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Abstract
The human salivary proteome is extremely complex, including proteins from salivary glands,
serum, and oral microbes. Much has been learned about the host component, but little is known
about the microbial component. Here we report a metaproteomic analysis of salivary supernatant
pooled from 6 healthy subjects. For deep interrogation of the salivary proteome, we combined
protein dynamic range compression, multidimensional peptide fractionation, and high mass
accuracy MS/MS with a novel two-step peptide identification method using a database of human
proteins plus those translated from oral microbe genomes. Peptides were identified from 124
microbial species as well as uncultured phylotypes such as TM7. Streptococcus, Rothia,
Actinomyces, Prevotella, Neisseria, Veilonella, Lactobacillus, Selenomonas, Pseudomonas,
Staphylococcus, and Campylobacter were abundant among the 65 genera from 12 phyla
represented. Taxonomic diversity in our study was broadly consistent with metagenomic studies of
saliva. Proteins mapped to twenty KEGG pathways, with Carbohydrate Metabolism, Amino Acid
Metabolism, Energy Metabolism, Translation, Membrane Transport, and Signal Transduction
most represented. The communities sampled appear to be actively engaged in glycolysis and
protein synthesis. This first deep metaproteomic catalog from human salivary supernatant provides
a baseline for future studies of shifts in microbial diversity and protein activities potentially
associated with oral disease.
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INTRODUCTION
The proteome of human whole saliva is extremely complex, encompassing proteins from
several types of salivary glands with distinct secretory profiles, surface and secreted proteins
from oral epithelial cells, as well as serum and neutrophil proteins that enter the mouth
through the gingival crevice [1]. Moreover, the mouth also is home to an extremely diverse
microbial community. Recent metagenomic studies indicate that the microbiota of whole
saliva samples may include over 10,000 distinct taxa, and the vast majority of them have
never been cultured [2–7]. This suggests that oral microbes may contribute thousands of
additional proteins to the salivary proteome.

Much has been learned about the human components of the salivary proteome [8, 9], but far
less is known regarding salivary proteins of microbial origin. It has become clear in recent
years that the members of the oral microbiota interact extensively, and function together as a
polymicrobial community [10]. Thus approaches are needed which allow one to analyze the
salivary microbial proteome in the context of its host. The community-based approach to
microbial proteomics has become known as metaproteomics. Conceptually, metaproteomics
is the proteomic counterpart to metagenomics. Metaproteomic analyses have been carried
out on bacterial communities from a wide variety of environments, including human feces
[11, 12], marine microbial ecosystems [13], acid mine drainage [14–16], activated sludge
wastewater treatment systems [16, 17], and rhizosphere soil [18, 19].

However, several challenges hold back routine metaproteomic analyses in saliva, as well as
other samples. First is the challenge of the wide dynamic range of protein abundance. In
saliva, human proteins are most likely orders of magnitude more abundant than microbial
proteins, thereby suppressing detection and identification of the microbial proteins.
Therefore, advanced analytical techniques are needed to “dig deep” into the salivary
proteome and confidently identify even the low abundance proteins of microbial origin. The
second challenge is peptide sequence matching using sequence database searching. Potential
expressed protein sequences can be translated from microbial genome sequences. However,
the collective genomes of sequenced microbes exceed the size of the human genome by
several orders of magnitude. Thus, database searches are extremely computing-intensive.
Most significantly, peptide sequence matching against such very large databases suffers
from the increased potential for false-positive matches which lowers the number of high
confidence true matches [20].

Our group previously published a metaproteomic analysis of 357 microbial peptides
obtained from the pellet fraction of saliva, pooled from four oral cancer patients. Those
peptides were assignable to five bacterial phyla representing 26 genera, of which
Streptococcus, Neisseria, and Haemophilus were the most abundant. The primary functions
represented by the parent proteins were translation, carbohydrate metabolism, amino acid
metabolism, and energy metabolism [21]. Although those findings were generally
representative of the species composition and activities of known oral microbes, there also
was concern that a substantial number of peptides were assigned to exotic taxa that were
very unlikely to be actually present in the mouth. This was particularly surprising given that
the overall number of microbial peptides obtained was relatively small.

Here, we improve on our previous study using dynamic range compression (DRC) via
ProteoMiner™ hexapeptide libraries, and three-dimensional peptide fractionation prior to
MS/MS analysis on an LTQ-Orbitrap instrument [8]. We also applied a novel two-step
peptide identification method for more effective metaproteomic analysis. These collective
improvements enabled the first deep cataloging of microbial proteins in human salivary
supernatant.
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MATERIALS AND METHODS
Salivary supernatant dataset

Salivary supernatant was collected and pooled from six healthy subjects who refrained from
eating or drinking for 90 minutes. Proteins were analyzed using Proteominer™ (Bio-Rad
Laboratories, Hercules, CA) for DRC, multidimensional peptide fractionation and a LTQ-
Orbitrap mass spectrometer as described in Bandhakavi et al 2009 [8]. An additional 45
RAW files generated from ProteoMiner ™ Library-2-treated saliva were also analyzed.

Two-step method for peptide sequence matching and protein identification
RAW files generated (200 total) from the LTQ-Orbitrap salivary supernatant dataset were
processed using the MaxQuant (v 1.0.13.13) "Quant" module to generate .MSM files [8, 22–
24]. Individual Peak and iso MSM files corresponding to each .RAW file were converted to
Mascot generic format (MGF) and searched using ProteinPilot v 4.0 (ProteinPilot Software
4.0; Revision: 148085; Paragon Algorithm: 4.0.0.0. 148083). Paragon searches [35] were
conducted using LTQ-Orbitrap subppm instrument settings. Other parameters used for the
search were as follows: Sample Type: Identification; Cys alkylation: None; Digestion:
Trypsin; ID Focus: Biological Modifications; Search effort: Thorough.

In the first step, all 200 RAW files were searched against a database consisting of all the
translated human oral microbial genomic sequences from the Human Oral Microbiome
Database (HOMD) [25], along with the human IPI v3.52 database and contaminant proteins
(1,687,426 total protein sequences) [26]. The ProteinPilot searches generated a .group file
that was used to generate a Protein Report from the peptide sequence matches. All non-
human protein sequences that were identified at the threshold of at least 66% Conf score
(0.47 ProtScore) in the first step were merged with the Human IPI v3.52 database along with
contaminant proteins to generate a “refined” FASTA database for the second step.

In the second step, all 200 RAW files were searched against a "Target-Decoy" version of the
FASTA database mentioned above, by appending the reversed protein sequences to the
forward sequences, resulting in a database containing 152,724 total protein sequences.
Parameters for ProteinPilot were the same described for the first step with the exception of
searching to generate a false discovery rate (FDR) report. These ProteinPilot searches
generated a .group file and a Proteomics System Performance Evaluation Pipeline (PSPEP)
FDR report [27]. The .group file was used to generate a Protein Summary and a Peptide
Summary Report. The FDR report was used to estimate the number of proteins, distinct
peptides and spectra at 5% local FDR. Spectra identified at 5% local FDR were used to filter
for non-human (microbial) peptide identifications. A list of non-human distinct peptide
sequences that were identified was generated from the Peptide Summary Report.
Supplemental Table S1 contains information on all non-human peptides identified in this
study. Supplemental Table S3 provides a list of human proteins identified in an independent
search from the 3D-fractionated fractions.

Metaproteomic analysis
MEGAN4 software was used for metaproteomic analysis [28, 29]. MEGAN4 specifically
requires BLAST searches of nucleotide or protein sequences as input. The software then
parses the BLAST results, and generates phylogenetic assignments for input sequences
using a homology-based algorithm. MEGAN4 also uses Refseq IDs in BLAST hits (when
available), to assign peptides to KEGG pathways. The distinct peptide sequences retained
after FDR analysis by ProteinPilot were used for BLASTP searches (v BLASTP 2.2.25+)
against a database containing all non-redundant GenBank sequences (13,812,207
sequences). We used the online version of the BLASTP server, with default parameters
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adjusted for short sequences (except in the case of three peptides that were more than 30
amino acids long). The default maximum of 100 hits per peptide was specified. The
compiled BLAST results were then input to MEGAN4, for phylogenetic and KEGG
analysis.

RESULTS
Two-step database searching for microbial peptide and protein identification

At the outset of our studies, we first addressed the challenges of matching a large number of
MS/MS spectra (988,974 total spectra for our current study) to peptide sequences within the
very large database containing both human and translated oral microbial proteins (over 1.6
million total proteins). A large database increases the possibility for false-positive peptide
sequence matches [20], thereby necessitating more stringent filtering thresholds and
effectively lowering the number of high confidence matches.

To address this challenge, we explored a novel two-step database searching method, detailed
in Figure 1 and in Materials and Methods. In the first step we match MS/MS to peptides in
the forward database using low-stringency scoring. A refined, much smaller database is
created containing all identified proteins from the first step, and a target-decoy version of
this database used to re-search all MS/MS data, followed by stringent filtering of peptide
matches. We first evaluated the effectiveness of this two-step method using a representative
set of 20 RAW files from our salivary dataset. We compared the numbers of human and
microbial proteins identified using the two-step method to the ‘traditional’ one-step direct
searching of the very large target-decoy version of the combined human and microbial
protein sequence database. As shown in Supplemental Figure S1, the two step method
increased by 63% the number of microbial proteins identified while having no discernable
effect on identification of human proteins.

Given this positive result, we analyzed the entire dataset of 200 RAW files using the two-
step method. Table 1 summarizes the results. The database search in the first step resulted in
identification of 2176 non-human proteins using a relatively low threshold for matching. For
the second step, a refined target-decoy database containing all human proteins and the 2176
microbial protein sequences was constructed. This second search resulted in matching of
1927 distinct peptide sequences.

Phylogenetic analysis
A BLAST output file containing results for 1,927 peptide sequences was input to MEGAN4.
We initially used MEGAN4’s default minimum BLAST bit score criterion of 35.0.
However, we obtained almost the same phylogenetic tree when the minimum bit score was
reduced to zero, with the main difference being that more peptides were assigned to the
different taxa. Accordingly, we present the results obtained when all 1,927 peptides were
included.

The complete phylogenetic tree is available as Supplemental Figure S2. Some peptides were
so highly conserved that they could not be assigned at the kingdom level (539; 28%). The
remaining peptides were all assigned to the kingdom Bacteria with the exception of 10 being
assigned to Eukaryota, and 2 to viruses. Sixteen percent of the Bacteria peptides could not
be assigned below the kingdom level. The remaining 1,156 peptides were distributed among
twelve phyla (Figure 2A). The four most abundant phyla collectively accounted for 81% of
bacterial peptides. Firmicutes were the most prevalent, followed by Proteobacteria,
Actinobacteria, and Bacteroidetes. Sixty-six percent of bacterial peptides were assignable at
the genus level, representing 65 genera (Figure 2B). The most abundant genera were
Streptococcus, Rothia, Actinomyces, Prevotella, and Neisseria.
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Thirty-five percent of bacterial peptides were assignable at the species level, representing
124 species (Supplemental Figure S2 and Supplemental Table S2). The most common
species were Rothia mucilaginosa, Prevotella melanogenica, Selenomonas sputigena,
Pseudomonas aeruginosa, Cornybacterium matrochotii, Streptococcus salivarius,
Actinomyces odontolyticus, and Abiotrophia defectiva. The remaining 115 species
represented a broad range of oral bacterial diversity. They included species that are presently
non-cultivable, most notably two members of candidate division TM7. All of those species
were listed in the current version of the HOMD database, with the exception of six.

The six bacterial species not in HOMD included representatives of a variety of
environments, including the human rectum, seawater, soil, plant pathogens, and legume root
nodules (Table S2). There was only a single peptide assigned to each. Five of them showed
mismatches with the target sequence for their assigned species in BLAST. Mismatches also
applied to the five peptides in the complete phylogenetic tree that were assigned to non-
human eukaryotic species, and one of two peptides assigned to viruses (Figure S2).

It is important to note that peptide counts for particular species were not always
representative of the prevalence of their parent genus. A good example is Neisseria, where
only 5 peptides were assignable at the species level, but 66 were assignable at the genus
level (Table S2). Likewise, only 4 peptides were assignable to Veilonella at the species
level, but 38 were assignable at the genus level. In the case of Streptococcus, 37 peptides
were assigned at the species level, but 89 were assignable at the genus level. Thus, the genus
level may provide a better representation of prevalence patterns within this dataset.

Ontology analysis
The KEGG analysis assigned 1,774 peptides to 20 pathways (Fig. 3). It is important to note
that a number of key enzymes were represented in multiple KEGG pathways. Carbohydrate
Metabolism was the most prevalent pathway, Proteins involved in glycolysis were among
the most common on the basis of the number of peptides assigned to them (Table 2).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) had the highest number of sequence
assignments in the entire dataset, and enolase, aldolase, phosphoglycerate mutase, triose-
phosphate isomerase, pyruvate kinase, phosphoenolpyruvate carboxykinase, and
phosphoglycerate kinase also were relatively abundant. Pyruvate Metabolism was
represented by pyruvate formate lyase, and the Citrate Cycle by fumarate hydratase and
succinyl-CoA synthetase. Levansucrase provided evidence for Sucrose Metabolism.
Downstream from the Carbohydrate Metabolism pathway, Energy Metabolism was
represented by ATP synthase.

Within the DNA Replication and Repair pathway, DNA polymerase was the second most
abundant protein in the dataset. Molecular chaperone DnaK was the major component of
Folding Sorting, and Degradation, while Transcription was primarily represented by RNA
polymerase. Translation was represented by translation elongation factor G, as well as
ribosomal protein L7/L12 and ribosomal protein S1. Other translation elongation factors and
ribosomal proteins were present, but with fewer matching peptides.

The Cell Motility pathway was dominated by flagellin and methyl-accepting chemotaxis
protein. The Membrane Transport group consisted mostly of diverse phosphotransferases
associated with carbohydrate transport, although ABC transporters also were detected. The
Signal Transduction pathway was represented by a variety of bacterial two-component
systems. (not shown).
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DISCUSSION
Our previous metaproteomic study identified 357 bacterial peptides in a pooled sample of
salivary pellets from four oral squamous cell carcinoma patients [21]. The pellet fraction of
saliva is a mixture consisting mostly of exfoliated epithelial cells, bacteria, and high
molecular weight salivary proteins, while the salivary supernatant fraction is largely
bacteria-free. Nevertheless, in this study, we achieved an almost six-fold increase in the
number of bacterial peptides detected in a pooled sample of salivary supernatants from six
healthy subjects.

Several factors likely increased the depth of information obtained in the current study.
Protease inhibitors were used here to better preserve proteins prior to DRC [8]. The
compression of high-abundance host salivary proteins via ProteomeMiner™ treatment likely
enhanced the detection of bacterial proteins, which are at lower abundance compared to the
dominant human proteins from the host. Interestingly, there was relatively little overlap
between the bacterial peptides identified from the ProteomeMiner™-treated portion of the
pool and those identified from the untreated portion (data not shown). Thus a parallel
analysis of a non-treated sample may be warranted when using this approach for
metaproteomic studies. We also used sensitive LTQ-Orbitrap mass spectrometry, with high
peptide precursor mass accuracy, recommended for metaproteomics studies[30]. Mass
accuracy can increase confident peptide identifications[31], especially when processing the
data via the “Quant” module from MaxQuant [23], [32].

Our novel two-step database searching method also significantly increased bacterial protein
identifications. We believe the increased bacterial protein identifications was due to the use
of the refined database in the second-step, which was an order of magnitude smaller than the
target-decoy database used for the one-step method. A smaller database has less potential for
false-positive matches[20], thereby requiring lower stringency filtering and providing more
protein identifications. Also beneficial to our study was the use of ProteinPilot database
searching software designed for use with large sequence databases and capable of robust
FDR estimation [33, 34], making it well suited for our two-step method.

One problem in metaproteomics is the choice of an appropriate database for peptide
sequence matching. For our study in saliva, a database that encompasses a wide range of
microbial environments runs the risk of producing a large number of “false positive”
identifications of proteins from microbes that may share common sequences with oral taxa,
even though they are quite unlikely to be actually present in the oral environment. Our
previous metaproteomics study of the salivary cell pellet suffered from this problem, as we
identified a number of microbes likely not found in the oral environment [21].

One solution to this problem is to perform a metaproteomic analysis on a sample for which
corresponding metagenomic data already exist. That allows the peptides to be matched
against genomic data that is specific to the same individuals. This was done in a recent
metaproteomic analysis of the human gut microbiota, with considerable success [12]. We
did not have a metagenomic dataset to work from, so we chose the translated protein
sequences from the HOMD genomic dataset instead. HOMD is a curated database of species
and uncultured phylotypes that have been identified from oral samples on the basis of 16S
rRNA sequencing. It also incorporates genomic data for approximately 150 members of the
oral microbiota that have been completely or partially sequenced [25, 35]. That allowed a
search strategy focused on species of verified oral origin. Our strategy appears to have been
successful, since only six peptides were assigned by MEGAN4 to species not present in
HOMD, and five of those assignments were based on imperfect matches in BLAST.
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Recent 16S rRNA-based metagenomic studies of microbial diversity in human saliva have
shown that there is considerable variation between individuals, and possibly between
different geographical populations as well. However, there also is consistent evidence for a
“core oral microbiome” consisting of a more limited number of abundant taxa at the phylum,
genus, and species level. Thus, although there is great diversity in saliva, that diversity is
very unevenly distributed with respect to prevalence [2–7]. Because of the large amounts of
protein required for DRC and subsequent peptide fractionation, it was necessary to pool
saliva samples for this study. That pool included six individuals of varied ethnicity. Our data
can be considered analogous to population summary data from a metagenomic study,
although the data represent a relatively small number of people.

From that perspective, our data shows patterns that are consistent with existing metagenomic
data. At the phylum level, our study is consistent with others showing Firmicutes to be the
most prevalent phylum, with Proteobacteria, Actinobacteria, and Bacteroidetes also being
abundant [2–7]. Our data showed a relatively higher prevalence of Actinobacteria than other
studies [2–7], but this is more likely to be due to individual variation than to any bias
towards Actinobacteria in our proteomic approach. The same broad patterns of similarity
existed at the genus level, although we observed relatively lower prevalence of Haemophilus
than has been seen by others [2–7]. Again, we believe that is most likely due to variation
between individuals.

It has been suggested that the salivary microbiota corresponds most closely to that of the
tongue [5, 36]. Our findings are consistent with that hypothesis, since we observed a high
relative abundance for species common on the tongue, notably R. mucilaginosa, S.
salivarius, and P. melaninogenica [5, 36, 37]. However, metaproteomic species
classifications have to be interpreted cautiously, since important bacterial proteins may
include regions, such as enzyme active sites, that are highly conserved. Thus, some genera
that were poorly represented at the species level were in fact more abundant when viewed at
the genus level.

The same caveat applies to metaproteomic data at any taxonomic level. There is presently no
method for selectively removing conserved peptides. Thus, it is likely that there will be a
consistent bias towards such sequences. Nevertheless, the high degree of consistency
between our data and previous 16s rRNA metagenomic studies suggest that our approach for
deep metaproteomic analysis can be used to provide comparable information about
microbial diversity in saliva, although it may not provide the same depth of coverage of taxa
that are extremely rare.

The diversity of proteins detected by our approach also facilitated ontological analysis of the
activities carried out by the oral microbial community at large. The KEGG analysis
suggested that the saliva supernatant community appeared to be actively engaged in growth
and metabolism. Evidence for active DNA replication, transcription, and translation was
provided by the relatively large number of peptides derived from DNA polymerase, RNA
polymerase, ribosomal proteins, and translation elongation factors, while numerous peptides
from ATP synthase suggested that activated energy carriers were being produced.
Glycolysis is the most likely mechanism for ATP production, since peptides for key
enzymes in that pathway were among the most abundant. Moreover, the Membrane
Transport pathway included peptides for various components of sugar phosphotransferase
systems, consistent with active glycolysis. The overall pattern is consistent with metabolism
of dietary carbohydrates and salivary glycoproteins by oral bacteria.

KEGG pathway maps may incorporate data from both prokaryotes and eukaryotes [38]. As a
consequence, some microbial enzymes in our dataset were also cross-referenced to

Jagtap et al. Page 7

Proteomics. Author manuscript; available in PMC 2013 April 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



eukaryote-specific KEGG pathways. Obvious misclassifications such as that were easy to
eliminate. A subtler issue was presented by microbial proteins that have functions additional
to their defined roles in KEGG pathways. GAPDH provides an excellent case in point.
GAPDH is known to occur on streptococcal surfaces [39], and oral streptococci appear to
release GAPDH when grown in batch culture under certain conditions [40], The
extracellular form of streptococcal GAPDH is enzymatically active [39, 40], but GAPDH
has also been shown to act as a bacterial adhesin for host cell proteins, such as fibronectin
[39], and other oral bacterial species, such as Porphyromonas gingivalis [41]. There is only a
single copy of the GAPDH gene in streptococci [39, 40], so the same gene product appears
to be responsible for both intracellular and extracellular activities.

More recent proteomic studies of oral streptococci grown in monoculture have established
that other members of the glycolytic pathway are surface proteins on streptococci. Those
include proteins that are relatively abundant in our dataset, such as enolase, fructose-
bisphosphate aldolase, phosphoglycerate mutase, triose-phosphate isomerase, pyruvate
kinase, and phosphoglycerate kinase. Adhesin functions have been demonstrated for many
of those proteins [42–47]. Moreover, streptococcal surfaces also incorporate proteins from
other pathways that are relatively abundant in our dataset, including ATP synthase,
molecular chaperone DnaK, RNA polymerase, Translation elongation factor G, Ribosomal
Protein L7/L12, and Ribosomal Protein S1. Those proteins also are capable of functioning as
adhesins [42–47]. Taken together, those reports suggest that many of the most abundant
proteins in our dataset may function as extracellular adhesins, in addition to their established
roles in intracellular pathways.

To conclude, our metaproteomic analysis has provided the first in-depth catalog of bacterial
proteins in human saliva supernatant. We believe this could serve as a basis for future
studies relevant to oral disease. Common oral diseases such as dental caries and periodontal
disease are associated with major shifts in microbial ecology [48, 49]. Moreover, changes in
the salivary microbiota also have been documented for rare but very serious conditions such
as oral cancer [50]. Most studies have emphasized taxonomic changes in the composition of
the oral microbiota in disease, but it is reasonable to suggest that such changes are likely to
be accompanied by changes in the expression of microbial proteins. Our data now can be
used as a basis for comparison in future metaproteomic studies of oral diseases. Our findings
suggest that the salivary metaproteome is likely to be closely correlated with that of the
tongue. Since the tongue is a frequent site of occurrence for oral cancer [51], comparisons of
the salivary metaproteome in health, dysplasia, and disease may be particularly useful for
testing the hypothesis that oral microbes are directly or indirectly involved in the
pathogenesis of oral cancer. We are actively engaged in comparative studies to address that
question.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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ATP Adenosine triphosphate
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BLAST Basic Local Alignment Search Tool

DRC Dynamic range compression

FDR False discovery rate

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

HOMD Human Oral Microbiome Database

ID identification

IPI International Protein Index

KEGG Kyoto Encyclopedia of Genes and Genomes

LTQ linear trap quadrupole

MEGAN MEtaGenome Analyzer

MGF Mascot generic format

PSPEP Proteomics System Performance Evaluation Pipeline

SCX Strong cation exchange
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Figure 1. Two-step method for human salivary metaproteome analysis
See text for details
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Figure 2. Phyla and genus level assignments for human salivary proteome
A. Pie chart showing peptides assigned to bacterial phyla. The numbers in parentheses
indicate the number of peptides assigned to each phylum. B. Pie chart showing peptides
assigned to bacterial genera. The numbers in parentheses indicate the number of peptides
assigned to each genus. For reasons of legibility, genera with fewer than four peptide
assignments have been excluded from the chart. The excluded genera are shown in
Supplemental Table S2.
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Figure 3. KEGG analysis of human salivary metaproteome
Pie chart showing bacterial peptides assigned to KEGG pathways. The numbers in
parentheses indicate the number of peptides assigned to each pathway. Because many
proteins are assigned to multiple KEGG pathways, the total number of peptide assignments
is greater than the total number of peptides identified in our study.
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Table 1

Summary of two-step database searching method for salivary metaproteomics

Number of
RAW files

Total
number of
MS/MS
spectra

First stepa Second stepb

Total
sequences in
initial
database

Non-human
proteins
identified

Total sequences
in refined
target-decoy
database

Non-
human,
distinct
peptides
identified

 200  988,974  1,687,426  2176  152,724  1927

a
Database used contains human proteins + translated sequences from HOMD. Proteins identified at a low stringency 66% confidence value in

ProteinPilot.

b
Database contains human proteins + microbial sequences identified from first step. Peptides were identified using a stringent 5% local FDR value

in ProteinPilot.
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Table 2

KEGG analysis of abundant microbial proteins from the salivary metaproteome

KEGG
pathway Protein name (EC # or gene name)

Number of
Peptides a

Carbohydrate
metabolism

glyceraldehyde-3-phosphate dehydrogenase (1.2.1.12) 58

Enolase (4.2.1.11) 27

fructose-bisphosphate aldolase (4.1.2.13) 18

fumarate hydratase (4.2.1.2) 14

pyruvate formate-lyase (2.3.1.54) 14

phosphoglycerate mutase (5.4.2.1) 13

triose-phosphate isomerase (5.3.1.1) 11

pyruvate kinase (2.7.1.40) 11

succinyl-CoA synthetase (6.2.1.5) 9

phosphoenolpyruvate carboxykinase (4.1.1.32) 8

levansucrase (2.4.1.10) 8

phosphoglycerate kinase (2.7.2.3) 8

Cell motility

flagellin (FliC) 25

methyl-accepting chemotaxis protein (MCP) 16

DNA
Replication
and repair

DNA polymerase (2.7.7.7) 36

Energy
metabolism

ATP synthase (3.6.3.14) 12

Folding,
sorting, and
degradation

molecular chaperone DnaK (DnaK) 12

Transcription

RNA polymerase (2.7.7.6) 13

Translation

Translation elongation factor G (EF-2) 23

Ribosomal Protein L7/L12 (L7/L12) 14

Ribosomal Protein S1 (S1) 13

Ribosomal Protein S2 (S2) 11
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a
Number of distinct peptides assigned to a given protein. Proteins listed in this table were represented by at least eight peptides.
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