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Abstract

Diffusion-weighted imaging (DWI) involves data acquisitions at multiple b values. In this paper, 

we presented a method of selecting the b values that maximize estimation precision of the 

biexponential analysis of renal DWI data. We developed an error propagation factor for the 

biexponential model, and proposed to optimize the b-value samplings by minimizing the error 

propagation factor. A prospective study of four healthy human subjects (eight kidneys) was done 

to verify the feasibility of the proposed protocol and to assess the validity of predicted precision 

for DWI measures, followed by Monte Carlo simulations of DWI signals based on acquired data 

from renal lesions of 16 subjects. In healthy subjects, the proposed methods improved precision (P 
= 0.003) and accuracy (P < 0.001) significantly in region-of-interest based biexponential analysis. 

In Monte Carlo simulation of renal lesions, the b-sampling optimization lowered estimation error 

by at least 20–30% compared with uniformly distributed b values, and improved the differentiation 

between malignant and benign lesions significantly. In conclusion, the proposed method has the 

potential of maximizing the precision and accuracy of the biexponential analysis of renal DWI.
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Diffusion-weighted magnetic resonance imaging (DWI) appears promising for the functional 

assessment of kidneys (1–3) and for the detection and characterization of renal lesions (4–7). 

An important part of the DWI acquisition protocol is the choice of diffusion encoding (b 
values), which for constant echo times controls the intensity of the bipolar gradient pulse 

and thus the degree of diffusion weighting in the acquired signal (8,9). Abdominal DWI is 

usually performed with a small number of b values, mostly because of time limitations 

related to the desire to image in a breathhold.

In tissues with strong microcirculatory flow such as the kidney, there are a least two major 

contributing factors to DWI signal decay—a fast (conventionally termed as pseudodiffusion) 

component and a slow (diffusion) component (10–14). Reflecting these two contributions, 

Wittsack et al. (15) found that a biexponential model described renal DWI data better than a 

monoexponential model. Additionally, Zhang et al. (16) showed that the use of biexponential 
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model significantly reduces the variability of diffusion coefficients in healthy kidneys 

compared to use of a monoexponential model. However, precise computation of the fast 

component of the biexponential model remains a challenging task (13,17–21).

One of the key issues is the selection of proper b values to provide maximum precision of 

diffusion parameters. It has been recognized that uniformly distributed b-sampling is not 

optimal for estimating the biexponential model. For example, to better estimate the fast 

component, Eisenberger et al. (12) sampled more low b values, using b-sampling of 0, 10, 

20, 50, 100, 180, 300, 420, 550, 700 s/mm2. Quantitative optimization for b-value sampling, 

based on the minimization of an error propagation factor, has been explored for 

monoexponential analysis in the brain (22–24), but the same methodology has rarely been 

extended to biexponential model or to abdominal imaging subject to breath-hold limitations.

We present a method for optimizing b-value sampling for biexponential analysis of DWI 

data. Our approach is to minimize analytically derived error propagation. We hypothesized 

that DWI acquired at optimal b-value sampling significantly improves parameter precision 

and accuracy that is achieved by nonoptimized sampling, e.g., uniformly distributed b-

sampling. To test the claim, DWI magnetic resonance imaging (MRI) of healthy volunteers 

was acquired at optimal and uniformly distributed b-value settings, and the precisions of the 

resulted parameter estimates were compared. As DWI has been recognized as a promising 

tool for characterizing renal masses, we also performed Monte Carlo simulations to assess 

the benefit of the optimal b values in differentiating malignant and benign renal lesions.

THEORY

The biexponential model for DWI data can be written as

[1]

where S is the DWI signal, S0 corresponds to signal intensity at b = 0, FP is the fraction of 

the perfusion component, DT is the diffusion coefficient, and DP is the pseudodiffusion 

coefficient due to microcirculation effects. As FP relates to vascular volume fraction and DP 

typically is proportional to vascular velocity, their product, FP × DP, could potentially reflect 

the perfusion rate (25).

Given DWI measurements, the biexponential parameters, FP, DP, DT, can be determined by 

minimizing the sum of squared residue between the data and the model fit,

[2]

where Nb is the overall number of signal acquisitions and Sbi is the measured signal (with 

noise) at bi.
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In the process of model fitting, random noise in the DWI signal, δ, propagates into the 

estimates of the model parameters. We define an error propagation factor ξ as the ratio of the 

relative error in a model parameter to the relative input noise δ/S0. These factors can be 

estimated by computing the partial derivatives (Jacobian matrix) of function S(FP, DP, DT) 

in Eq. 2:

[3]

In Eq. 3, x(n) (n = 1,2,3,4) represent the parameters: S0, FP, DP, and DT, δx denotes the 

propagated parameter error, the 4 × 4 matrix A=JT·J, and J is Jacobian matrix of S. The 

derivation of partial derivative terms is shown in the Appendix.

Given a set of biexponential parameters and a set of b values, Eq. 3 allows us to predict the 

error propagation factor for each of the model parameters. As the expression for ξ(n) given 

in Eq. 3 is a function of Nb b values used for data acquisition, the b values can next be 

adjusted to minimize ξ(n). Any of numerical optimization techniques, (26) including the 

well known Levenberg method (27), can be used to solve this problem.

In clinical MRI applications, the multiple types of tissue in an image, each having a range of 

values for every model parameter, are imaged by the same set of b values. Hence, it is 

important that the selected b values minimize the error propagation over the expected ranges 

of parameter values for at least those types of tissue, we are interested in. Moreover, we are 

typically interested in using several parameters to differentiate tissue types, possibly 

weighted by their clinical significance. This leads to the following generalization of the 

problem, in which the expression for ξ(n) is replaced by the integration and linear 

combination of the cost function introduced:

[4]

In Eq. 4, wFP, wDP, and wDT are positive weighting factors specified by user and Xmin to 

Xmax reflect the expected range of values for parameter X of the tissues examined. For any 

given clinical question, the parameter ranges can be estimated from a group of human 

subject data.

As the implementation of the b-value optimization requires knowledge of the typical ranges 

of the parameters (Eq. 4), we used data from one previous study of healthy kidneys (16): FP 

[30%, 35%], DT [1.5, 2.0] × 10−3 mm2/s, DP [10, 15] × 10−3 mm2/s. For the optimization, 

the upper bound was set at b = 750 s/mm2 (the maximal b value in our data below). The 
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integration in Eq. 4 was done numerically and its minimization with regard to the b values 

used Levenberg’s method in MAT-LAB (Mathworks, Natick, MA). Separate optimizations 

were done for Nb = 4, 6, 8, 10. Using our DWI protocol described below, a scan with Nb of 

4~10 can be finished with 1~2 breath holds.

MATERIALS AND METHODS

We describe a prospective study of human subjects done to verify the feasibility of the 

proposed protocol and to assess the validity of predicted precision for DWI measures, 

followed by Monte Carlo simulations of renal lesions.

Human Subject Validation

Following written consent, and according to our institutional review board-approved and 

health insurance portability and accountability act (HIPAA)-compatible protocol, abdominal 

DWI MRI was acquired on four volunteers without a history of renal disease. Data were 

acquired on 3T TIM Trio (Siemens, Siemens Medical Solutions, Erlangen, Germany), using 

single-shot echo planar free-breathing DWI sequence: coronal slice thickness 6 mm, field of 

view 345 × 410 mm, acquisition matrix 162 × 192, repetition time 2000 ms, echo time 80 

ms, three diffusion directions, parallel imaging factor 2, and b values, from 0 to 750 at 

intervals of 50 s/mm2 and with nine repetitions. The large dataset enabled easy sampling 

using different schemes (optimal or uniformly distributed) for comparison, and fitted as a 

whole, provided reference parameter values for such comparisons. During the scan (~14 

min), the subject was asked to breathe shallowly. To correct for any in-plane translational 

motion artifact, the acquired DWI images were cropped and coregistered for each individual 

kidney using a normalized cross-correlation method (28).

For region-of-interest (ROI) analysis, cortical and medullary ROIs were delineated manually 

at lower, middle and upper poles in a middle coronal slice of diffusion data for each kidney. 

Coronal T2-weighted half Fourier acquisition single shot turbo spin echo (HASTE) and T1-

weighted fast low angle shot (FLASH) images showing good corticomedullary 

differentiation were used to assist the manual segmentation of the diffusion images. Each 

ROI included ~30–50 voxels. Merging the three ROIs of a same tissue type in each kidney, 

we generated a signal versus b curve, a “full signal” curve, which contained 144 data points 

(16 b values and nine repetitions). Biexponential model fitting of the full-signal curve 

resulted in the reference values for the parameters.

The full-signal curve was desampled at Nb optimal b values (Nb = 4, 6, 8, 10) and again at 

uniformly distributed b values of the same Nb. All the sampled b values were rounded to the 

nearest b values available in the measured data (with interval of 50 s/mm2). From the full-

signal curve, we obtained multiple independent “samples” of signal versus b curve for each 

b-sampling scheme (either optimal or uniformly distributed ones). For example, for a b-

value set [0, 50, 250, 250, 250, 750] that contains three repetitions for at least one b value, 

three independent samples can be obtained from the full-signal curve. Availability of 

multiple independent samples enabled the assessment of parameter estimates’ precision and 

accuracy. Note that in full-signal curve, different numbers of independent “samples” can be 

available for optimal and uniformly distributed b-samplings of a same Nb, but we kept the 
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“samples” numbers of the two sampling schemes the same for fair comparison. For each 

“sample” of signal versus b curve, biexponential model fitting was applied. With parameter 

estimates from all available “samples” of signal versus b curve for each kidney, the 

coefficient of variation (CV) and the relative deviation (RD) were calculated. For a given b-

sampling scheme, CV indicates the precision and RD the accuracy of the parameter, and due 

to statistical error, are supposed to vary across different kidneys. Using analysis of variance 

(ANOVA), we evaluated if the optimized b-sampling improved precision and accuracy of the 

parameters when compared with uniformly distributed b values.

Parametric mapping with biexponential model was done for one kidney to confirm the 

benefit of b-value optimization on pixel scale. From the “full-signal” diffusion weighted 

images (16 b values and nine repetitions), we sampled two subsets of images: images 

acquired at 10 optimal b values and those at 10 uniformly distributed b values. For each 

subset and the full-signal data, voxelwise biexponential model fitting was computed, and for 

each parameter, the resulting maps were saved for visualization.

Simulations—We applied computer simulations to assess the potential benefits of b-value 

optimization procedure for differentiation between benign and malignant renal lesions. To 

calculate the optimal b values for renal lesions, we used data from a previous patient study 

(29), in which breathhold DWI using b values of 0, 50, 100, 150, 250, 400, 600 and 800 

s/mm2 was performed for 16 subjects (8 benign and 10 malignant lesions detected). The 

parameter ranges were estimated from the study. The optimization of b values was 

performed for Nb = 4, 6, 8, 10 and with the upper-bound b value at 800 s/mm2.

The first simulation aimed to evaluate the precision improvement due to the optimal b values 

across the parameter ranges. With the fitted biexponential parameter values for each of the 

18 renal masses, we generated a ‘continuous’ signal versus b curve. Each curve was then 

desampled in one of two ways: (1) at the optimized b values and (2) at uniformly distributed 

b values. Rician noise with standard deviation (SD) of 0.01S0 was added to the desampled 

curves. This noise level is equivalent to that of a ROI of 30–50 voxels when the signal-to-

noise ratio (SNR) of each voxel is 15–20. As the next step, the desampled curve with noise 

was fitted by the biexponential model to obtain parameter estimates. For each scenario, that 

is, for each lesion and each b-sampling, the procedure of noise addition and model fitting 

was repeated ntrials = 1000 times, which was sufficient for ±3% accuracy. The SD of the 

ntrials estimates for each scenario provides the estimation error for a b-value sampling 

scheme in determining the biexponential parameter value for each of the 18 lesions. The 

average of the SD across the 18 lesions indicates the overall performance of that b-value 

sampling scheme in estimating one parameter across its typical range for renal lesions. We 

hypothesized that the use of optimized b values would result in smaller averaged SD values 

than uniformly distributed b values of the same Nb.

The second simulation aimed to predict the benefit of the optimal b values in differentiating 

benign and malignant renal lesions. The fitted values for each biexponential parameter were 

averaged separately for the eight benign and for the 10 malignant renal masses. With the 

averaged parameter values, we generated signal versus b curves for the “ideal,” i.e., noise-

free, benign, and malignant lesions. The same procedure of b-value desampling, noise 
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addition and model fitting as in the first simulation were performed. For each b-value 

sampling, the ntrials estimates of a parameter (FP, DP, or DT) for benign lesions and those for 

malignant lesions might overlap due to their respective estimation errors. To quantify such 

overlap, we estimated the effect size, which was computed as the difference between the 

mean values divided by the pooled SD across all Monte Carlo trials (30). Larger effect size 

corresponds to less overlap or higher degrees of differentiation. We hypothesized that the use 

of optimal b values would enable better differentiation between benign and malignant 

lesions than uniformly distributed b values.

RESULTS

Human Subject Validation

Table 1 lists the results of b-sampling optimization for renal imaging, using parameter 

ranges from healthy subjects (16). For this optimization, equal weights were assigned to 

each parameter in the calculation of error propagation. Our results show that, in each case, 

the optimal b values were drawn from four distinct values. As Nb increased, the error 

propagation ξ decreased. For each Nb, the error propagation ξ was smaller for the optimized 

b values than for the uniformly distributed b values. However, the difference between 

optimal and uniform b values diminished with increasing Nb. For 10 b values, optimal 

sampling reduced error propagation by 26%, from 12.7 to 9.4, compared to uniform 

sampling, whereas for four b values, optimal sampling reduced error propagation by 73%, 

from 58.2 to 15.6. We also looked at error propagation to each individual parameter for the 

optimized b-value sets. Generally, DT showed the smallest (and DP the largest) error 

propagation factors for a given optimized b-value set, consistent with the CV values shown 

in Fig. 1 and with the expected relative uncertainties in determining biexponential fit 

parameters.

The use of the optimal b-sampling significantly improved the precision of biexponential 

model estimation, compared with uniformly distributed b-sampling (analysis of variance, P 
= 0.003). Figure 1 plots the coefficients of variation (CV) of the parameters, averaged across 

all ROIs. For parameters DP and FP × DP, and for Nb=4, 6, 10, the CV values obtained using 

the optimal b-sampling were significantly lower (P < 0.05) than those of uniformly 

distributed b-sampling. For other scenarios, no statistical significance was detected.

The optimal b-sampling improved the accuracy of biexponential model estimation 

significantly (ANOVA, P < 0.001). The RD of the parameter estimates, averaged across all 

ROIs, are depicted in Fig. 2. For all the four parameters, the four optimal b values provided 

significantly lower RD, or higher accuracy, than the four uniformly distributed b values (P < 

0.001). The advantage of the optimal b values diminished with increased Nb. For parameters 

DP, FP × DP and DT, the optimal b significantly lowered RD as compared with uniformly 

distributed b in three out of four scenarios.

Voxel-based parametric maps shown in Fig. 3 illustrate the improvements due to optimal b 
values. A smoother texture and better agreement with renal anatomy (depiction of cortex) 

can be observed for all parameters, especially for DP and FP × DP.
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Simulation for Renal Lesions—Table 2 lists the distribution of parameters FP, DP, and 

DT from 18 renal lesions (29). Malignant tumors had higher FP, lower DT and slightly lower 

DP than benign lesions. Based on these values, parameter ranges (Xmin and Xmax in Eq. 4) 

were defined for each of the three parameters.

Results of b value optimization for 4, 6, 8, and 10 acquisitions are shown in Table 3. The 

results are similar to those of healthy subjects, except that the non-zero and non-upper-

bound b values are slightly different due to the different parameter ranges used in 

optimization.

Figure 4 plots the parameter variability for the values obtained using the optimal and 

uniformly distributed b values for Nb of 4, 6, 8, and 10 (simulation 1). As Nb increases, SD 

for all the parameters decreases, indicating improved precision. For DP and FP × DP, the use 

of the optimal b values brought a dramatic (up to 2–3 fold) increases in precision. For FP and 

DT, the precision improvements were lower (about 25%) but of practical value and 

consistent across Nb.

The effect sizes for differentiating between benign and malignant renal masses (simulation 

2) are shown in Table 4. For FP, the optimal b values improved the effect size by 

11.5~28.4% (depending on Nb) compared to uniformly distributed b values. DT 

differentiated the two types of lesion well for both b schemes (with large effect size around 

1.71– 1.92). Parameter FP × DP achieved better differentiation between lesions than FP or 

DP. For Nb < 8, the effect size for FP × DP was on average 30% better when using the 

optimal b values than the uniformly distributed b values.

DISCUSSION

Because the kidney is highly vascular, DWI presents an ideal opportunity to introduce in the 

model a fast decaying component related to movement of water in blood vessels or other 

driven incoherent water motion. Resulting parameters DP and FP may enhance the diagnostic 

value of renal DWI. There is ample evidence of large contrast between the decaying 

coefficients of the fast and the slow decaying components in normal renal tissue [10–20 

versus 1.5–2.0 mm2/ms (16)]. Besides the kidney, intravoxel incoherent motion (IVIM) 

effect has also been demonstrated in liver cirrhosis (31,32). There is increasing recognition 

of the potential importance of IVIM in abdominal organs such as kidneys and liver. 

However, compared with monoexponential analysis, the biexponential analysis is 

numerically more challenging, especially under conditions of low SNR.

We have derived an explicit analytic formula that relates the propagation of noise in DWI 

data to errors in fitting the parameters of the biexponential model. The minimization of a 

cost function based on this formula and on estimated parameter ranges can be used to 

determine optimal b values. Comparisons of the optimized b-value sampling were not made 

with the nonuniformly distributed ones empirically chosen in previous studies, because we 

believe that the two selection methods share the same aim of minimizing error propagation, 

although by different implementations (empirical selection versus quantitative calculation). 

Human subjects with healthy kidneys show lower errors (Figs. 1 and 2) and smoother 
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parametric maps (Fig. 3) when optimal b values were used. While we have no direct human 

validation results for renal lesions, our simulations based on realistic parameter ranges 

indicate that the use of the optimal b values may improve the precision of biexponential 

parameters by 20–30%, leading to better differentiation of benign and malignant renal 

lesions.

One interesting finding was that the set of optimal b values consisted of multiple repetitions 

of essentially four distinct b values (including b of 0). We note that a similar “repeated” 

encoding scheme was found in previous optimization studies of monoexponential diffusion 

kernels. However, this pattern of repeated sampling differs from that employed in most 

multi-exponential (e.g. IVIM) studies in the literature to date, which employ more 

distributed sampling, particularly at low b-values. The latter approach is reasonable when 

investigating the diffusion response a novel organ or pathology and determining whether the 

biexponential model is justified and sufficient. Once that behavior is established, the 

optimization scheme presented in this work can be employed to maximize the precision of 

its parameter estimates. One benefit of the finding is noted: with optimal b values repeated at 

four distinct values, the b-optimization problem can be reduced to optimizing 6 variables 

(instead of Nb): three non-zero b values and the counts of repetitions at each of them (the 

sum of the counts is fixed at Nb). Such a scheme overcomes the well known problem 

associated with poor convergence rate when minimizing functions of many variables.

In principle, the proposed b-sampling optimization can be used for DWI of organs other than 

the kidneys. For example, biexponential analysis has been used in high b-value DWI and 

diffusion tensor imaging (DTI) of brain (33,34). To implement the method, we need to 

estimate typical ranges for the parameters of interest and Nb, which is usually determined by 

available scan time. As part of the optimization process, we selected equal weightings for 

the error propagation from each of the three DWI parameters, FP, DP, and DT. However, 

future optimizations could be fine-tuned to emphasize a parameter that is especially relevant 

in answering clinical or research needs.

Our study does havemultiple limitations. First, our volunteer study included four subjects 

only. For each subject, nine repetitions of DWI acquisition were collected, resulting in only 

few independent samples for calculating CV and RD for the parameters estimates. However, 

the results are generally in agreement with the simulation (Fig. 4) that used many more 

trials. Second, with the various diagnostic tools available, simply differentiating benign and 

malignant renal lesions as in the simulation study may not be challenging. The biexponential 

analysis, with perfusion measures, may help discriminate the subtypes of malignant lesions. 

However, the application of the proposed method here will have to be done in future when 

reliable parameter ranges for these subtypes are available. Third, our image coregistration 

corrected for translation motion effect, but not rotational motion or deformation. However, 

respiratory cycle causes only a minimal rotation and deformation for the kidney (35). Fourth, 

parallel imaging that is often used in DWI studies (36) could alter characteristics of DWI 

noise and thus its propagation into biexponential parameters, and this will be investigated in 

future work. Finally, the optimization scheme requires estimates for the expected ranges of 

the measured parameters as input, which requires some foreknowledge of the system/
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pathology of interest. Future work may explore the dependence of the b-values chosen and 

the benefit obtained on the size and centroid of the parameter ranges.

In conclusion, for determination of perfusion/microcirculation and diffusion contributors to 

DWI signal changes, we have developed a method to choose b values for data acquisition 

that can maximize the precision and accuracy of the parameters of biexponential model. 

With improved precision, the potential utility of biexponential model in detecting and 

characterizing renal lesions can be more easily validated.
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APPENDIX

Error Propagation in Biexponential Analysis of DWI Data

Least square regression searches for the model parameter values that minimize a sum-of-

squared-deviation difference (denoted as R) between the model fit and the data. 

Mathematically, the optimal estimates can be obtained by solving the following equations of 

partial derivatives with regard to all the parameters,

[A1]

For simplicity in the following derivation, we use x(m) (m = 1, 2, 3, 4) to represent S0, FP, 

DP, and DT, respectively. In the following, we show the derivation of error propagations 

from signal to each parameter.

According to Taylor’s theorem, in the limit of increasing SNR, the term in the square 

brackets in Eq. A1 can be approximated by the first order partial derivatives,

[A2]

where δx is the column vector of estimation errors (difference from true values) in the 

parameters. By replacing (A2) into (A1) and denoting the noise in the measured signals as ε, 

we get

[A3]

Rearranged and expressed in matrix form, Eq. A3 can be re-written as

[A4]

where A = JT·J, J is Jacobian matrix of S(x), and .

Assuming signal noise ε as independent and identically distributed, we obtain the variance 

of the model parameters as
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[A5]

where δ2 is the variance of noise. Accordingly, the error propagation factor for each 

parameter can be derived by taking the ratio of relative error in the parameter and relative 

measurement noise,

[A6]

The partial derivatives in Eq. A6 are

[A7]
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FIG. 1. 
Coefficient of variation (CV) of the biexponential parameters for healthy kidneys. The error 

bars represent the average ± SD of the CV values across all ROIs. Significant improvement 

(P < 0.05) of optimized versus conventional protocol are shown with their P values.
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FIG. 2. 
Relative deviation (RD) of the biexponential DWI parameters for volunteer data. The error 

bars represent the average ± SD of the RD values across all ROIs. P values smaller than 0.05 

are shown above the error-bars.
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FIG. 3. 
Biexponential parametric maps for a healthy kidney. Subplots (a–d): FP, DP, DT, FP × DP by 

using 10 uniformly distributed b values (rounded to the nearest b values available) [0, 100, 

200, 250, 350, 400, 500, 600, 650]; subplots (e–h), by 10 optimal b values (rounded to the 

nearest b values available) [0, 50, 50, 50, 250, 250, 250, 750, 750, 750]. Maps obtained 

using the optimal b values have smoother texture and better rendering of renal cortex.
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FIG. 4. 
Precision of the biexponential model parameters, estimated by Monte Carlo trials 

(simulation 1). The error-bars are average ± standard deviation of the SD values across the 

18 lesions. This simulation result shows that both increasing the number of b values and the 

use of b-sampling optimization improved the precision of all of the biexponential model 

parameters for diffusion-weighted MRI. These experimental results are consistent with 

human subject results in Fig. 1.
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Table 2

Biexponential Parameters for Malignant and Benign Renal Lesions (29)

Enhancing lesions (10) Nonenhancing lesions (8) Ranges for b optimization

FP (%) 24.8 ± 11.9 8.1 ± 11.6 [5, 30]

DT (10−3 mm2/s) 1.46 ± 0.4 2.18 ± 0.7 [1, 3]

DP (10−3 mm2/s) 11.0 ± 2.4 12.3 ± 10.9 [10,15]
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