N n
dRj=) dRij=) dpiTi x Ri)=0  (j=A,B,C).
i=1 i=1 (6)

Eq. (6) is a constraint on possible changes of the torsion angles dg; under the loop closure
constraint. Considering i (=1, -+, N) as the column index and j (= A, B, C) together with the
space index u (= X, Y, z) as the row index a (= 1, -+, 9), the matrix

Mi(r = (Fl X Rl[)u (a:(jv ﬂ)) (7)

is a 9 x N matrix, and Eq. (6) is a system of 9 equations for N variables. However, it has to
be noted that

R;—Rp)-Ti xR —Rp)=Rji - TixRp) =0 (j,k=A,B,C) (8)

which amounts to 3 identities among the 9 rows of M;,. These identities show that the
distances between atoms A, B, and C are preserved,

d|[Rij ~ Ra|’=(R; ~ Ry - (@R;; ~ dRzx) =0 (j,k=A,B,C) @)

when dRj’s are given by the rotation Eq. (5). Due to the three identities in Eq. (8), any 3
rows of M, can be expressed as linear combinations of the remaining 6 rows, and Eqg. (6) is
reduced to a system of 6 independent equations for N variables. Therefore, Eq. (6) can be
used to express the change of the adjuster angles dg, -+, dpg for an arbitrary perturbation of
the driver angles dgz, -+, don.

Expressing Eq. (6) in terms of the driver angle perturbations, we get
=0 (j=A,B,C).

N 6
O
deZZdlp,' 1’,» X R,’j+; 0—%& X Rkj

(10

The derivative of the adjuster angles with respect to the driver angles dp\/dp;j can then be
obtained from the following linear equation:

01 /0¢;
I‘] X RM F2 X Rl4 .. .F6 X Rm 3902/590[ I x Rm
I xR, xR, - TexR,, : =—| TixR, | (i=7,---,N).
xR, xR, ---Ts xR, - I xR,
Ope ] 0p; (11)

For simplicity, we use N, C,, and C" atoms of the first residue in the C-terminal framework
region as the three atoms A, B, and C, and solve Eq. (11) to obtain dpy/dpi (k=1, -, 6;i=7,
-+, N) as a function of ¢; (i = 7, -+, N). The analytic form of the gradient for the function
Frama in the space of closed loops is then
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OF,.  ~~0F, _ d¢r
. ) - Rama +Z Rama _(ﬂ (1:7’ — N)
¢ ) tosed loop Opi =1 i Iy (12)

( 6FRama

Using the analytic gradient formula, the minimization was carried out with a gradient-based
quasi-Newton optimization method, L-BFGS-B [59]. It has to be noted that any
differentiable function of the backbone torsion angles can be used in place of Frama for
minimization. For example, empirical functions for torsion angle maps may be used by
deriving analytical versions of the functions using spline methods [60]. Other empirical
energy functions for multipeptides [61] may also be useful.

D. Screening of the Sampled Loop Conformations

After the loop closure, a screening procedure is performed for the Fiser loop set to compare
with the results of RAPPER [7]. In the RAPPER program, each residue is sampled in the
space of a fine-grained ¢/yy map obtained from the Ramachandran plot, and conformations
that have steric clashes or that are impossible to satisfy loop closure are discarded during the
loop building process [7]. Since we have not considered possible steric clashes for the loop
conformations so far, we apply a screening step for a fairer comparison.

We employ the DFIRE potential [48], which has been derived from the distribution of inter-
atomic distances found in a structure database and thus takes steric clashes into account
effectively. Because the screening is performed before the side chain atoms are constructed,
side chain atoms beyond Cg atoms are not included for score calculation. We call this score
DFIRE-S.

The purpose of the screening is to eliminate unphysical conformations with large steric
clashes so that the overall qualities of the ensembles are improved. However, it is inevitable
that some native-like conformations are eliminated as well in the process. After randomly
generating 4000 conformations by fragment assembly and loop closure (and optional
Ramachandran energy minimization) for each loop target, we score the resulting
conformations using the DFIRE-# score and select the 1000 conformations with the best
scores for further processing.

It is not possible for us to simply estimate the fraction of the discarded loops during
sampling by RAPPER [7], but we found that if we select 1000 out of 4000 sampled
conformations, more native-like conformations than the 1000 conformations sampled by
RAPPER are obtained, as presented in the Results and Discussion section. In this four-fold
sampling, only three quarters of the conformations are discarded, and this fraction is
expected to be much smaller than the actual fraction of the conformations discarded in
RAPPER due to steric clashes and impossibility of loop closure, which disfavors us in
comparison.

E. Construction of the Side Chains and Final Section of the Model Structure

Although the new developments in this work mainly involve loop sampling, the current
method by itself can be combined with pre-existing scoring functions to provide predicted
loop structures. We present a model selection procedure here to illustrate such an
application.

Since the fragments are collected from proteins whose sequences are different from that of
the query, only backbone dihedral angles are obtained from the fragments. With backbone
fixed, the optimal side chain conformations are constructed by selecting the side chain
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dihedral angles from Dunbrack’s backbone-dependent rotamer library [62]. Possible side
chain conformations are finite combinations of rotamers, and the exact global minimum of a
free energy function can be found using an efficient optimization algorithm based on graph
theory [63], where the free energy function of SCWRL 3.0 is used, consisting of a one-body
term proportional to the log of the rotamer probability and steric repulsions with backbone
and other side chain atoms [64].

We found that steric clashes still remain after the side chain building for some model
structures and tried force-field minimization to adjust backbone structures to accommodate
the clashes. However, the model accuracy became worse (data not shown) probably because
optimization of backbone results in the erasure of the database information contained in the
initial backbone conformations.

The final model structures are selected from the conformations generated for the Fiser loop
set using the DFIRE potential [48,49] again, now in the all-atom form. DFIRE has been
shown to be as successful in scoring loop decoy conformations as the force fields such as
AMBER or OPLS with generalized Born solvation free energy [65,66].

lll. RESULTS AND DISCUSSION

A. Loop Conformation Sampling

The loop sampling method developed here that combines fragment assembly and analytical
loop closure (FALC) was applied to the 30 loop targets of lengths 4, 8, and 12 residues
proposed by Canutescu and Dunbrack [27]. The loop set, chosen from a set of nonredundant
X-ray crystallographic structures, was used to test the performance of several loop sampling
algorithms including the Cyclic Coordinate Descent (CCD) algorithm [27] and the self-
organizing algorithm (SOS) [47]. CCD is a robust iterative loop closure algorithm. It can be
coupled with Ramachandran probability maps in a Monte Carlo fashion, resulting in
preferential sampling in the Ramachandran maps. A recent loop construction method called
self-organizing algorithm (SOS) iteratively superimposes small, rigid fragments (amide and
C,) and adjusts distances between atoms to satisfy loop closure and to consider steric
conditions simultaneously. This method was reported to outperform the CCD method [47].
We previously tested a method that samples ¢/y angles from Ramachandran maps using
PLOP (Protein Local Optimization Program) [8] and closes the loop with analytical loop
closure on the same loop set. This method, called CSJD in Ref. [20], is also compared
together.

For each of the loops in the test set, the minimum backbone RMSDs from the crystal
structure among 5000 conformations sampled by the following five methods are compared
in Table 11: the Ramachandran map CCD (from Table 2 of Ref. [27]), the CSJD method
(from Table 1 of Ref. [20]), the SOS algorithm (from Table 1 of Ref. [47]), and the current
methods (FALC and FALCm). In Table II, ‘FALC’ refers to the results of the loop closure
by rotating six random torsion angles after fragment assembly, and ‘FALCm’ to the results
of the gradient minimization after FALC, as described in Methods. Both FALC and FALCm
perform better than CCD, CSJD, and SOS. In particular, our algorithms perform better than
SOS in all 10 8-residue loop targets and 8 out of 10 12-residue loop targets. With the FALC
method, the minimum RMSD improves from 1.19 A to 0.78 A and from 2.25 A to 1.84 A on
average for the 8-, and 12-residue loops, respectively. The FALCm method show further
improvements over the FALC method for the 8- and 12-residue loops from 0.78 A to 0.72 A
and from 1.84 A to 1.81 A.

The current method is different from the Ramachandran map CCD method in two respects.
First, the local backbone torsion angles are sampled in the fragment space here, but they are
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sampled from Ramachandran probability maps in CCD. Ramachandran probability maps
contain information specific to the amino acid types only, but fragments obtained from the
PSI-BLAST profiles provide sequence-specific information. Second, the loop closure is
performed analytically here, but an iterative method is used in CCD.

The differences between the current method and the SOS method are also two-fold. First,
the small fragments (amide and C,) employed in SOS are chosen to satisfy local geometric
constraints, but the fragments used here contain additional information on the sequence-
specific conformational preferences that encompass the length of several residues as well as
local geometry. Second, loop closure is accomplished by iterative distance adjustments in
SOS but by a single step of analytical loop closure here.

We argue that the excellent performance of the current loop sampling method originates
from both fragment assembly and analytical loop closure. The fact that the CJSD method
shows better performance than the Ramachandran CCD, as presented in Table 11, implies
that analytical loop closure has an advantage over CCD. In addition, the fact that the current
methods (FALC and FALCm) give better results than the CSID method and SOS
demonstrates the effectiveness of the current fragment assembly method.

CCD has been used with Rosetta for loop modeling [29], and analytical loop closure was
also combined with Rosetta for loop reconstruction tests [24] showing substantial
improvement in performance over the CCD-based Rosetta protocol. These methods involve
extensive sampling guided by the Rosetta energy function, but the current method is more
focused on sampling independent of energy function by reducing the search space
effectively. Since our sampling method is an order of magnitude faster than these methods
(data not shown), it would be promising to employ the current method for global
optimization of an accurate energy function in the future.

Application of the target function minimization in analytical loop closure, referred to as
FALCm here, improves the loop sampling results for the 8- and 12-residue loops, as
discussed above. The improvement is not dramatic probably because it is more probable to
close the loop with resulting angles in Ramachandran-allowed regions when more native-
like angles are assembled from fragments in the initial stage. The analytical gradient formula
still has a wide potential area of applications, for example in guiding loop sampling with
target functions that favor hydrogen bonding to specific functional groups in protein-ligand
binding problems or that favor interactions with known or predicted hot spot residues in
protein-protein binding problems.

B. Loop Ensemble Generation with Screening

In order to test the feasibility of the application of the current method to loop ensemble
generation, we carried out a loop reconstruction test on a subset of the loop target test set
developed by Fiser et al. [46]. We consider only the targets used for the test in Ref. [7],
where some of the targets in the original Fiser set were omitted due to poor qualities in the
experimental structures. We also omit the shortest (and the easiest) loops of 2 and 3
residues. The resulting set consists of 317 targets, as shown in Table I11.

The results of loop ensemble generation are displayed in Table I11 with the results of
RAPPER reported in Table 3 of Ref. [7]. The minimum main chain RMSD and the average
main chain RMSD of the 1000 conformations, obtained after screening 4000 conformations
sampled by FALCm, were examined for each target, and their average values Ryye and Rpin
are displayed for each loop length. The main chain RMSD was calculated using the
coordinates of N, C,, C’, and O atoms, following Ref. [7].
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In the ensemble generation test by RAPPER, 1000 conformations were generated screening
out loops with possible steric clashes or with too extended conformations for loop closure
during the loop building process. Although it is not possible for us to accurately estimate the
fraction of the loops that were screened out in the RAPPER program, the fraction must be
much larger than 3/4, considering the probabilities of typical loop closure and steric clash.

The performance of our method in generating native-like conformations are significantly
better than RAPPER, both in R,y and Ruyin, as can be seen from Table Il1. There are more
improvements for longer loops, especially in the minimum RMSD. It has to be noted that
only a four-fold random sampling was performed for an illustrative comparison. The success
of this simple application shows the potential of the current method for loop ensemble
generation enriched with native-like conformations when combined with more
conformational search and more extensive use of good scoring functions [8, 67].

C. Loop Model Selection with DFIRE

From the ensemble of 1000 conformations generated for each target in the Fiser set, the final
model was selected by scoring the conformations with the DFIRE potential after side chain
optimization, as presented in Methods. As compared in Table 1V, the accuracy of the loop
model prediction is improved significantly compared to that reported in Ref. [49] in which
the RAPPER ensembles are also scored with DIFRE. This result demonstrates that the
better-quality conformational ensembles obtained by this study can lead to higher modeling
accuracy.

IV. CONCLUSION

In this paper, we presented a novel method for protein loop sampling, based on fragment
assembly and analytical loop closure. Efficient sampling is possible because the search
space is drastically reduced by sampling in the space of closed loops and in the space of
fragments obtained by utilizing sequence-specific information.

We also developed an analytic formula for the gradient of a target function that depends on a
set of torsion angles satisfying the loop closure constraint. This gradient can be used for
efficient sampling of closed loops satisfying an additional requirement of optimizing a target
function.

The efficiency of our sampling method was demonstrated by performing loop reconstruction
tests on two sets of loop targets whose lengths range from 4 to 12. We found that the ability
of our method for generating native-like conformations is significantly better than the
previous methods based on amino acid-specific information only and less elaborate loop
closure methods. It is remarkable that such a result can be obtained when no or minimal
level of energy information is used in the loop ensemble generation.

One notable feature of our method is that sampling and scoring procedures are separated.
Given the efficiency of our method in generating native-like conformations, the current
method would also be useful for testing discriminatory powers of various scoring functions
and developing a new one.

Although the current tests were restricted to the loop reconstruction problem, where the
framework region is fixed to the experimentally determined native structure, the efficiency
of the current sampling method would allow application to a more challenging task of
modeling loops in the context of the comparative modeling problem, where the framework
region is given by templates and therefore contain inherent uncertainties.
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FIG. 1.

Illustration of the fragment assembly process. A fragment of length w = 7 (middle) is joined
to the growing loop conformation (top), resulting in a loop conformation with one more
residue (bottom). The fragment is joined starting from the position next to the residue with
close dihedral angles between the fragment and the growing loop (indicated with a dotted
box). The blocks of different shadings represent contributions from distinct fragments. Their
average size is 1.9, as presented in the text.
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FIG. 2.
The displacement of an atom j, dR;, when the torsion angle about the axis I'j changes by a
small amount dgj is dR; = dg; (['j * Rjj).
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The average RMSD values of the lowest energy conformations obtained by DFIRE scoring of the RAPPER
ensemble sets and those generated by FALCm4 presented in Table 111.

Loop length RAPPER2 FALCm4
4 0.86 0.54
5 1.00 0.92
6 1.85 1.36
7 1.51 1.17
8 2.11 1.87
9 2.58 2.08
10 3.60 3.09
1 4.25 3.43
12 4.32 3.84

aTaken from Table S2 of Ref. [49].
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