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Abstract

Purpose: Magnetic resonance spectroscopy imaging (MRSI) has shown great promise in the 

detection and monitoring of neurologic pathologies such as tumor. A necessary component of data 

processing includes the quantitation of each metabolite, typically done through fitting a model of 

the spectrum to the data. For high-resolution volumetric MRSI of the brain, which may have 

~10,000 spectra, significant processing time is required for spectral analysis and generation of 

metabolite maps.

Methods: A novel deep learning architecture that combines a convolutional neural network with 

a priori models of the spectrum is presented. This architecture, a convolutional encoder – model 

decoder (CEMD), combines the strengths of adaptive and unbiased convolutional networks with 

models of magnetic resonance and is readily interpretable.

Results: The CEMD architecture performs accurate spectral fitting for volumetric MRSI in 

patients with glioblastoma, provides whole-brain fitting in one minute on a standard computer, and 

handles a variety of spectral artifacts.

Conclusion: A new architecture combining physics domain knowledge with convolutional 

neural networks has been developed and is able to perform rapid spectral fitting of whole-brain 

data. Rapid processing is a critical step toward routine clinical practice.
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Introduction

Proton magnetic resonance spectroscopic imaging (MRSI) is an imaging modality capable 

of generating high-resolution 3D maps of cerebral metabolites concentrations in vivo (1–3). 

Previous studies have shown that altered metabolism identified regions of occult tumor that 

are not visible in contrast-enhanced T1w MRI (3–5). Studies have assessed the potential of 

using MRSI to guide radiation therapy (RT) in patients with glioblastomas (6–9), and an 

ongoing multisite clinical study is prospectively boosting radiation based on this technique 

(NCT03137888, “Spectroscopic MRI-Guided Radiation Therapy Planning in 

Glioblastoma”) (10). To utilize volumetric MRSI for clinical studies, maps of the individual 

metabolite distributions must be created by quantifying the metabolite resonance peaks, a 

process known as spectral fitting. Several spectral fitting algorithms have been established, 

including ones that operate in both the time and frequency domain of the acquired data 

(11,12). Common amongst these techniques is the incorporation of prior knowledge, which 

includes information on the resonance frequencies of metabolites of interest and lineshapes. 

Several parametric spectral analysis methods have developed (13–19), all of which rely on 

iterative optimization procedures to find the model parameters that best match the data. 

However, these methods do not scale well to volumetric spectroscopic imaging, which can 

contain on the order of 10,000 spectra in a whole-brain scan. One method for processing of 

whole-brain MRSI is the FITT program of the Metabolite Imaging and Data Analysis 

System (MIDAS) (20,21), which uses iterative time-frequency parametric modelling 

methods for spectral analysis (15). This algorithm is typical of the parametric spectral 

analysis approaches that have been widely applied to MRS. As with other parametric 

spectral analysis methods, spectral fitting with MIDAS is computationally-intensive, 

requiring 40–50 minutes on a high-end multicore workstation. However, if MRSI is to be 

integrated into clinical protocols it is critical that all processing be done within a few 

minutes, ideally on board the scanner computer. This would enable rapid quality checks of 

the final maps to see if the scan needs to be repeated before the patient leaves and to be sent 

for clinical review in a timely manner.

Machine learning has proven to have exceptional utility in medical imaging, including MRSI 

(22–27). Hiltunen et. al. described an artificial neural network (ANN) architecture that could 

predict metabolite peak areas from magnitude spectra in patients with gliomas (26); Das et. 

al. presented a multi-layer perceptron (MLP) for quantifying metabolite concentrations from 

synthetically generated spectra and phase-encoded 2D MRSI using results from LCModel as 

data for supervised training, achieving accurate predictions of metabolite concentrations 

(28); and Bhat et. al. used an unsupervised neural network for analysis of phase-corrected 

2D MRSI data (27). While these methods provide measures of metabolite concentrations, it 

is difficult to contextualize why the MLP or ANN produced a given output. A concept in 

machine learning that correlates well to curve fitting is the idea of the encoder-decoder, or 

autoencoder. Autoencoders are a type of unsupervised learning neural network that seek to 

find a compressed encoding of input data such that the input data can be accurately 

reconstructed from this parsimonious encoding (29,30). The autoencoder consists of two 

independent neural networks: an encoder, that transforms the input data into a lower 

dimensional space; and a decoder, that reconstructs the original input data from the lower 
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dimensional representation (Supporting Information Figure S1). The encoder and decoder 

are concurrently trained to minimize reconstruction error, with the constraint that the interim 

representation has significantly lower dimension than the input, and thus only important 

“features” of the data are maintained. This process is highly analogous to parameterized 

curve fitting, wherein a model (the decoder) uses relatively few parameters to reconstruct a 

denoised version of raw data. With autoencoders, both the encoding and decoding models 

are neural networks (a cascade of convolution, pooling, matrix multiplication and 

summation operations) such that higher-order non-linear features can be extracted from the 

inputs. The model parameters of these neural networks can be optimized using gradient 

descent techniques to minimize reconstruction error. Generally, the only constraint on the 

autoencoder is the size of the lower dimensional representation, and as such, this low-rank 

representation is not readily interpretable.

To leverage the feature-learning capabilities of autoencoders while maintaining the 

interpretability of parameters given domain knowledge about MRS, a novel spectral fitting 

algorithm was developed that utilized a convolutional neural network encoder with a model-

based decoding of the spectrum. We evaluated this method for fitting of singlet resonances 

in MRSI of the brain. We also implemented a software pipeline for rapid generation of 

metabolite maps of interest. Metabolite maps generated using this system were then 

compared with those produced by existing parametric spectral fitting methods.

Methods

Image Acquisition and Processing

Volumetric echo planar spectroscopic imaging (EPSI) scans were performed on four healthy 

subjects and six subjects with newly diagnosed glioblastoma who were enrolled in an 

ongoing clinical trial (NCT03137888). Scans were conducted at 3T (Siemens Prisma) with a 

32-channel head coil (Siemens Healthineers, Erlangen, Germany). For the subjects with 

glioblastoma, data were obtained following surgical resection but prior to radiation therapy 

and chemotherapy, as previously described (23). Briefly, T1-weighted (T1w) magnetization-

prepared rapid gradient echo pulse (TR = 1900 ms, TE = 3.52 ms, 256 x 256 × 160 matrix, 

flip angle (FA) = 9°) and whole-brain 3D EPSI (TR = 1551 ms, TE = 50 ms, 64 × 64 × 32 

matrix, FA = 71°) sequences with generalized autocalibrating partially parallel acquisitions 

(GRAPPA) acceleration were obtained during the same scanning session, oriented at a +15 

degree tilt in the sagittal plane from the anterior commissure-posterior commissure line (31). 

For the EPSI/GRAPPA sequence, an oblique saturation band was placed in the sagittal plane 

from the optic chiasm to the cerebellum. A medium TE of 50ms was used to reduce the 

impact of lipid contamination and emphasize the signal of metabolites of interest in subjects 

with brain tumors: choline (Cho), creatine (Cr), and N-acetylasparate (NAA). MIDAS 

(20,21) was used to perform the following preprocessing and volume reconstruction steps: 

spatial reconstruction, B0 field correction using simultaneously-acquired intracellular water 

signal, co-registration of the T1w and metabolite volumes, lipid suppression, and water 

suppression. The initial processing also created a mask covering the brain volume, but 

excluding voxels for which the water linewidth was greater than 18 Hz, as calculated using 
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the T2* map. A total of 102,005 spectra were obtained and separated into three data subsets: 

85,661 for training; 8,192 for validation; and 8,192 for testing.

For assessing generalizability, additional data from subjects with newly-diagnosed 

glioblastoma that were scanned at Emory University, the University of Miami and the Johns 

Hopkins University, were evaluated. The same sequences and parameters as above were 

used, with the exception that studies at the University of Miami were carried out on a 3T 

Siemens Skyra with a 20-channel head coil.

Convolutional Encoder – Model Decoder

The goal of spectral fitting for an input spectrum, s ∈ ℝ512, is to find a parameter set, 

θ ∈ ℝk, k ≪ 512, such that when these parameters are used in a spectral model, g(θ), the 

result is a noise-free approximation of the input:

g θ :ℝk ℝ512, g θ ≈ s #[1]

Mathematically, this can be represented as the following optimization task:

arg min
θ

g θ − s #[2]

In this context, the task of finding θ is the encoding step while the function g(θ) is the 

decoding step. In this work, we define the convolutional encoder – model decoder (CEMD) 

architecture. The CEMD architecture is graphically depicted in Figure 1. The encoding step 

in CEMD is a convolutional neural network (CNN) composed of sequential layers of 

convolution, pooling, and rectification (32,33). Each of these layers is has parameterized 

weights that can collectively be referred to as W; therefore, the CNN with weights W can be 

conceived of as applying a series of transformations that perform the encoding function 

f : ℝ512 ℝk defined by f(s,W) = θ. Training identifies W to minimize the error defined 

Equation 2. In the context of spectral fitting, a fixed spectral model is used as the decoder 

(Equation 1) to generate a fitted version of the input spectrum. The overall training objective 

can be stated as:

arg min
W

g f s, W − s #[3]

A key point in this optimization is that it requires no “ground truth” or “true” fitted spectra 

for CNN training. It is an unsupervised learning task requiring only a set of spectra, 

S = s1, s2, …, sN ∈ ℝ512 × N, to train the CNN weights with the goal of minimizing the 

residual error between the input data and fitted spectra.

The decoder was based on previously described parametric analyses that model a spectrum 

as having two components: i) metabolite resonances that are explicitly defined, and ii) a 
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baseline composed of all metabolites and macromolecules not explicitly defined (14,15). 

Metabolite resonances were modeled using the Lorentzian-Gaussian lineshape model:

s = FFT ∑
m = 1

3
Am e

−i ωm, 0 + Δωm + ϕ1 t + ϕ0 e
− t

Ta
+ t

Tb

2

#[4]

For each metabolite, m, the metabolite model required six parameters: peak amplitude Am, 

resonance frequency ωm, zero and first order phases (ϕ0 and ϕ1), and Gaussian and 

Lorentzian decay constants (Ta and Tb). The three major singlet resonances at TE = 50 ms 

were modeled: Cho, Cr, and NAA. Note that this formulation returns the relative 

concentrations of each metabolite, not the peak area. A constraint was placed such that all 

three metabolites have the same zero- and first-order phase shifts and linewidths, such that 

only the resonance frequency and amplitude needed to be independently determined. Since 

the expected resonance frequency, defined as ωm,0, is known a priori from a library of 

chemical resonances, only a shift in frequency from the expected, Δωm, needed to be 

calculated. Thus, for these three metabolite singlet resonances, a total of 10 parameters were 

needed:

θP = ACho, ACr, ANAA, ΔωCho, ΔωCr, ΔωNAA, ϕ0, ϕ1, Ta, Tb #[5]

The baseline component was defined by wavelet reconstruction, using a set of coarse (34) 

third-order Coiflets (35) as the wavelet kernels and four levels of dyadic upsampling to 

convert 32 coarse coefficients (θB) into the baseline signal. In order to enable automated 

computation of gradients for training the CNN in TensorFlow (36), wavelet reconstruction 

was implemented as a series of linear matrix operations. At each level, the output of the 

previous iteration, ylow ∈ ℝp, were first dyadically upsampled (37). Dyadic upsampling on a 

vector y was implemented as augmentation of its transpose with a vector of zeros of the 

same size, followed by vectorization and transposition:

y = [y1 ... yp] #[6]

yaug = (yT 0 p)
T

=
y1 0
⋮ ⋮
yp 0

T

=
y1 ⋯ yP

0 ⋯ 0
#[7]

yup = vec(yaug)T = y1 0 y2 0 ⋯ yp 0 #[8]
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The upsampled vector was then convolved with the Coiflet low-frequency reconstruction 

kernel, Coif3low (35):

ylow′ = ylow
up * Coi f 3low #[9]

The central 2p elements of y′low were used as the input for the next level of wavelet 

reconstruction. The CEMD encoder therefore needed to calculate 42 coefficients, 10 for the 

metabolite resonances and 32 for the baseline, which are passed to the decoder to create the 

fitted spectrum.

A more detailed representation of the CEMD architecture is shown in Supporting 

Information Figure S1. Only the real component of the complex input spectrum (s ∈ ℝ512) 

was passed through a CNN during the encoder to produce a low-rank representation that 

directly corresponded to the 42 spectral model parameters. The decoder then applied the 

metabolite resonance and baseline models to the low-rank representation and created the 

fitted spectrum (s′ ∈ ℝ512). The training set consisted of N=85,661 frequency domain 

spectra each consisting of 512. The mean and standard deviation of the amplitude, μtrain and 

σtrain, were computed across the entire set, and each input spectrum, s , was normalized as:

s norm =
s − μtrain
4 * σtrain

#[10]

While CEMD followed an encode-decode scheme, it consisted of two serial encoder-

decoder stages. First, the normalized spectrum, s norm, was passed through a CNN that 

computed the 32 coarse wavelet coefficients, θB. This CNN consisted of 13 convolution 

layers, with max-pooling after the 4th, 8th, and 13th layers, followed by two fully-connected 

(FC) layers (32,38). An estimate of the baseline, s baseline, was made from the decoder using 

the wavelet reconstruction technique described in Equations 5–9. Next, the baseline was 

subtracted from the input spectrum:

s Sub = s norm − s baseline #[11]

The baseline-subtracted spectrum, s sub, was passed through a second CNN consisting of 

just 6 fully-connected layers that computed the metabolite resonance peak parameters, θP. 

An estimate of the metabolite resonances, s peak, was made by the decoder using Equation 

4. Next, the baseline and resonance peak estimates were added together to produce an 

estimate of the fitted spectrum, s f it . The root-mean-squared error (RMSE) of the input and 

fitted spectrum was used to update the weights of the encoder CNN, and was calculated as:
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sresid = ∑
i = 1

512
snorm, i − s f it, i #[12]

CEMD was developed in the Python programming language using the TensorFlow 1.3 

(Google LLC, Mountain View, CA) library, and trained using TensorFlow’s Adam optimizer 

(39) on a high-end workstation with two Titan X graphical processing units (GPUs; Nvidia 

Corporation, Santa Clara, CA).

In each epoch of training, spectra in the training data set were run through CEMD to 

produce fitted spectra, RMSE for each spectrum was calculated, and gradient 

backpropagation was performed to update the encoder weights. Then, the spectra in the 

validation set were run through the CEMD and the validation loss was calculated as the sum 

of RMSEs. Training continued through multiple epochs until the validation loss converged. 

Once the autoencoder was trained and the CNN weights finalized, the testing set was used to 

determine final statistics of CEMD performance. The RMSE was calculated for each 

spectrum in the testing set, and the mean and standard deviation were reported. Once 

training of the CEMD encoder weights was complete, the encoder can be applied to spectra 

to compute the relative concentration of each metabolite resonance based on the parameters 

in the encoder output, θP.

Whole-brain Mapping

A software pipeline to perform CEMD fitting on whole-brain MRSI and to generate 

volumetric metabolite and ratios maps was developed. Only voxels within the region defined 

from the brain mask were analyzed, for both the CEMD and MIDAS fitting. While training 

of the CNN required a GPU, the final CEMD was implemented on a central processing unit 

(CPU) architecture consisting of a four-core CPU. To assess the utility of generated 

volumetric for radiation treatment planning, the Cho/NAA ratio map was computed for 10 

subjects with glioblastoma fitted by CEMD and an existing parametric analysis method 

implemented in MIDAS. Spectral fitting in MIDAS used the METAFIT option, which 

applies three applications of fitting (the FITT program). First, B0 and phase corrections are 

performed, prior to applying a spatial smoothing and fitting of a higher-SNR copy of the 

data. Using the initial values from this intermediate result a final spectral analysis is 

performed on the original spectra. After fitting, voxels were excluded from both sets of 

results based on spectral outlier filters, namely those having values that are more than four 

standard deviations from the mean value within the brain.

Identification of abnormal Cho/NAA regions was determined from the results of each fitting 

method using the largest single connected component of voxels that had a Cho/NAA at least 

twofold increased compared to the mean value in contralateral normal-appearing white 

matter; this particular threshold was previously determined to be optimal for identifying 

high-risk regions for disease recurrence (3,10,40). The identified regions from each result 

were compared using the Dice similarity coefficient (DSC) (41) and a Z test was performed 

for each subject using the logit transform of the DSC (42).
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Results

Training time for the CEMD was approximately 4 hours using TensorFlow on a workstation 

with two Nvidia Titan X GPUs. The testing set achieved a mean RMSE of fit of 5.0% 

normalized to the amplitude of the largest peak in each spectrum in the testing set, with a 

standard deviation of 0.6%. Sample spectra from the testing set are shown in Figure 2, with 

the baseline (red) and peak + baseline (black) fit overlaid on the input spectra (gray). CEMD 

can handle a variety of baseline effects, varying from a relatively flat baseline near the peaks 

of interest (Figure 2A) to major shifts that can occur at frequencies in the region of lipid or 

metabolites (Figure 2B). Phases can also be determined by the model (Figure 2C-D). Even if 

the signal-to-noise ratio is poor, due to partial volume effects, magnetic field inhomogeneity, 

or receiver coil sensitivity, CEMD can identify and fit the peak and baseline components.

Sample spectra from three subjects with glioblastoma, not included in the training, testing, 

or validation sets, are shown in Figure 3. In patients with glioblastoma, voxels within the 

region of active tumor exhibit an increase in Cho and a concomitant decrease in NAA (3). 

The CEMD-fitted spectra (black) are overlaid on the input spectra (gray). Subject one 

(Figure 3A,B) was scanned at Emory University; subject two (Figure 3C,D) was scanned at 

the University of Miami; and subject three (Figure 3E,D) was scanned at the Johns Hopkins 

University. All three subjects were scanned using the protocol defined in the Methods 

section, and data were preprocessed in MIDAS as described. Spectra in the left column 

(Figure 3A,C,E) are from voxels in the contralateral normal-appearing hemisphere, while 

spectra in the right column (Figure 3B,D,F) are taken from voxels in regions of tumor.

Correlations between the metabolite concentrations and the Cho/NAA ratio, calculated by 

CEMD and MIDAS for the testing set are shown in Figure 4. The solid blue lines plot the 

mean value between the two fitting techniques for each bin of values, and the shaded blue 

region indicates +/− 1 standard deviation. Overlaid in light gray are the histograms for the 

distribution of metabolite values computed by MIDAS. The variance of CEMD predictions 

compared to MIDAS is inversely correlated with the number of training samples available. 

While the two algorithms are linear in the regions where most of the data are present, 

CEMD has greater uncertainty at the tail end of the histograms where there were fewer 

training data.

Figure 5 compares the fits by MIDAS (blue) and CEMD (black) for several challenging 

spectra from subjects with glioblastoma. The first (Figure 5A) depicts a spectrum with a 

large baseline shift on the right-side of the NAA peak. The second (Figure 5B) shows a 

spectrum with a large decline of the baseline on the Cho and Cr peaks but a flat baseline 

near the NAA peak. The third (Figure 5C) shows a spectrum from a voxel near the inferior 

rim of the surgical cavity, where partial volume effects reduce the apparent signal-to-noise 

ratio and where there is an absence of the NAA peak at 2.0 ppm. The fourth (Figure 5D) 

depicts a spectrum from the bone-cortex interface in the temporal; all peaks have broadened 

linewidth and the NAA peak is adjacent to large noise and lipid signal. All results show 

comparable performance for fitting of the metabolite peaks with some differences in the 

baselines.
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Results of the CEMD analysis for studies of a subject with glioblastoma, not included in the 

training set, are shown in Figure 6, which shows the individual metabolite maps, the 

Cho/NAA ratio map, and corresponding contrast-enhanced T1-weighted (CE-T1w) and 

fluid-attenuated inversion recovery (FLAIR) MRI volumes. Superimposed on the CE-T1w 

image is a contour drawn by a neuroradiologist to indicate contrast enhancing tissue and the 

surgical cavity, regions that would normally be targeted for high dose radiation therapy.

Cho/NAA abnormality volumes were contoured for CEMD and MIDAS fitting and the 

results are shown in Table 1, which includes subject-wise execution time, abnormality 

volumes, and DSC. The mean execution time for whole-brain spectral fitting was 20.6 +/

− 2.8 sec using the CEMD. As a representative example, the execution time for CEMD on 

Subject 6 was broken down as follows: 2.7 seconds to load 11,702 spectra from disk into 

memory; 17.0 seconds to load the CEMD encoder model and to process all spectra; 3.3 

seconds to create volumetric maps for each metabolite and the Cho/NAA ratio and to write 

these maps to disk. On average, CEMD-derived lesion volumes are larger by 1.2 cm3 (P = 

0.83 using a two-tailed paired T test) and in several subjects encapsulated the contours 

produced from the MIDAS analysis. The mean DSC between CEMD and MIDAS was 0.72 

+/− 0.13. In Figure 7 and Figure 8, Cho/NAA volumes computed by MIDAS and CEMD for 

Subjects 9 and 1, respectively, were qualitatively compared; the contours indicate a twofold 

increase in Cho/NAA compared to contralateral white matter. Isolated bright spots are 

artifacts due to fitting errors and were not contoured. A spectrum from an area where the two 

algorithms had different values of Cho/NAA (white box) is shown for each subject, with 

CEMD fit (black) and MIDAS fit (blue) overlaid on the spectrum (gray). Discrepancies 

occur either due to the calculated ratio being just above or below the 2x threshold (Figure 

8B), or in areas of minimal or poor signal quality and therefore the uncertainties in the 

measurements must be considered to be very high.

Discussion

In recent years, machine learning has seen tremendous advances and has shattered 

benchmarks in a variety of fields, including medical imaging applications (38). While these 

deep learning approaches, including CNNs, can outperform less complex models, a key 

issue is that of interpretability. Several techniques, such as gradient-weighted class activation 

mapping (43), seek to elucidate some of the internal workings of CNNs and provide insight 

as to why the CNN predicted a particular output. Even so, this is always done in a 

retrospective fashion after the CNN has already been trained, and thus insights cannot be 

used to modify the algorithm. It is difficult to incorporate a priori domain knowledge into 

deep learning because these techniques are fundamentally data-driven rather than model or 

knowledge driven. However, recent work has suggested that the incorporation of domain 

knowledge may be able to improve the performance of deep learning models (44,45).

In this work, a deep learning approach to spectral fitting that incorporates a priori spectral 

information was developed and evaluated. Spectral fitting is the computational bottleneck in 

processing of volumetric MRSI, largely because the existing methods are based on iterative 

algorithms. The CEMD is an unsupervised deep learning architecture that incorporates 

spectral models to generate an encoding of spectral parameters, which is advantageous 

Gurbani et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



because it does not require any “ground truth” spectral quantitation for training. The 

predictions of the CEMD have contextual meaning, and the CEMD was trained to make 

these predictions within the constraints of an explicitly defined spectral model. Once trained, 

the CEMD performs spectral fitting on volumetric data in under one minute using standard 

computer hardware. The order of magnitude improvement in fitting time can greatly benefit 

the clinical adoption of whole-brain MRSI. This architecture could be implemented on 

scanner computers, enabling real-time reconstruction and review of data without the need for 

offloading of data to more specialized computer systems. Fitted data and metabolite volumes 

could then easily be sent to a clinical PACS systems in a streamlined fashion.

Incorporation of knowledge of the spectral model imposes constraints that are important for 

the assessment of spectra. Bhat et. al. previously incorporated spectral models in an 

unsupervised neural network; however, their model was limited in requiring baseline-

corrected spectra as input to their neural network (27). CEMD simultaneously computes the 

baseline and peak components of the spectrum and correctly identifies singlets in 

challenging spectra such as those in Figure 5. The spectrum in Figure 5C indicates the loss 

of the NAA resonance at 2.0 ppm. It is necessary for a fitting model understand where the 

NAA resonance should be and not attempt to model other peak-like shapes (e.g. at 2.3 ppm 

and 1.7 ppm) as NAA. For spectra where asymmetric broadening of peaks occurs, the 

spectral lineshape model dictates that a symmetric peak should be fit (Figure 5D). In these 

cases, CEMD performed on par with traditional parametric analysis algorithms such as that 

incorporated in MIDAS.

For this study only the real part of the complex spectral data was used as input for CEMD 

and in the cost function for updating the CNN weights, though a complex spectral model 

(Equation 4) was used in the decoder. We note that the phase correction terms were 

accurately reported. It is speculated that this occurs through an observation from the 

asymmetry of the lineshape (46). An initial implementation of CEMD using the full 

complex spectral data found reduced performance (mean fit RMSE of 38%), potentially due 

to the increased number of parameters in the encoder that would need to be trained.

While the CEMD was trained using data obtained on a single 3T scanner, this study has 

demonstrated generalizability to data acquired on other instruments using the same 

acquisition parameters (Figure 3); however, this study has not evaluated the extension to 

other pulse sequence parameters. If studies are to be performed using different acquisition 

schemes, such as with shorter TE, CEMD would have to be retrained. However, training 

does not require many subjects because of the ~10,000 spectra in each study. The CEMD 

could be adapted, e.g. changing the number and type of layers in the encoder and number of 

coefficients in the decoder models, for more resonances, of multiplets of resonances, or of 

metabolites whose resonance peaks are not readily separable (gluatamate and glutamine). In 

general, because the autoencoder scheme does not rely on any external “ground truth” data, 

it can be readily adapted and optimized for different complexities of fitting.

In this work, a comparison between this new fitting paradigm and an existing iterative 

parametric optimization method was performed. The results in Figure 4 show the correlation 

between the two algorithms’ estimation of Cho, Cr, and NAA resonances and the Cho/NAA 
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ratio on the same set of spectra. In spectroscopy, the acquired spectral signal amplitude is 

uncalibrated, and additional methods are required to apply a signal normalization procedure. 

Ratios, such as Cho/NAA, do not require calibration; however, they are more unstable when 

the denominator is low. As seen in Figure 4D, both CEMD and MIDAS fitting have high 

uncertainty for high Cho/NAA values that represent low NAA regions. While individual 

metabolite resonance maps are shown in Figure 6 to assess the ability of CEMD to perform 

whole-brain fitting, the Cho/NAA maps are used as the main comparison between CEMD 

and an existing parametric analysis (MIDAS) in Table 1. CEMD achieves a Dice coefficient 

of 0.72 when compared to MIDAS. A key observation is that CEMD can produce similar 

Cho/NAA volumes to MIDAS while never being trained to do so; thus, it independently 

achieves similar results, which highlights the power of unsupervised learning techniques.

Qualitatively, as seen in Figures 7 and 8, CEMD produces similar spatial distributions of the 

Cho/NAA ratio as MIDAS in subjects with glioblastoma. Both algorithms identify the 

region of brain with an elevated ratio, though occasionally with different contour shape and 

size when selecting voxels with a Cho/NAA abnormality greater than 2x contralateral 

NAWM (Table 1). These differences hold when adjusting this threshold on two sample 

cases, one from a subject with high DSC conformality and another with low DSC 

conformality (Supporting Information Table S1). The study for Subject 9 has poor DSC; 

reviewing spectra in which the two fitting algorithms produced different values of Cho/NAA 

reveals that these discordant fits occur in regions of low spectral SNR surrounding the rim of 

the surgical cavity. Two possible reasons underlying this discordance are speculated. The 

first is highlighted in Figure 7, in which CEMD estimates a slightly lower value for the NAA 

resonance peak compared to MIDAS, and therefore estimates a Cho/NAA above the 2x 

threshold. A similar discrepancy in the Cho/NAA value can be observed in Subject 1 in the 

contralateral extension of the CEMD contour in Figure 8B. While using a threshold of a 

twofold increase in Cho/NAA compared to NAWM has been previously established to 

identify a high probability of tumor, a voxel having a value just below the threshold does not 

mean the voxel is tumor-free. Ultimately, when using MRSI for therapeutic guidance or 

diagnosis, clinician insight is needed.

A second reason for discordance between the two algorithms is apparent in a voxel from 

Subject 1, shown in Figure 8A. CEMD has a tendency to overfit spectra with low SNR that 

occur near tissue interfaces, where magnetic field inhomogeneities and partial volume 

effects can cause large distortions. The highlighted voxel is deemed to be artifactual and 

should in fact have been removed. In general, results corresponding to low SNR data, as 

shown in Figures 7 and 8, can be excluded by post-processing that takes into account the 

uncertainty of the fit via metrics such as Cramér-Rao lower bounds (13,47). This is 

especially important when calculating metabolite ratios. One limitation of the current 

implementation of the CEMD fitting is that it does not include an estimate of the 

uncertainties of the fit and this needs to be further investigated, although our previously-

described artifact filter may also be used for this purpose (23). While CEMD was built for 

spectral fitting for rapid turnaround time, for research purposes in which a more thorough 

analysis of spectral quantitation is desired, existing software such as MIDAS can be used.
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Conclusion

In this work, a machine learning approach to spectral fitting is described that can perform 

sub-minute calculation of relative metabolite concentrations in MRSI of the brain. A 

convolutional encoder-model decoder technique has been implemented that explicitly 

incorporates a standard parametric spectral model with the power of unsupervised feature-

learning to produce fast spectral fittings that are constrained by the standard model. This is a 

powerful paradigm that does not require a priori ground truth and relies upon previously-

used spectral lineshape and baseline models to optimize the underlying convolutional neural 

network parameters. The CEMD architecture is shown to produce accurate fitting of a 

variety of spectra acquired from multiple scanners in patients with glioblastoma, including 

correctly fitting challenging spectra with low SNR, partial volume effects, baseline shifts, 

phase shifts, and dropout of one or more metabolite resonances. The CEMD can fit whole-

brain data on a standard multicore computer without the need for expensive workstations or 

GPUs, in less than one minute. With this new autoencoder-based neural network, the largest 

computational bottleneck in processing MRSI can be overcome, bringing improved 

performance that will support the implementation of MRS for more widespread clinical use.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the convolutional encoder – model decoder (CEMD) architecture, which 

utilizes a convolutional neural network (CNN) to learn a low-rank representation of input 

spectra and uses known models for the baseline and peak components of spectra to train the 

CNN.
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Figure 2. 
Example spectra generated by CEMD, showing the real components of the computed 

baseline (red) and baseline + peak (black) fits overlaid on top of spectra (gray). Four 

different types of baseline and phase shifts are shown to indicate that CEMD is able to 

handle a range of input spectra. a.u. = arbitrary units.
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Figure 3. 
Sample spectra (real components) from scans of subjects with glioblastoma. Subject 1 (A,B) 

was scanned at Emory University; subject 2 (C,D) was scanned at the University of Miami; 

and subject 3 (E,F) was scanned at Johns Hopkins University. Spectra from regions of 

healthy tissue (A,C,E) and tumor (B,D,F) are shown. a.u. = arbitrary units.
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Figure 4. 
A comparison of the metabolite values and the Cho/NAA ratio computed by MIDAS and 

CEMD on the training set of spectra. The gray histogram shows the distribution of MIDAS 

calculations; the dark blue line indicates the mean values of CEMD and MIDAS in each 

histogram bin; the shaded blue region indicates the +/− 1 standard deviation of CEMD 

calculations.
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Figure 5. 
A comparison of the fits produced by MIDAS (blue) and CEMD (black) on several 

challenging spectra taken from patients with glioblastoma. a.u. = arbitrary units.
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Figure 6. 
An example of whole-brain metabolite maps generated by CEMD for a patient with a 

midline glioblastoma in comparison with standard imaging. The Cho/NAA volume indicates 

the presence of metabolically active tumor around the resection cavity extending beyond the 

contrast-enhancing lesion. Color bar corresponding to relative Cho/NAA values (compared 

to contralateral normal-appearing white matter) for Cho/NAA image; arbitrary units for 

metabolite maps. Pink contour indicated neuroradiologist-segmented contrast-enhancing 

tissue around the resection cavity.
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Figure 7. 
A comparison of the Cho/NAA volumes generated by MIDAS and CEMD in a subject with 

glioblastoma. Contours indicate Cho/NAA values greater than two-fold the value in 

contralateral normal appearing white matter. The spectrum shown comes from the 

highlighted voxel (white box).
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Figure 8. 
A comparison of Cho/NAA volumes generated by MIDAS (blue) and CEMD (black) in a 

second subject with glioblastoma, with spectra from the highlighted voxels (white boxes) 

shown. Contours indicate the isoline for Cho/NAA values greater than two-fold the value in 

contralateral normal appearing white matter.
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Table 1.

Subject-wise comparison of the execution times for CEMD and the twice elevated Cho/NAA volumes 

generated by CEMD and MIDAS.

Subject CEMD Time (sec) 2x Cho/NAA Vol. (cm3) Volume Difference (cm3) DSC Z Test P Value

CEMD MIDAS

1 17.8 57.9 56.7 1.2 0.84 0.047

2 26.3 31.9 35.1 −3.2 0.56 0.410

3 18.1 72.2 76.0 −3.8 0.87 0.026

4 21.0 35.9 39.9 −4.1 0.65 0.265

5 17.4 23.0 39.6 −16.7 0.64 0.277

6 23.0 5.9 4.0 1.8 0.59 0.366

7 19.0 105.2 134.1 −28.8 0.86 0.037

8 20.4 86.9 60.0 26.9 0.75 0.141

9 20.1 54.9 22.8 32.1 0.57 0.385

10 23.1 37.7 30.7 7.0 0.81 0.072

Mean 20.6 -- -- 1.2 0.72 --

Std. Dev 2.8 -- -- 18.1 0.13 --
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