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Abstract

A multi-parametric computer-aided diagnosis (CADx) scheme that combines information from

T1-weighted DCE-MRI and T2-weighted MRI was investigated using a database of 110 malignant

and 86 benign breast lesions. Automatic lesion segmentation was performed, and three categories

of lesion features (geometric, T1-weighted DCE, and T2-weighted) were automatically extracted.

Stepwise feature selection was performed considering only geometric features, only T1-weighted

DCE features, only T2-weighted features, and all features. Features were merged with Bayesian

artificial neural networks, and diagnostic performance was evaluated by ROC analysis. With

leave-one-lesion-out cross-validation, an AUC value of 0.77 ± 0.03 was achieved with T2-

weighted-only features, indicating high diagnostic value of information in T2-weighted images.

AUC values of 0.79 ± 0.03 and 0.80 ± 0.03 were obtained for geometric-only features and T1-

weighted DCE-only features, respectively. When all features were considered, an AUC value of

0.85 ± 0.03 was achieved. We observed p-values of 0.0006, 0.023, and 0.0014 between the

{geometric-only, T1-weighted DCE-only, and T2-weighted-only features} and all features

conditions, respectively. When ranked, the p-values satisfied the Holm-Bonferroni multiple-

comparison test; thus, the improvement of multi-parametric CADx was statistically significant. A

CADx scheme that combines information from T1-weighted DCE and T2-weighted MRI may be

advantageous over conventional T1-weighted DCE-MRI CADx.
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Introduction

Dynamic contrast–enhanced magnetic resonance (DCE-MR) imaging of the breast with

gadolinium-based contrast agents now is accepted widely as a potential adjunct to
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conventional imaging modalities such as mammography and ultrasonography (US).1–3 The

diagnosis in DCE-MR imaging is based on morphology and contrast material enhancement

velocity. Breast carcinomas generally show a faster and stronger signal intensity increase

after a bolus injection of gadolinium-based contrast agent than most benign lesions and

normal breast tissue. In addition, morphology assessment of internal lesion heterogeneity

and margins is also key in making the final diagnosis.

While the sensitivity of breast MR imaging is encouraging, its specificity is variable. Peters

et al. conducted a meta-analysis on 44 valid studies and obtained an overall sensitivity of

0.90 and an overall specificity of 0.72 in the diagnostic accuracy of breast MRI.4 The

limited specificity of contrast-enhanced MR imaging may be attributed to the fact that

several types of benign breast lesions also can show strong contrast agent enhancement.5

The relatively low specificity of T1-weighted DCE-MRI of breast cancer has led researchers

to investigate different approaches including examination of T2-weighted images alongside

T1-weighted DCE-MRI images in their standard interpretation of breast MRI cases.6–8 Kuhl

et al. found that the analysis of T2-weighted sequences during interpretation were a useful

adjunct in the differential diagnosis of benign and malignant lesions. For example,

fibroadenomas, a benign lesion that can exhibit similar contrast agent enhancement to that of

malignant lesions on T1-weighted DCE-MRI, had a high signal intensity (SI) on T2-

weighted images in comparison to malignant lesions, which generally have low SI on T2-

weighted images.

However, MRI assessment of breast cancer cases may be hindered by inter- and intra-

observer variations, labor-intensive interpretation methods, and limited clinical

interpretation guidelines.9–12 To aid radiologists in diagnostic classification, various

investigators are developing computerized image analysis methods for characterization.13

Computer-aided diagnosis (CADx) schemes were initially developed for mammography and

ultrasound14 and recently have been extended to breast MRI, specifically T1-weighted DCE-

MRI.15–20

To the best of our knowledge, few CADx studies have investigated multi-parametric MR

analysis, i.e. combining information from both T2-weighted and T1-weighted DCE-MRI for

distinguishing between malignant and benign lesions. Thus, the purpose of this study was

twofold. First, we investigated the computerized analysis of T2-weighted MRI images in

distinguishing malignant and benign breast lesions. Second, we evaluated whether including

T2-weighted computer features in our current DCE-MRI CADx scheme could improve the

diagnostic performance of the overall CADx system.

Materials and Methods

Database

The study was an IRB-approved HIPAA-compliant study in which the requirement for

informed consent was waived. A review of MR examinations performed at the University of

Chicago Medical Center (UCMC) between November 2008 and August 2009 yielded 86

benign breast lesions (no cysts) and 110 malignant breast lesions in 161 female patients
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(mean age, 61 yrs ± 15; range, 28–86 years). Benign lesions included fibrocystic change

(16/86), fibroadenomas (45/86), papillomas (4/86), and other atypical benign disease

(21/86). Malignant lesions included invasive ductal carcinoma (66/110), invasive lobular

carcinoma (11/110), ductal carcinoma in situ (24/110), and other atypical malignant disease

(9/110). Figure 1 shows the distribution of lesion volumes (in cubic centimeters). All lesions

used in the study were examined and reported by experienced radiologists and pathologists,

and all cases were reviewed at a multidisciplinary breast cancer management conference.

The patients were scanned in prone position using a standard double 16-channel breast coil

(Invivo breast coil, Philips Healthcare, Amsterdam, The Netherlands) on a 1.5T whole-body

scanner (Philips Healthcare, Amsterdam, The Netherlands). The patient was first scanned

with a T2-weighted turbo spin echo (TSE) sequence (2000/319 [repetition time msec/echo

time msec], 90° flip angle). Images were then acquired using a T1-weighted 3D gradient

echo (THRIVE) sequence with fat suppression (5.5/2.7 [repetition time msec/echo time

msec], 12° flip angle). After the acquisition of the precontrast series, gadolinium-

diethylenetriamine penta-acetic acid (Gd-DTPA) contrast agent was given intravenously

with a fixed dose of 20cc followed by a 20-mL saline flush. Six post-contrast series were

obtained at 60-second time intervals. The T1-weighted DCE and T2-weighted MR images

were acquired with the same scan parameters – in-plane spatial resolution (0.74mm ×

0.74mm), axial plane acquisition, slice thickness (2mm), number of slices (200 slices),

initial scan position, patient position (prone position), and matrix size (range from 432 × 432

to 512 × 512 pixels).

Segmentation

A fuzzy c-means (FCM) clustering based method was used to automatically segment the 3D

breast tumors in the DCE-MR images and is described in detail elsewhere.18 This scheme

included six steps. A region of interest (ROI) was first selected by a human operator. The

post-contrast ROI series were normalized by dividing the pixel value at each post-contrast

voxel by the value at the corresponding pre-contrast voxel. After the FCM clustering method

was applied, the lesion membership map was dichotomized with an empirically determined

threshold to partition the whole ROI into lesion and non-lesion components. Then, a 3D

connected-component labeling operation reduced false-positive voxels followed by a hole-

filling function to yield the final 3D contour or segmentation of the lesion. Since the T1-

weighted DCE and T2-weighted MR images were acquired with the same scan parameters,

the segmentation obtained on the T1 image data was overlaid on the T2-weighted images.

Computer-Extracted Features

Mathematical lesion descriptors in this study were grouped into four types of features:

geometric features; morphological features; kinetic features; and enhancement-variance

kinetics features.

Geometric features were based on the lesion outline from the lesion segmentation algorithm

and did not incorporate pixel value data in the calculation. The features were sphericity,

irregularity, and lesion volume in cubic millimeters; sphericity quantifies the compliance of

a lesion to a sphere and irregularity measures the roughness of the lesion contour surface.21
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Morphological features consist of texture features and spiculation features. Texture features

were calculated from the gray-level co-occurrence matrix (GLCM).22,23 The element (i; j) in

a directional GLCM represents the joint probability p(i; j) of the occurrence of gray levels i

and j in the two paired image elements with an offset of r along the direction θ in the

image(s). A voxel in 3D breast MR images was surrounded by 26 neighboring voxels in 13

independent directions, thereby giving 13 directional GLCMs. However, the voxels were

anisotropic in breast MR images due to the poorer inter-slice spatial resolution compared to

the intra-slice spatial resolution. A linear interpolation was thus employed before the

construction of directional GLCMs to yield isotropic voxels. A non-directional GLCM was

obtained by summing all the directional GLCMs. Fourteen texture features were extracted

from the non-directional GLCM to quantify different textural characteristics of a lesion,

such as homogeneity, gray-level dependence, brightness, and randomness. The specific

features included contrast, correlation, difference entropy, difference variance, energy,

entropy, homogeneity, maximum correlation coefficient, sum average, sum entropy, sum

variance, variance, and two information measures of correlation.23 The spiculation features

included radial gradient index (RGI), margin sharpness, and variance of margin sharpness.

RGI is based on the radial gradient of the pixels within the lesion and its local

environment.21 Margin sharpness is the mean gradient magnitude along the margin of the

lesion while variance of margin sharpness is the variance of the image gradient at the lesion

margin.21 Since the morphological features include image data, they were generated for both

T1-weighted DCE (specifically, the first post-contrast images) and T2-weighted images. In

addition, the mean of the signal intensity of the T2-weighted images was also calculated.

Kinetic features quantify the enhancement kinetics of the breast lesions on T1-weighted

DCE images and aim to reveal the physiologic process of the uptake and washout of the

contrast agent during the imaging time. First, the characteristic kinetic curve (CKC) of a

lesion was automatically identified by FCM clustering.19 The signal-time curves obtained

from each voxel in a segmented 3D lesion were clustered into several prototypal curves, and

the curve with the highest initial enhancement was selected as the characteristic curve

representative of the lesion. Seven kinetic features were then extracted from the CKC

including maximum contrast enhancement, time to peak, uptake rate, washout rate, curve

shape index, enhancement at the 1st post-contrast time frame, and signal enhancement

ratio.19

Enhancement-variance kinetics features characterize the time course of the spatial variance

of the enhancement within the lesion on T1-weighted DCE images. Similar to the kinetic

features, the maximum enhancement-variance, time to peak, the increasing rate of spatial

variance, and the decreasing rate of spatial variance were determined.20

In summary, three categories of features were analyzed. T1-weighted DCE features included

morphological features (texture and spiculation), kinetics, and enhancement-variance

kinetics while T2-weighted features included morphological features (texture and

spiculation). The last category was the geometric features which were based solely on the

segmented contour of the lesion. A summary of features and their descriptions are given in

Table 1.
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Feature Selection and Performance Evaluation

To select the effective set of lesion features, step-wise feature selection was performed by

linear discriminant analysis using the Wilks lambda criterion as the cost function in a leave-

one-lesion-out (LOLO) fashion.24 Four conditions for diagnostic classification were

investigated: (i) considering only geometric features, (ii) considering only T1-weighted

features, (iii) considering only T2-weighted features, and (iv) considering all features (T2-

weighted, T1-weighted DCE, geometric) combined. Once the feature histogram was

generated, the cut-off threshold was empirically set at 50% of the frequency of the most

chosen feature, and features whose frequency were greater than the threshold were selected

for the classification task. The number of features was limited to six or less to preserve the

robustness of the classification method and reduce the risk of overtraining.

The selected features were merged with Bayesian artificial neural network (BANN)

classifier to yield computer-estimated probability of malignancy (PM).25 The ROCKIT

software was used to evaluate the classifier’s performance using LOLO cross-validation,

and the area under the ROC curve (AUC) was used as the performance metric.26–28 The p-

values were calculated between conditions {i, ii, iii} and iv; the Holm-Bonferroni t test with

the overall α-level set at 0.05 was used for multiple comparisons statistical testing.29 Figure

2 summarizes the overall automatic analysis scheme for condition (iv) in which all features

(T2-weighted, T1-weighted DCE, geometric) were considered.

Results

Figure 3 shows example analysis including the segmentation and characteristic kinetic curve

of an invasive ducal carcinoma (IDC) grade 2 lesion on subtracted first post-contrast T1-

weighted DCE and T2-weighted MR images. The lesion has high SI on the T1-weighted

DCE MRI but appears hypointense on the T2-weighted image. Figure 4 shows the same

analysis including the segmentation and characteristic kinetic curve of benign fibroadenoma.

The lesion also has high SI on the T1-weighted DCE MRI but appears hyperintense on the

T2-weighted image.

Figure 5 shows the feature selection histogram for the conditions in which only T1-weighted

DCE features were considered and only T2-weighted features were considered. When all

features (T2-weighted, T1-weighted DCE, and geometric) were considered, two T2-

weighted features (homogeneity and sum average), three T1-weighted DCE features (RGI,

enhancement-variance time to peak, and signal enhancement ratio) and one geometric

feature (irregularity) were selected. The relationship between irregularity and T1-weighted

DCE RGI can be seen in Figure 6. As expected, malignant lesions tend to have large

irregularity and small RGI values, demonstrating the general spiculation of malignant

lesions. Similarly, the T2-weighted RGI values were usually small for malignant lesions,

which are also inclined to have large values for the maximum correlation coefficient feature

as seen in Figure 7.

Although RGI and homogeneity were both chosen in the T2-weighted-only features and T1-

weighted DCE-only features conditions, when grouped together in the all features condition,

the T1-weighted DCE RGI and the T2-weighted homogeneity features were chosen. Figure
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8 depicts the homogeneity values for T1-weighted DCE and T2-weighted features. The

Pearson correlation between the T2-weighted and T1-weighted DCE values for RGI and

homogeneity were 0.67 and 0.72, respectively, with p-value < 0.0001 for both.

The selected features and performance in terms of AUC are shown in Table 2, and the

corresponding ROC curves from leave-one-lesion-out analyses are plotted in Figure 9. We

achieved AUC values of 0.79 ± 0.03, 0.80 ± 0.03, and 0.77 ± 0.03 for the geometric-only

features, T1-weighted DCE-only features and T2-weighted-only features, respectively.

When all geometric, T1-weighted features, and T2-weighted features were considered

within the feature selection algorithm (“all features”), an AUC value of 0.85 ± 0.03 was

obtained using the selected features.

The p-value between the performance of geometric-only features and that of “all features”

was 0.006 while the p-value between the performance of T1-weighted DCE-only features

and that of “all features” was 0.023. The p-value between the performance of the T2-

weighted-only features and that of “all features” was 0.0014. When ranked, these p-values

satisfy the Holm-Bonferroni correction for multiple comparisons, indicating that there is a

statistically significant difference between considering only one type of feature and

considering all features.

Using a cut-off threshold of 0.20 for the computer-estimated probability of malignancy, the

sensitivity and specificity for the geometric-only features were 98% and 10% and for the

T1-weighted DCE-only features, they were 95% and 32%, respectively. The sensitivity and

specificity for the T2-weighted-only features were 98% and 12% and for the all features,

they were 96% and 35%, respectively.

As noted earlier, both RGI and homogeneity for T1-weighted DCE and T2-weighted

features were selected in the separate modality analyses; however only the T1-weighted

DCE RGI and the T2-weighted homogeneity features were chosen when all features from all

modalities were considered. When T1-weighted DCE homogeneity was replaced by T2-

weighted homogeneity in the all features condition, the AUC decreased from 0.85 to 0.82.

Similarly, when T2-weighted RGI was replaced by T1-weighted DCE RGI in the all features

condition, the AUC of 0.85 decreased to 0.84. However, these decreases were not found to

be statistically significant.

Discussion

Based solely on the computerized characterization of the T2-weighted morphological

characteristics of the lesion, an AUC value of 0.77 ± 0.03 was achieved in differentiating

between malignant and benign lesions. Its performance was similar to the geometric-only

AUC of 0.79 ± 0.03 and T1-weighted DCE-only AUC of 0.80 ± 0.03. Thus, simply using

T2-weighted features shows promise in diagnostic classification.

When stepwise feature selection was run on all features (T2-weighted, T1-weighted DCE,

and geometric), two T2-weighted features (homogeneity and sum average) were selected

along with three T1-weighted DCE features and one geometric feature, indicating that the

T2-weighted features performed strongly enough among the T1-weighted DCE and
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geometric features to be selected. The resulting AUC of 0.85 ± 0.03 was significantly higher

than the single feature type AUC values.

Overall, specificity increased by 3% and sensitivity increased by 1% when all geometric,

T1-weighted DCE, and T2-weighted features were input to the feature selection algorithm

and subsequent classification analysis, as compared to using only T1-weighted DCE

features. To better understand how T2-weighted analysis aided the CADx scheme, we can

consider the example lesions in Figures 3 and 4. In Figure 3, the malignant lesion has an

irregular shape (thus a high PM of 0.59 using geometric features) but the kinetic curve is

persistent. Since signal enhancement ratio was a selected T1-weighted DCE feature, it

follows that the T1-weighted DCE PM was 0.34. However, the PM from the T2-weighted

was 0.68 and the overall PM was 0.75. Thus, the T2-weighted features helped the CADx

scheme to correctly identify the lesion as malignant. For the benign lesion in Figure 4, the

PMs for the geometric and T1-weighted DCE features were 0.48 and 0.56 respectively but

the T2-weighted PM was 0.24, pulling the overall computer-estimated PM to 0.31. These

examples illustrate that when lesions have unclear kinetics (malignant lesion with persistent

kinetics or benign lesions with rapid uptake/washout kinetics), analysis of the T2-weighted

images may help the CADx scheme better distinguish malignant and benign lesions.

As noted earlier, the Pearson correlation coefficients between the T2-weighted and T1-

weighted DCE values for the RGI and homogeneity features were moderately high with

statistical significance. However, as seen in Figure 8, it seems that the image information in

the T1-weighted DCE MRI versus the information inherent in the T2-weighted images of

the same lesion appear different. Additionally, as evident by the decrease in AUC values

when using the T1-weighted DCE instead of T2-weighted values for these two features in

the “all-features” performance, the T2-weighted may have better diagnostic accuracy than

the T1-weighted DCE with respect to specific morphological characteristics.

Interestingly, the T2-weighted mean SI feature (single AUC value of 0.53) was not selected

in the T2-weighted-only feature selection; however two GLCM-based texture features,

homogeneity and maximum correlation coefficient with AUC values of 0.72 and 0.70

respectively, were chosen. This may indicate that the texture analysis conducted by the

computer may perform better and be more efficient than simply performing visual

assessment of SI on T2-weighted MR images.

There are several limitations to the study. During feature selection, the feature sets were

generally stable across the leave-one-lesion-out iterations, as seen in Figure 5, yielding

minimal bias from using the dataset for both leave-one-lesion-out feature selection and

leave-one-lesion-out classification performance evaluation. We also restricted the number of

features to a maximum of six features to preserve the robustness of the classification method

and reduce the risk of overtraining. However, validation on an independent data set is

necessary for an unbiased evaluation. An additional limitation of the study is that we only

analyzed cases performed at our institution and did not include cases from outside

institutions.
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Image brightness (i.e., hypo- or hyper-intensity) on the T2-weighted images was not truly

evaluated. Signal intensity can vary from scan to scan depending on gain settings but it was

not normalized in our study. Normalization with respect to adjacent tissue or control ROI for

the T2-weighted images would allow for true assessment of the hypointensity or

hyperintensity of the lesion. No additional spatial registration was used between the T2 and

T1-weighted images and between the different T1-weighted acquisitions. We did not

observe any substantial motion artifacts in our database; however, it is expected that image

registration would improve the results of our analysis, and will be considered in future work.

Despite these limitations, we find this study promising in that the T2-weighted MR images

appear to have yielded additional morphological information beyond that from the T1-

weighted MR images, and thus are potentially useful in improving diagnostic accuracy, as

evident by the performance of the RGI and homogeneity features. A CADx scheme that

combines features extracted from both T1-weighted DCE-MR and T2-weighted MR images

may be advantageous over the conventional T1-weighted DCE-MRI CADx in the task of

classifying malignant and benign breast lesions.
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Figure 1.
Histogram of volume of lesions (in cubic centimeters) in study database of 110 malignant

and 86 benign lesions.
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Figure 2.
Scheme of automated analysis of breast lesions using T1-weighted DCE and T2-weighted

MRI in which all features (geometric, T1-weighted DCE, and T2-weighted) features were

considered (iv).
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Figure 3.
Example malignant lesion (invasive ductal carcinoma grade 2) with (a) segmentations on

subtracted first post-contrast T1-weighted DCE and T2-weighted images, (b) signal intensity

curve from T1-weighted DCE images, and (c) computer-estimated probabilities of

malignancy for four conditions.
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Figure 4.
Example benign lesion (fibroadenoma) with (a) segmentations on subtracted first post-

contrast T1-weighted DCE and T2-weighted images, (b) signal intensity curve from T1-

weighted DCE images, and (c) computer-estimated probabilities of malignancy for four

conditions.
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Figure 5.
Histogram of features generated from leave-one-lesion-out stepwise feature selection for (a)

T2-weighted features and (b) T1-weighted DCE features.
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Figure 6.
Relationship between T1-weighted DCE RGI feature and geometric irregularity feature.
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Figure 7.
Relationship between T2-weighted RGI and maximum correlation coefficient features.
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Figure 8.
Relationship between T1-weighted DCE and T2-weighted values for homogeneity.
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Figure 9.
ROC curves for (i) considering only geometric features, (ii) considering only T1-weighted

DCE features, (iii) considering only T2-weighted features, and (iv) considering all features.
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Table 1

List of computer-extracted lesion features by type (texture, geometric, spiculation, kinetics, enhancement-

variance kinetics) and category (T1 for T1-weighted DCE, T2 for T2-weighted, or G for geometric)

Type Lesion features Description Category

Morphological – Texture21,22

T1 Contrast Measure of local image variations T1, T2

T2 Correlation Measure of image linearity T1, T2

T3 Difference in Entropy Measure of randomness of difference of
neighboring gray-levels T1, T2

T4 Difference in Variance Measure of variations of difference of gray-
levels between voxel-pairs T1, T2

T5 Energy Measure of image homogeneity T1, T2

T6 Entropy Measure of randomness of gray-levels T1, T2

T7 Homogeneity Measure of the local homogeneity T1, T2

T8
Information Correlation of Measure
1

Measure of non-linear gray-level
dependence T1, T2

T9
Information Correlation of Measure
2

Measure of non-linear gray-level
dependence T1, T2

T10 Maximum Correlation Coefficient Measure of non-linear gray-level
dependence T1, T2

T11 Sum Average Measure of overall image brightness T1, T2

T12 Sum Entropy Measure of the randomness of the sum of
gray-levels of neighboring voxels T1, T2

T13 Sum Variance Measure of how spread out the sum of the
gray-levels of voxel-pairs is T1, T2

T14 Variance Measure of how spread out the gray-level
distribution is T1, T2

Geometric20

G1 Size Volume of lesion in cubic centimeters G

G2 Sphericity Conformity of lesion to spherical shape G

G3 Irregularity Deviation of 3D lesion surface from sphere
surface G

Morphological – Spiculation20

M1 Margin sharpness Mean of image gradient at lesion margin T1, T2

M2 Variance of margin sharpness Variance of the image gradient at lesion
margin T1, T2

M3 Radial gradient index (RGI)
How well the enhancement structures in a
lesion extend in a radial pattern originating
from the center of the lesion

T1, T2

Kinetics18

K1 Maximum Uptake Maximum contrast enhancement T1

K2 Time to Peak Time frame at which maximum uptake
occurred T1

K3 Uptake Rate Uptake rate of contrast enhancement T1

K4 Washout Rate Washout rate of contrast enhancement T1

K5 Curve Shape Index Difference between early and late
enhancement T1

K6
Enhancement at 1st Post-contrast
timepoint

T1
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Type Lesion features Description Category

K7 Signal Enhancement Ratio Ratio of initial enhancement to overall
enhancement T1

Enhancement-Variance Kinetics19

S1 Maximum Variance of Enhancement Maximum variance of contrast enhancement T1

S2 Time to Peak Time frame at which maximum variance
occurs T1

S3
Enhancement Variance Increasing
Rate Increasing rate of enhancement-variance T1

S4
Enhancement Variance Decreasing
Rate Decreasing rate of enhancement-variance T1
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Table 2

Computer-selected features and diagnostic performance in which (i) only geometric features were considered,

(ii) only T1-weighted DCE features were considered, (iii) only T2-weighted features were considered, and (iv)

all features were considered in terms of AUC ± SE (standard error) with p-values calculated between

conditions {i, ii, iii} and iv. Note that the “all features” condition corresponds to having had input all features

to the feature selection algorithm.

Condition Selected Features (single feature AUC) AUC ± SE p-value
(in comparison
to “all features”

condition)

(i) Considered
only

Geometric
features

Irregularity (0.82)
Size (0.81)
Sphericity (0.67)

0.79 ± 0.03 0.006

(ii) Considered
only

T1-weighted
DCE features

RGI (0.78)
Homogeneity (0.68)
Maximum enhancement (0.50)
Time to peak (0.64)
Signal enhancement ratio (0.67)
Enhancement-variance time to peak (0.55)

0.80 ± 0.03 0.023

(iii) Considered
only

T2-weighted
features

RGI (0.74)
Homogeneity (0.72)
Maximum correlation coefficient (0.70)

0.77 ± 0.03 0.0014

(iv) Considered
all features
(Geometric,
T1-weighted

DCE, T2-
weighted)

Irregularity (0.82)
T1 RGI (0.78)
T1 Enhancement-variance time to peak
(0.55)
T1 Signal enhancement ratio (0.67)
T2 Homogeneity (0.72)
T1 Maximum correlation coefficient
(0.70)
T2 Sum average (0.53)

0.85 ± 0.03

Magn Reson Med. Author manuscript; available in PMC 2014 September 06.


