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Abstract
The derivation of susceptibility from image phase is hampered by the ill-conditioned filter
inversion in certain k-space regions. In this paper, compressed sensing (CS) is used to compensate
for the k-space regions where direct filter inversion is unstable. A significantly lower level of
streaking artifacts is produced in the resulting susceptibility maps for both simulated and in vivo
data sets compared to outcomes obtained using the direct threshold method. It is also demonstrated
that the CS based method outperforms regularization based methods. The key difference between
the regularized inversions and CS compensated inversions is that, in the former case, the entire k-
space spectrum estimation is affected by the ill-conditioned filter inversion in certain k-space
regions, whereas in the CS based method only the ill-conditioned k-space regions are estimated. In
the susceptibility map calculated from the phase measurement obtained using a 3T scanner, not
only are the iron-rich regions well depicted, but good contrast between white and gray matter
interfaces that feature a low level of susceptibility variations are also obtained. The correlation
between the iron content and the susceptibility levels in iron-rich deep nucleus regions is studied,
and strong linear relationships are observed which agree with previous findings.
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Introduction
Recent advances in scanner hardware and signal processing techniques allow the diagnostic
value of the image phase to be better exploited. In susceptibility weighted imaging (SWI)
(1,2), the phase information is used in combination with the magnitude image to improve the
contrast of the vascular region. The image phase also serves as a new means of tissue
contrast: Rauscher et al. (3) demonstrated that the image phase reveals a contrast in deep
nucleus regions that is not observed in the corresponding magnitude images; Duyn et al. (4)
reported that the phase images provide better contrast at the interface between white and
gray matter than the magnitude images. Unfortunately, the diagnostic value of phase data is
overshadowed by its non-local property. However, susceptibility, as the underlying source
of image phase, is an intrinsic tissue property and as such it is constrained to local tissue
boundaries. Quantitative susceptibility measurement potentially allows the tissue iron
content to be estimated in certain known iron-rich regions. Abnormal iron content has been
reported to be associated with many neural diseases (5) such as Parkinson’s disease (PD),
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Alzheimer’s disease (AD) and Huntington’s disease. Hence it is strongly desirable to map
susceptibility variations from the phase measurements.

Early attempts of in vivo susceptibility estimation resorted to geometric approximations that
form an overall susceptibility map by conjoining regions of assumed uniform susceptibility
level, and hence have an apparently limited accuracy level. Li et al. (6) made an early
attempt at quantitative susceptibility calculation, but their method placed restrictions on the
resolution of the susceptibility source and only simulation results were presented. Much
progress has been made in voxelwise susceptibility mapping after the direct k-space
relationship between susceptibility and phase was revealed (7,8). However, the inversion
from phase map to susceptibility is an ill-posed problem as the k-space filter is undefined in
certain regions. Shmueli et al (9) proposed an inversion strategy using a thresholded version
of the k-space filter to avoid the problem of dividing-by-zero. In (9–11), the orientation
dependence of the image phase is exploited to combine phase measurements obtained at
multiple orientations so that the k-space void could be filled in. In work shown in (12–14),
the ill-conditioned k-space filter inversion is converted into an optimization process, which
allows various constraints to be included to specifically address the presence of streaking
artifacts. All of these methods rely on estimating the undefined k-space regions by including
additional information. Thus, susceptibility mapping from phase measurement can be
thought of as equivalent to an under-sampled image recovery problem.

Compressed sensing (CS) (15,16) has recently emerged as a signal recovery method that
allows sparse signals to be recovered from significantly smaller number of measurements
than what is defined under the Nyquist sampling rate. The application of CS in MRI as a
means of reducing the amount of data acquired was initiated by Lustig et al. in 2007 (17); it
has since attracted much attention and been applied in many areas of MR imaging, such as
angiography (18), cardiac imaging (18), and spectroscopy (19). There are two key factors
required for the success of CS in MR image reconstruction: under-sampling in k-space
allows incoherent aliasing artifacts to be achieved in the spatial (transform) domain; the
intrinsic smoothness of MR images allows a sparse representation to be received by
appropriate transforms. These two factors are also intrinsically satisfied in the problem of
susceptibility mapping: it is equivalent to a k-space under-sampling problem; susceptibility
is an intrinsic tissue property that reflects tissue composition and hence is intrinsically
piecewise smooth.

The primary goal of this work is to show that the problem of susceptibility mapping can be
reformulated as a compressed sensing image reconstruction problem. We set out to
determine how accurately missing k-space data can be estimated with compressed sensing.
Specifically, the k-space regions where direct inversion would be unstable are estimated
using compressed sensing. We compare the outcome to those obtained from thresholded
inversion using both numerical phantom and in vivo data, as well as to the regularized
estimations using the in vivo data. The in vivo susceptibility maps are evaluated both
qualitatively and quantitatively. Our results demonstrate that compressed sensing provides a
viable alternative approach to quantitative susceptibility mapping. The resulting
susceptibility maps allow us to further investigate the relationship between the calculated
susceptibility level and the reported iron content in different brain regions.

Theory
K-space relationship between susceptibility and phase

The effects of tissue magnetic susceptibility are observed in the image phase information
obtained with gradient echo (GRE) sequences. Denote the obtained image phase map as θ,
whose k-space representation is θk ; similarly, let χ and χk respectively represent the spatial
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distribution and Fourier domain representation of the susceptibility map. The measured
image phase and the underlying susceptibility map have the following relationship (7,8):

(1)

where TE, γ and H0 are the echo time, gyromagnetic ratio and the applied magnetic field,

respectively; k is a k-space vector such and that k =[kx, ky, kz]T and . Denoting

the k-space filter  and φk(k) = φk(k)/γH0 leads to the following form:

(2)

In theory, the susceptibility map can be obtained from the measured phase map by simply
inverting the k-space filter Dk(k):

(3)

However, Dk vanishes in a certain region (also known as the conical surface region) defined

by . Consequently, at this conical surface region χk(k) cannot be determined via
Eq.[2], where the inversion of Dk is invalid. In addition, the non-uniform structure of Dk
leads to non-uniform noise enhancement after this inversion. Both factors contribute to the
well-known streaking artifacts commonly seen in estimated susceptibility maps (in the
sagittal and coronal planes). Hence the filter inversion is ill-conditioned in regions where Dk
is vanishingly small. A straightforward approach to avoid the divide-by-zero problem and
the ill-conditioned filter inversion to perform a thresholded division in regions where Dk is
small as suggested in (20). Specifically, a new k-space filter  is used in the inversion:

(4)

Intuitively, the limitation of the thresholded inversion lies in the inaccurate estimation in k-
space regions where the threshold is applied.

Compressed sensing
Compressed sensing (CS) (15,16) theory states that it is possible to recover the N most
significant coefficients from M incoherent linear combinations of all the coefficients in the
signal f, given that f is sufficiently sparse. In (17), it was established that intrinsic image
smoothness lead to sparse representation under wavelet/discrete cosine transforms. For MRI,
one can obtain a CS estimate f′of an image f from its under-sampled k-space dataset fk by
solving the following optimization problem:

(5)

where W is a Fourier matrix multiplication by which the Fourier transform is produced, h is
a binary mask representing the sampling pattern in which 1 and 0 correspond to measured
and skipped samples respectively, and diag(h) denotes a diagonal matrix with the elements
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of h on the diagonal. Φ is a linear transform chosen such that Φf is sparse. The 1st norm
∥Φf∥1 promotes sparsity in Φf ; Ξ(f) represents the additional image constraints that can be
incorporated into the reconstruction process. Often a total variation (TV) (21) constraint is
included to mitigate rapid variation caused by error in transform domain (17). The symbols
α and β are respective weighting coefficients.

Compressed sensing compensated susceptibility estimation
As discussed above, the k-space regions that cause streaking artifacts are the regions whose
corresponding Dk values are vanishingly small. In CS compensated susceptibility estimation,
we treat the k-space regions that may not be obtained via direct filter inversion as missing
data and use CS to retrieve them. The extent to which the k-space regions need to be
estimated is determined by a threshold value in Dk The overall susceptibility estimation is a
two step process: first, a partial k-space estimate is obtained by performing a direct inversion
using Eq. [3] up to a set threshold level; in the second step, the void in the resulting k-space
dataset is compensated using compressed sensing. Mathematically, the proposed approach
can be written as:

(6)

where Dk′(k) is the same as in Eq.[4] and χk′(k) is the resulting susceptibility estimate using
thresholded inversion, and then

(7)

where ht is a binary mask determined by the threshold level t, i.e.:

(8)

The success of compressed sensing recovery relies on a key requirement that the aliasing
artifacts caused by k-space under-sampling must be incoherent. In Fourier-transform based
MRI data acquisition, the form of aliasing artifacts is determined by the under-sampling
scheme used, whereas in susceptibility mapping it is determined by the structure of Dk and
the chosen threshold level. In Fig.1, the transform point spread function (TPSF) analysis, as
in (22), is performed, i.e. the effects of the missing k-space regions are seen in the transform
domain in which the image is to be recovered. Note that in conventional MR imaging on a
Cartesian grid, where the frequency axis is always fully sampled, image reconstruction is
either a 1D or 2D problem. But in our case the under-sampling scheme and the compressed-
sensing compensated estimation take place in 3D because of the three dimensional nature of
the Dk filter. Fig.1 (b) and (c) show the pattern of aliasing artifacts appearing in the spatial
and transform domains respectively, assuming a 4-level wavelet transform is used. The
structured artifacts caused by the cone-shaped k-space sampling pattern may hamper exact
compressed sensing recovery, however the usually relatively low under-sampling ratio
(5%~20% depending on the threshold) could allow good approximate recoveries to be
achieved. Furthermore, the streaking artifacts in the sagittal and coronal planes look very
similar to those caused by under-sampled radial trajectories. These under-sampled radial
trajectories have been shown to be suitable for the application of compressed sensing
(22,23).
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We refer to the abovementioned approach as the CS compensated method, as the
reconstruction in [5] is mainly focused on the missing k-space regions rather than the
alternative L1 norm regularized approach, i.e.

(9)

where the entire k-space spectrum is estimated and regularized using the transform domain
based L1 norm. This setup has been used to specifically address the streaking artifacts in
(24). A drawback of this approach over the CS compensated method is that the entire k-
space spectrum would be affected by the strong smoothing power exercised to compensate
for the streaking artifacts caused by the presence of the ill-conditioned filter inversion in
some k-space regions, as will be shown in a later section.

Background phase removal
The presence of background phase modulation in the phase map is a known issue. Several
methods have been proposed to remove background contributions including high-pass
filtering (4), dipole filtering (10) and iterative optimization (13). These methods suffer from
a limited level of accuracy or a prolonged processing time. In this work, we adopt and
extend the non-heuristic approach introduced by Schweser et al. (25) (26); since the
harmonic background phase satisfies Laplace’s equation, it can be removed by exploiting
the spherical mean value (SMV) property.

The background phase removal process includes two steps. In the first, SMV filtering is
performed to remove the harmonic component. This process gives rise to an ambiguity
around the object’s boundaries, which results from convolving with the air where there is no
detectable MRI signal. Hence, the number of ambiguous points equates to the diameter of
the sphere used and these points need to be discarded. In the second step, a deconvolution is
carried out to restore the local phase that is lost in the SMV filtering process. In practice,
there often exists residual phase error in the SMV filtering process at the ROS (region of
support) boundary due to the high susceptibility of the air tissue interface. This residual
phase error is further amplified during the deconvolution process with a level dependent on
the kernel size.

A small sphere diameter corresponds to a deconvolution kernel with large magnitude, and
vice versa (Fig.2(a)). As a result, using a spherical filter with a small diameter may cause a
large amplification of the residual phase error as illustrated in Fig.2 (c) where a 3 voxel
diameter was used. Note that this phase error is consistent with results reported in previous
literature (25). In contrast, using a larger diameter (8 voxels) led to a much lower level of
phase error as seen in Fig.2 (d). However, using a large sphere diameter presents an obvious
drawback since it leads to discarding more points at the ROS boundary. Hence, the selection
of different sphere diameters presents a trade-off between the residual background phase and
the integrity of the resulting phase map.

We used a varying diameter scheme to achieve a better compromise between the two (Fig.
2(e)). In the convolution process, a large diameter is used as long as no invalid point is
produced. As the sphere filter approaches the ROS boundary, its diameter is gradually
reduced until the minimum number of invalid points is reached (using a diameter of 1). In
the deconvolution process, the convolution kernel corresponding to the largest diameter used
is employed. This ensures that the phase map is generated with low phase error and with a
good level of integrity. The drawback is the inexact deconvolution of the boundary regions,
which is tolerable in our case as the brain ROS is surrounded by grey matter (cortex) whose
susceptibility is relatively uniform.
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Method
Simulation

A 3D digital Shepp-Logan phantom (128×128×128) consisting of four levels of nested
ellipsoids was generated. The susceptibility levels of the ellipsoids were set to 0.1, 0.2, 0.3
and 1 ppm, and the background was assumed to have no susceptibility. Phase maps were
generated using the Fourier relationship in Eq. [2] and various levels of Gaussian noise
(SNR = 10, 20 and 30) were then added to simulate the noisy data sets. Given that in
practice it is impossible to obtain phase measurement in regions outside of the object
support, only phase information within the outermost ellipsoid was maintained.
Susceptibility maps were then calculated for different SNR and filter truncation levels using
respectively the threshold method and the compressed sensing compensation method. For
each set of parameters, we used the Normalized Root Mean Square (NRMS) as a metric to
quantify the error obtained in either case.

In vivo brain imaging and phase map pre-processing
In vivo brain imaging of a healthy adult volunteer was performed on a 3T GE MR750
scanner (GE Healthcare, Waukesha, MI) equipped with an 8-channel head coil. Written
informed consent was obtained from the subject in compliance with a protocol approved by
the Institutional Review Board. A standard flow-compensated 3D Spoiled-Gradient-
Recalled-Echo (SPGR) sequence was used with the following parameters: FOV =
256×256×180 mm3, matrix = 256×256×180, TE = 40 ms, TR = 50 ms, flip angle = 20°.

Complex data were saved for each coil and independently processed as follows. Phase data
were first extracted for each coil and unwrapped using an algorithm based on the Laplace
operator (27,28). Next, background phase removal was performed using the SMV filter as
discussed in the previous section. The resulting datasets from each coil were then averaged
to obtain the final phase map. To evaluate the performance of the new CS compensated
method, susceptibility maps were also calculated using the L1 norm regularized method as
in [9] and Bayesian regularization using spatial priors obtained from the magnitude gradient
image as described in (13).

Reconstruction setup
Both the CS compensated and magnitude image constrained methods were implemented
using the non-linear conjugate gradient descent algorithm. In both cases, the termination
condition was set to when the relative change of the residual cost function in two
consecutive iterations fell below 10−4. In the CS-compensated and L1 norm regularized
reconstruction, a 4-level Daubechies wavelet was used and the L1 norm weighting
coefficient (α) was determined for each filter truncation level. This was accomplished by
using the L-curve method (29) of plotting the L1 norm term to the data fidelity term, while
keeping the weighting coefficient of the total variation (TV) term constant (at 0.001) for all
filter truncation levels. In the magnitude-constrained reconstruction, the thresholded inverse
of the magnitude gradient in three directions was used as a weighting mask (13), and a
threshold value of 0.001 was used. The weighting coefficient for the magnitude gradient
mask was selected within the range suggested in (13). Image reconstructions were
performed using Matlab (R2010a, Mathwork) on a PC equipped with a 3.4G Hz processor
and 8 GB ram, and the reconstruction times for the CS compensated method varied between
2 to 3 hours depending on the number of iterations performed to reach the desired residual
norm level.
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Results
Phantom simulation

The calculated susceptibility maps with SNR=20 and threshold levels ranging from 0.0125
to 0.0875 are shown in Fig.3. This simulation compares the impact of using different levels
of thresholding and the outcome of using a direct threshold versus compressed sensing. In
the top row, it is seen that for the direct threshold method the streaking artifacts are
significantly reduced as the truncation level increases. However, even at the largest
threshold value of 0.0875, the resulting susceptibility map is still considerably corrupted by
the streaking artifacts. In comparison, the CS compensated susceptibility maps are largely
free of streaking artifacts for truncation levels as low as 0.0375.

Further insight into the efficiency of these approaches can be gained by comparing the error
maps. Fig.4 (a) and (b) respectively show the difference between the estimated and the true
susceptibility maps. In the top row, it is seen that the error obtained with the direct threshold
method is dominated by the streaking artifacts and reciprocally in k-space the error is mainly
concentrated around the conical surface where the threshold was made. Also there is a DC
level shift in the error map, caused by the offset introduced at k = [0 0 0]. In contrast, the
error in the CS-compensated case is practically limited to the phantom’s outer edge
indicating some errors at the boundary, whereas the streaking artifacts are visually absent.
Likewise, the error in k-space is much more uniformly distributed with a slightly higher
energy level around the k-space conical surface than in the surrounding regions.

A comparison of the calculated NRMS at different noise levels for truncation levels ranging
from 0.0125 to 0.2 are shown in Fig.5 (a) and (b). Regardless of the SNR, the CS-
compensated reconstruction features a considerably lower level of NRMS than the direct
threshold. A common feature to all the plots is a turning point (as indicated by the arrows)
where the NRMS variation transitions from decreasing to increasing as the filter truncation
level rises. The error to the left of the minimum is dominated by noise so the overall NRMS
drops as the truncation level increases whereas, to the right of this minimum, further
increasing the truncation level leads to the loss of image information. This loss of
information causes the NRMS to increase. In general, it is observed in both methods that as
the SNR level improves the turning point shifts to a lower truncation level. Also, CS-
compensated reconstruction features a turning point at a much lower truncation level than
the direct method, which means that it is possible to trade off a smaller amount of image
information in order to achieve a lower level of artifacts. Realistically, for an SNR level of
20, the turning point for the direct threshold and CS-compensated methods are 0.075 and
0.0375 respectively.

In vivo susceptibility mapping
Fig.6 shows a sagittal section of the 3D susceptibility maps estimated using the direct
threshold and CS compensated methods at different truncation levels. Observations similar
to the phantom simulations are made: the CS compensated method led to susceptibility
estimates with a significantly lower level of streaking artifacts than those obtained using the
direct threshold method. The CS compensated method produces an estimate that is visually
free of streaking artifacts at a truncation level of 0.0625. The susceptibility maps
reconstructed using thresholded inversion shows a change in susceptibility contrast in the
mid-brain region (indicated by arrow) that indicates a potential susceptibility source.
However, in the susceptibility maps obtained with the CS compensated method, the
suspected source of susceptibility is non-existent. This is consistent with observations made
with the magnitude image. The magnitude image is shown on the top left in Fig.7 with a
dashed arrow pointing to the corresponding region.
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In Fig.7, the image magnitude, phase and calculated susceptibility maps are compared.
Susceptibility maps calculated using the CS compensated method, the L1 norm regularized
method and the magnitude gradient constrained method. In the CS compensated method, a
threshold level of 0.0625 was used. It is seen that the image magnitude shows poor contrast
in the gray/white matter interface in the cortical regions compared to the image phase map.
The phase map, however, has difficulty delineating iron rich regions due to its non-local
property, including regions containing red nucleus (RN) and substantia nigra (SN), and
those containing the globus pallidus (GP) and putamen (PU). On the contrary, good contrast
and clear delineations of these regions are seen in the susceptibility maps calculated using
the CS compensated method. The susceptibility map calculated using the L1 norm
regularized method still shows residual streaking artifacts despite the apparent smoothing
appearance, due to the reason discussed previously. The magnitude image regularized
susceptibility map shows a considerablly reduced level of streaking artifacts due to the
spatial gradient regularization. However, this magnitude image seems to feature a lack of
contrast in regions with low susceptibility variations (i.e. the grey/white matter interfaces at
the cortex) compared to the susceptibility map obtained using the CS compensated method,
most likely because the magnitude image used as an a priori estimate has a lack of contrast
in those regions (as indicated by arrows).

Quantitative susceptibility measurement
Quantitative susceptibility assessments of various deep nuclei regions were made by taking
the susceptibility of CSF as a reference: we took the difference between the mean
susceptibility level within the selected deep nucleus regions and the mean susceptibility of
the CSF region. The calculated susceptibility levels for different deep nuclei regions using
the direct threshold, CS and magnitude gradient constrained methods are compared in Fig.8.
Quantitative susceptibility estimations using the threshold method and the CS method have
similar behavior as the truncation level increases: they rapidly reach a plateau and then
derivate away. It is worth noting that the estimations using CS reach the plateau at a lower
truncation level, which means that a similar level of quantitative measurement may be
obtained with potentially better image fidelity (by maintaining a larger portion of k-space
regions obtained using the direct filter inversion). In the brain regions of interest, the filter
truncation levels corresponding to the plateau of the curve range from 0.05 to 0.125 for the
CS method versus 0.0875 to 0.15 for the direct method. The relative susceptibility
estimations are slightly lower for the magnitude gradient constrained method than for any
other method (as labeled). This difference can be explained by the slight loss of image
contrast caused by the image gradient operator, since the relative susceptibility may be
considered as a measure of the image contrast.

It is been known that iron is the main source of susceptibility in the deep nuclei regions; we
analyzed the correlations between the phase and susceptibility values and previously
reported iron content of selected deep nuclei regions (30–32) obtained using different
biochemical techniques. The phase measurements and calculated susceptibility values are
plotted against the reported iron content from different studies as shown in Fig.9.(a) and Fig.
9.(b). While no apparent correlation is seen between the phase measurement and the iron
content, strong positive correlations are observed between susceptibility and iron content.
Linear fittings are then performed on the correlations between the calculated susceptibility
values and the reported iron contents, and the resulting coefficients of determinations (R2)
are 0.98, 0.91 and 0.96, suggesting good linear approximations. The slopes of the fitted lines
are 2500, 2000 and 1400 (ug Fe/gww·ppm). The variations of the fitting results may be
attributed to physiological differences between the cohorts and the varying accuracy of the
measurement techniques used in those studies.
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Discussion
The relationship between phase and susceptibility map may be depicted by a simple k-space
filter. However this filter is inaccurate in and around the conical surface regions that
prohibits direct filter inversion to estimate the susceptibility map. In this work, we
developed a novel method for accurate magnetic susceptibility quantification based on
compressed sensing. The k-space undefined conical surface and its noise-corrupted
proximities are considered unavailable and estimated using compressed sensing by
exploiting the intrinsic smoothness of the underlying susceptibility map. The extent of the
direct filter inversion is controlled by adjusting the threshold value of the filter. A drawback
of the current setup is the non-ideal aliasing pattern encountered in [7] as shown in Fig.1,
which may contribute to the residual artifacts when a low threshold level is used. Potential
improvement may be made by employing a more random under-sampling strategy in these
regions, such as demonstrated in Fig.10. In the case, within the regions where ill-conditioned
filter inversion takes place as determined by a threshold level, samples are randomly
discarded with a non-uniform sampling density determined by the conditioning of the k-
space position (compared to the ‘fully sampled’ case in Fig.1). The resulting TPSF as seen
in Fig.10.(c) is much more favorable for CS recovery compared to that in Fig.1.(c).
However, the increased level of incoherence comes at the sacrifice of the conditioning of the
k-space data used for reconstruction, and in our experience, the loss sometimes seems to
overweigh the gain. Nevertheless, an under-sampling pattern that achieves a good
compromise between the two factors may lead to an improved susceptibility estimate, i.e.
obtaining a streaking artifact free estimate using a lower filter threshold value.

We compared the susceptibility maps obtained from the CS compensated method to those
obtained by performing a direct threshold inversion. Our method led to a significantly lower
level of streaking artifacts in both numerical simulation and in vivo data. In both methods,
the threshold level of the filter is an important parameter, because it has a direct impact on
the trade-off between the susceptibility accuracy and the artifact level. Based on L-curve
analysis using the simulation results, it was determined that in both methods the turning
point is dependent on the intrinsic SNR level; the turning point becomes lower as the SNR
increases. For a constant SNR level, the turning point is lower for the CS compensated
method. Since the turning point on the L-curve corresponds to the optimal truncation level in
terms of trade-off between accuracy and artifact, a lower truncation level means that better
image fidelity can be maintained and is therefore advantageous for quantitative
susceptibility assessment. The in vivo results show reconstructions that are visually artifact
free reconstructions are produced at a truncation level of 0.0625 with CS compensation; the
generated susceptibility maps have a satisfactory level of contrast even in regions with low
susceptibility variations, such as at the boundaries between white and grey matter. The
optimal range of filter truncation values for in vivo data is identified by the plateau portion
on the plot of the calculated susceptibility against the varying filter truncation levels; a lower
optimal filter truncation level is observed in the CS based method and is consistent with the
simulation results. Compared to the threshold method, the main drawback of the proposed
CS method is the reliance on computationally intensive L1 norm calculations, which may be
alleviated by exploiting advanced reconstruction methods such as are discussed in (33).

The multiple orientation approach (9–11) and constrained optimization approach (12,13)
address the issue of the ill-conditioning of the susceptibility estimation by incorporating
additional information about the underlying susceptibility map. It would be interesting to
compare the k-space estimates obtained using compressed sensing to those obtained using
multiple orientations, as the latter may allow the k-space regions that are undefined in one
orientation to be directly measured at a different orientation. However, the multiple
orientation method not only requires a prolonged scan time, but the theory also seems
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inconsistent with recent reports showing evidence of susceptibility orientation dependence at
a micro-structural scale (34,35). Hence, the k-space filter model between the susceptibility
and phase (Eq.[2]) would not be the same when the subject is positioned at different angles
with respect to the main magnetic field. The optimization based estimations (12–14) are
promising alternatives as various constraints could be included to condition the inversion
problem. It was seen that applying a uniform penalization profile of either the L1 or L2
norm of the image as in (12) could not achieve sufficiently accurate susceptibility estimates.
In this study we also considered applying the same CS constraint (i.e., transform domain
based L1 norm) in the reconstruction process but, the result was still hampered by the visible
streaking artifacts caused by the ill-conditioned filter inversion in certain k-space regions. In
(13,14), the magnitude gradient images are used to introduce a non-uniform weighting mask
in a Tikhonov regularization form, and have been demonstrated to be powerful in
suppressing streaking artifacts. It should be noted that excessive use of prior knowledge
might introduce bias in the resulting reconstruction and hence overwhelm the underlying
information. For instance, the magnitude image often features poorer contrast at the gray/
white matter interfaces than does the phase measurement. The use of prior estimates based
on the magnitude gradient image might reduce the contrast in those regions, given their
intrinsically low susceptibility variations (11). A key difference between the regularized
inversions above and the CS compensated inversion approach is that in the former case the
whole k-space spectrum needs to be altered to accommodate for the constraint imposed,
whereas in the latter case only the small portion of discarded k-space regions are estimated
to fulfill the constraint and good data consistency is maintained in the rest of the k-space
spectrum.

Iron accumulations in the deep nucleus regions are known to be associated with
neurodegenerative diseases (4,5). For instance, the iron contents in the SN and GP regions
have been reported to be associated with Parkinson’s disease (31); those in the GP, PU and
CN have been linked to Alzheimer’s disease (36); and elevated iron content has been
measured in the PU in the detection of Huntington’s disease (37). Hence, non-invasive
quantitative assessment of the iron content in the brain has the potential to offer many
clinical benefits. Nevertheless, as demonstrated in this work, the phase maps fail to serve
this purpose due to their non-local and difficult-to-quantify features. By contrast, we were
able to observe strong positive relationships between the previously published iron contents
of the deep nuclei and our calculated susceptibility values. We further fitted linear
approximations for each set of iron content, which is in good agreement with previous
findings (11) (using iron content from reference (32)). Hence, quantitative susceptibility
mapping may serve as a useful means of assessing the iron contents of deep nuclei regions.
The establishment of this relationship to other brain regions is complicated by the fact that
other tissues, such as white matter, are often mixtures of iron (paramagnetic) and myelin
(diamagnetic), whereas myelin is nearly completely absent in those iron-rich deep nuclei
regions. The relationship between myelin content and susceptibility measurements may be
exploited by pre-excluding the effects of iron content that is known a priori. For instance,
the iron content was reported to be comparable in the frontal white matter and in the
occipital cortex (5), but their calculated susceptibilities – respectively −0.05 and 0.01ppm in
the current study – are significantly different. This considerable susceptibility difference
(−0.06 ppm) is likely due to the enrichment of myelin.

Conclusion
We presented a new technique for in vivo susceptibility mapping based on compressed
sensing. In this method, the k-space regions that may not be obtained via filter inversion are
estimated using compressed sensing whereas the rest of k-space is directly calculated. This
method is demonstrated to produce accurate whole brain susceptibility maps free of
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streaking artifacts with a gradient echo sequence at 3T. This new method may serve as a
useful tool for assessing in vivo susceptibilities, which are sensitive to tissue composition,
such as iron and myelin content.
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Figure 1.
The point spread function analysis of the (a) k-space void corresponding to a filter threshold
level of 0.0375 in (b) the spatial domain and (c) the wavelet domain.
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Figure 2.
The effects of using different sphere diameters in SMV background phase removal: (a) the
cross-section of the deconvolution kernels for different diameters r; (b) original unwrapped
phase map; (c) background phase removal using a sphere filter of 3 voxels in diameter; (d)
background phase removal with a sphere filter 8 voxels in diameter; (e) background phase
removal with an adaptive sphere filter varying from 8 to 3 voxels in diameter. A small
sphere diameter causes large error amplification (pointed by arrow), whereas a large
diameter causes larger regions at the boundary to be discarded.
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Figure 3.
Comparison of a coronal slice of the reconstructed susceptibility maps using the direct
threshold method (top row) and the compressed sensing compensated method (bottom row)
at different filter threshold levels.
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Figure 4.
Comparison of a coronal slice of the error maps of the reconstructed susceptibility maps
using the direct threshold method (top row) and the compressed sensing compensated
method (bottom row) at a threshold level of 0.0375 in (a) the spatial domain and (b) k-space.
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Figure 5.
L-curve plots of the normalized root mean square error (NRMS) of the reconstructed
susceptibility maps using (a) the direct threshold method and (b) the compressed sensing
compensated method against the different filter truncation levels at varying SNR levels. The
arrows point to the turning points on the L-curve plots.
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Figure 6.
Comparison of a coronal plane slice of a reconstructed in vivo brain susceptibility map
obtained using the direct threshold method and the CS compensated method at varying
threshold levels. Note that dark regions indicate paramagnetic (more positive) and bright
regions indicate diamagnetic (more negative). The arrows point to a region where a
susceptibility source is seen to exist in the susceptibility maps obtained using the direct
threshold method, but not in those obtained using the CS compensated method.
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Figure 7.
Comparisons of the image magnitude (top row), phase maps (second row) and calculated
susceptibility maps using different methods at three orthogonal planes. Susceptibility maps
are calculated using the CS compensated method (third row), magnitude gradient
regularized method (forth row) and L1 norm regularized method (bottom row). The dashed
arrow in the magnitude image points to the region where the suspected susceptibility source
in Fig. 6 is seen to be non-existent. The susceptibility maps obtained using the CS
compensated method features better contrast at the WM/GM cortex interfaces as pointed to
by the solid arrows. Note that dark regions indicate paramagnetic (more positive) and bright
regions indicate diamagnetic (more negative).
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Figure 8.
Calculated relative susceptibility levels of selected deep nucleus regions using the direct
method and the CS compensated method at varying filter truncation levels; the susceptibility
levels calculated using the magnitude gradient constrained method are as labeled.
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Figure 9.
Plots of the (a) phase and (b) susceptibility values in different deep nucleus regions against
their reported iron contents in (28–30). The biochemical techniques used were inductively
coupled plasma spectroscopy (ICP), atomic absorption spectrophotometry (AAS) and
colorimetry, respectively. Linear fittings are made in (b) and the gradients of the fitted lines
are labeled.
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Figure 10.
The point spread function analysis of the k-space voids in an under-sampling pattern that
features a higher level of aliasing incoherence, as compared to that in Figure 1.
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