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Abstract

Camptothecins (CPTs) are cytotoxic natural alkaloids that specifically target DNA topoisomerase 

I. Research on CPTs has undergone a significant evolution from the initial discovery of CPT in the 

late 1960s through the study of synthetic small molecule derivatives to investigation of 

macromolecular constructs and formulations. Over the past years, intensive medicinal chemistry 

efforts have generated numerous CPT derivatives. Three derivatives, topotecan, irinotecan, and 

belotecan, are currently prescribed as anticancer drugs, and several related compounds are now in 

clinical trials. Interest in other biological effects, besides anticancer activity, of CPTs is also 

growing exponentially, as indicated by the large number of publications on the subject during the 

last decades. Therefore, the main focus of the present review is to provide an ample but condensed 

overview on various biological activities of CPT derivatives, in addition to continued up-to-date 

coverage of anticancer effects.
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INTRODUCTION

Camptothecin (CPT, 1, Fig. 1) is a pentacyclic alkaloid isolated by Wall et al.1 in the early 

1960s from the Chinese tree Camptotheca acuminata. This compound attracted immediate 

interest as a potential cancer chemotherapeutic agent due to its impressive activity against 
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leukemias and various solid tumors in experimental systems. Due to CPT's negligible water 

solubility, clinical trials were initiated using the water-soluble sodium salt (2) of CPT in the 

early 1970s. 2 The trials were suspended in the 1970s due to lower efficacy of 2, 

accompanied by unpredictable and severe levels of toxicity, including hemorrhagic cystitis 

and myelotoxicity. Interest in CPT then subsided for over a decade.3,4 Revived attention 

resulted from the breakthrough discovery of DNA topoisomerase I (Topo I) as a therapeutic 

target for CPT. This discovery put CPT back on the frontlines of anticancer drug 

development in the late 1980s.5-7 Accordingly, CPT's total synthesis, mechanism of action, 

structure–activity relationship (SAR), analog synthesis as well as pharmacology, 

formulation, drug delivery, preclinical studies and clinical trials have been studied 

extensively. Recent interesting research approaches include using prodrug concepts and drug 

delivery systems for CPT.8

As the result of these renewed research efforts, three CPT analogues, topotecan (TPT, 3),9 

irinotecan (CPT-11, 4),10 and belotecan (CKD-602, 5),11 received governmental approval 

for the clinical treatment of ovarian, small-cell lung, and refractory colorectal cancers. Three 

additional water-soluble analogues, exatecan (DX-8951f, 6)12-14 lurtotecan (GG-211, 

7),15,16 and sinotecan (8),17,18 are currently under clinical evaluation. Moreover, preclinical 

and clinical studies of non-water soluble CPT analogues, rubitecan (9-nitrocamptothecin, 

9),19,20 9-aminocamptothecin (9-AC, 10),21 gimatecan (11),22 karenitecin (BNP-1350, 

12),23 and DB-67 (13),24 are also ongoing. Interestingly, newly emerging 

homocamptothecin (hCPT) derivatives, BN-80915 (14, diflomotecan) and BN-80927 

(15),25,26 with a stabilized 7-membered hydroxylactone ring are currently undergoing 

clinical trials (Fig. 2). More recently, a CPT prodrug (16) and delivery systems (17-19) are 

also currently in clinical trials (Fig. 3.).8,27-29 Today, with three successful compounds in 

clinical practice (3–5) and 14 compounds in clinical development, CPT analogues have 

become highly relevant clinical anticancer compounds.

Between 1966 and 2012, over 5,000 publications (journal articles and patents) on CPT were 

recorded. This dramatic number of publications reflects the research intensity in this field, as 

well as the interplay of enthusiasm and setbacks encountered during almost 50 years. Some 

excellent reviews on CPT derivatives from a historical point of view are available.30-35 

Recently, several reviews on the distribution, sources, applications, total synthesis, and SAR 

correlations of CPT have been published,36-41 which cover the literature up to early 2005. 

However, since then, significant studies on new CPT derivatives have been carried out and 

published. A more comprehensive and up-to-date review is needed to describe such 

continued studies on anticancer and other biological activities, as well as rapid developments 

in the CPT field. This review presents more coverage not only in regard to structures and 

anticancer activities, but also other biological (antiviral, pesticidal, antiparasitic, 

antipsoriatic) effects of CPT-related derivatives.

2. Biological activity of CPT and related derivatives

2.1 Antitumor Activity

Following its isolation and structural elucidation in 1966, the naturally occurring CPT 

attracted considerable attention in the clinical community on the basis of its promising 
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antitumor activity in many in vitro and in vivo studies. In 1985, it was discovered that CPT 

inhibited the nuclear protein Topo I by a unique mechanism,42 which stimulated revived 

interest in CPT as an important lead compound and led to active and clinically useful 

anticancer drugs, such as the approved TPT (3) and CPT-11 (4). Their clinical success and 

intriguing mechanism of action stimulated great interest in further exploration of CPT 

derivatives with better antitumor activity; among them, several derivatives are now 

undergoing preclinical evaluation. Published reviews have covered the literature concerning 

CPT until the early part of 2003. Here, we present continued up-to-date coverage of CPT in 

regard to structure and anticancer activity from 2004 to 2012.

2.1.1 A and B ring modified CPT derivatives—Numerous SAR studies have shown 

that substitutions in positions 7, 9, 10 are tolerated or can substantially increase anticancer 

activity. In particular, both TPT (3) and SN-38 (7-ethyl-10-hydroxy-camptothecin), the 

hydrolysis product and active metabolite of irinotecin (4) in which the carbamate group has 

been removed, have an OH substituent at position 10, which seems to be important either to 

increase water solubility or decrease unwanted stabilization of the open hydroxyacid form 

by human albumin. A recent X-ray crystallographic analysis of a ternary complex between a 

topo I construct, a DNA oligonucleotide and 3 indicated that modifications at the 7- and 9-

positions of CPT would not interfere with drug–protein interactions. Furthermore, 

substitution at positions 7–10 and fusion of an additional ring on the A/B ring have led to 

potent compounds now in clinical studies, such as gimatecan, silatecan, lurtotecan, and 

exatecan. These successful examples imply that these positions can tolerate a large group 

and a wide possibility for structural modification. Accordingly, CPTs with lipophilic 

moieties at position 7 have been synthesized, including compounds with variously 

substituted C=N groups linked to the CPT scaffold via iminomethyl or oxyiminomethyl 

moieties. With one exception (20), several oxyiminomethyl substituted compounds (21-23) 

exhibited potent cytotoxic activity in vitro and in vivo comparable or superior to TPT (3).43

In a further study, Dallavalle et al.44 synthesized a series of imines (24-40) derived from 

camptothecin-7-aldehyde and variously substituted aromatic amines and evaluated their 

cytotoxicity against tumor cell line H460. All of the prepared 7-aryliminomethyl CPT 

imines exhibited potent cytotoxic activity superior to that of 3 under the same conditions 

(Table 1).

Subsequently, a series of 9-substituted CPTs (41-52) derived from 9-formylcamptothecin 

were synthesized by the same group;45 most of the new compounds showed higher cytotoxic 

activity than 3 (Table 2). Moreover, these compounds induced comparable DNA damage 

comparable to that of the reference compound SN-38. A molecular docking study suggested 

that the small polar 9-substituents interacted favorably with the topo I–DNA complex, which 

is consistent with their higher activity relative to corresponding 7-substituted CPTs.

You et al.46 reported a series of 7-cycloalkylcamptothecin derivatives (53-66). As shown in 

Table 3, many of the compounds exhibited IC50 values in the low μM to nM level and were 

up to 40-fold more potent than 3, the reference compound.
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The authors’ laboratories also designed and synthesized a series of 7-acyl CPT derivatives.47 

All of the new compounds showed significant inhibition of human tumor cell (A-549, 

DU-145, KB, and KBvin) growth, with IC50 values ranging from 0.0154 to 13.3 μM. 

Interestingly, while compound 67 showed a five-fold decrease in potency against KB-vin 

(IC50 = 0.13 μmol/L) compared with the KB cell line (IC50 = 0.023 μmol/L), compound 68 
showed a two-fold increase in potency against the former cell line.47

Several 7-alkynyl CPT derivatives (69–74) were recently prepared via copper-free 

Sonogashira coupling by Xiao et al.48 As shown in Table 4, most of the compounds were 

less cytotoxic than SN-38, but were generally more potent than 3. Some of the new 

compounds showed almost equal cytotoxicity to SN-38 against Eca-109 and SGC7901 

cells.48

Eighteen novel water soluble derivatives were designed based on the structures of 4 SN-38. 

Most of the new compounds possessed lower cytotoxicity compared with CPT. However, 

compound 75 exhibited potent cytotoxicity similar to CPT with IC50 less than 0.01 nM 

against KB and HCT-8 cancer cell lines, and compounds 76-78 showed similar or superior 

cytotoxic activity to 3.49

Seventeen 10-arylcamptothecins were synthesized by Suzuki cross-coupling chemistry.50 

Some of the derivatives showed very potent cytotoxicity in preliminary in vitro cytotoxicity 

testing with IC50 values on the order of 9 nM. 10-(4-Pyridyl)camptothecin (79) and its water 

soluble hydrochloride 80 displayed comparable potency to 3 in various assays. Mechanistic 

studies indicated that 79 and typical CPT derivatives had similar pharmacological profiles in 

topo I inhibitory and cell cycle arrest assays.

Gao et al.51 reported a new synthetic strategy using a Claisen rearrangement reaction to 

modify 10-allyloxy-7-ethylcamptothecin and generatc a series of 7-ethyl-9-alkyl derivatives 

(81-86) of CPT. As shown in Table 5, all of the new compounds exhibited significant in 

vitro cytotoxic activity against four tested tumor cell lines with IC50 values ranging from 

0.012 to 3.84 μM, and were as or more potent than 3. The biological results suggested that 

the small alkyl groups at the both 7- and 9-positions of CPT could promote liposolubility, as 

well as antitumor activity in vitro and in vivo, but did not increase stability of the lactone.51

Recently, a novel series of A-ring modified hexacyclic CPT derivatives containing a 1,3-

oxazine ring were first designed and synthesized by Wang and coworkers.52 All of the new 

compounds were assayed for in vitro cytotoxicity against nine human cancer cell lines and 

most of them showed impressive cytotoxicity. Compounds 87 and 88 showed the highest 

potency against several cell lines. Moreover, compound 88 (IC50 = 0.01 μM) was about 13-

fold more potent than CPT (IC50 = 0.13 μM) and about 6-fold more potent than 3 (IC50 = 

0.06 μM) against HEPG-2.52

Subsequently, several hexacyclic CPT analogs were designed by Niizuma et al.53 based on 

the proposed structure of the topo I/DNA/CPT ternary complex. Remarkably, compound 89 
exhibited in vivo antitumor activities superior to 4 in human cancer xenograft models in 
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mice at maximum tolerated doses, although its in vitro antiproliferative activity was 

comparable to SN-38 against corresponding cell lines.53

Glucuronide prodrugs are useful in antibody-directed enzyme prodrug therapy (ADEPT), 

because extracellular β-glucuronidase in tumor cells can be targeted by administration of 

antibody–β-glucuronide conjugates. Recently, a β-glucuronidase activated prodrug approach 

was applied to 9-aminocamptothecin and 10-hydroxycamptothecin. Compound 90, a 

glucuronide derivative of 9-aminocamptothecin (9). is a promising β-glucuronidase-

cleavable prodrug. It was less toxic than 9 against human tumor cell lines, but upon enzyme 

activation, displayed similar cytotoxicity to that of the parent drug. Furthermore, compound 

90 showed promising in vivo prodrug properties and activity. Therefore, the same approach 

was applied to 10-hydroxycamptothecin, and the resulting compound (91) was 80 times 

more soluble than 10-hydroxycamptothecin in aqueous solution at pH 4.0 and stable in 

human plasma. Prodrug 91 was 10- to 15-fold less toxic than the parent drug against HepG2, 

Colo205, HT29, and H928 cell lines with IC50 values 56.5, 94.2, 97.8, 91.1 nM, 

respectively. Molecular modeling studies predicted that compound 91 would have a higher 

binding affinity to human β-glucuronidase than compound 90. 54

2.1.2 C and D ring modified CPT analogues—Historically, SAR efforts have largely 

focused on the A, B, and E rings of CPT. Relatively few D ring analogues have been 

investigated. Two early examples, 14-chloro and 14-nitro derivatives, were much less 

cytotoxic than the parent CPT, suggesting a lack of tolerance for substitution at that 

position.55-57 Recently, Hecht and coworkers58 synthesized a water-soluble 14-aza CPT 

(92), which is a hybrid between luotonin A and CPT. Compound 92 stabilized the topo I-

DNA complex at the same sites as CPT and was cytotoxic with a similar but somewhat 

higher IC50 value then CPT. Further, the new compound mediated inhibition of DNA 

relaxation more effectively than CPT and possessed a faster off-rate from the ternary 

complex than CPT. It appeared that replacing the C14-H group with N augments the ability 

to form the ternary complex while concomitantly reducing the lifetime of the formed 

complex, thus reducing the cytotoxic effects of the resulting analogue.58 Therefore, water-

soluble 14-aza CPT represents an attractive core structure toward the development of a CPT 

analogue with useful therapeutic properties.

The synthesis and biological evaluation of the CPT thiopyridone isostere, thiocamptothecin 

(TCPT, 93) were accomplished by using Lawesson's reagent. Significantly, TCPT was more 

potent than the parent compound against H460, HT29, and IGROV-1 cell lines. The 

increased cytotoxic potency of 93 versus CPT was even more evident against HT29 colon 

carcinoma cells and the subline HT29/mit. Also, compound 93 caused slightly more DNA 

damage to that observed for CPT, but an identical DNA cleavage pattern.59

More recently, Duan et al.60 synthesized 14-aminocamptothecins 94 and 95. These two 

compounds exhibited excellent cytotoxic potency against human tumor cell lines in vitro, 

and were not substrates for any of the major clinically relevant efflux pumps (MDR1, 

MRP1, and BCRP). Compounds 94 and 95 showed similar cytotoxicity against human and 

mouse bone marrow progenitor cells. In contrast, many CPT analogues are substrates for 

efflux pumps and are dramatically more toxic to human relative to murine marrow cells. 
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Compounds 94 and 95 demonstrated significant brain penetration when dosed orally in 

mice. Compound 94 showed significantly better efficacy relative to 3 when dosed orally in 

three ectopic xenograft models, H460, HT29, and PC-3.60

So far, few studies have featured C-ring synthetic modifications, probably because of the 

low anticancer activity observed with certain reported analogues, including 5-hydroxy, -

alkoxy, -acyloxy, -hydroxymethyl, and -amino substituted derivatives,61-63 as well as 

contradictory studies on 5-substituted CPT derivatives. For example, 5-propionyl and 5-

ethoxy derivatives bearing a hydroxy, methoxy, or fluoro group at the β-position showed 

good antitumor activity. One of these analogues, DRF-1042, is currently in phase II clinical 

trials.64 These findings prompted other studies to investigate the role of modification at the 

C-5 position. In 2009, using an enolate chemical protocol, in addition to C5-alkylated 

derivatives, new C5-fluorinated (96) and -aminated analogues (97), along with the first six-

membered ring CPT derivative (98) were synthesized and tested for antiproliferative activity 

against human non-small-cell lung cancer carcinoma NCI-H460. The new compound was 

less active than 3 and SN-38, but caused similar DNA patterns to that of SN-38.65

2.1.3 E ring modified CPT analogues—Recent work on CPT has focused on 

construction of ester prodrugs at the C-20 position particularly aimed at new forms of 

administration (especially on a nanoscale) to optimize drug delivery. For example, 

Deshmukh et al.66 recently synthesized a series of α-amino acid ester prodrugs of CPT. A 

successful example from this work is afeletecan (CPT glycoconjugate, 99), a C-20 

glycoconjugated, clinical prodrug. Compound 99 was the best candidate for a passively 

targeted sustained release lung delivery system.

In addition, a series of nitrogen-based 20(S)-hydroxyl CPT ester derivatives were prepared 

by Wang et al.67 These ester compounds showed comparable or superior cytotoxic activity 

to 3, but most of them were less cytotoxic compared with CPT. As shown in Table 6, 3-

aminopropionates (100–110) were more cytotoxic in vitro against several human tumor cell 

lines than 3-amidopropionates (111, 112). The 3-(6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinin-2-yl)propionate ester 110 showed the best antitumor activity in vivo and 

in vitro among all compounds prepared.

Other nitrogenous heterocyclic groups have been introduced at CPT's 20-position to increase 

water solubility and improve activity. For example, compounds 113 and 114 modified with 

pyrazole acetates showed notable antitumor activity and lactone stability. Compound 114 
achieved a tumor inhibitory rate (TIR) of 92.9% at a dose of 20 mg/kg (similar to the TIR of 

CPT at a dose of 10 mg/kg) and showed a better dose-efficacy relationship. Compound 113 
achieved a TIR of 75.6% at a dose of 20 mg/kg. Compounds 113 and 114 were less toxic in 

mice than CPT based on change of body weight before and after administration.68

Based on previous work on nitroxyl free radicals as well as the fact that L-amino acids are 

actively transplanted into mammalian tissue, have good water solubility, and are often used 

as carrier vehicles for some drugs, the authors linked a nitroxyl radical moiety (1-

oxyl-2,2,5,5-tetramethylpyrroline-3-carboxylic acid) at the 20-hydroxyl of CPT via different 

hydrophilic amino acid spacers to synthesize a series of novel spin-labeled CPT derivatives 
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(115-119). Compounds 115-119 showed similar or better in vitro cytotoxicity than the 

parent drug CPT and the clinically available drug 4 against human bladder cancer T-24.69

Recently, Hecht et al.70 reported the effects of replacing the C-20 and C-21 O-atoms with S-

atoms (120, 121). 20-Mercapto CPT (120) stabilized the topo I-DNA covalent binary 

complex at the same site as CPT, but was less cytotoxic than CPT. The dimercapto CPT 

analog 121 had only a very slight effect on stabilization of the topo I-DNA complex and was 

not cytotoxic.

2.1.4 A, B, and E ring modified CPT analogues—The β-hydroxy-ε-lactone E-ring of 

hCPTs is generally more stable and hydrolyses less rapidly than the classical α-hydroxy-ö-

lactone of CPTs.71 In addition, the resulting ring-opened compound is an isolable product 

that does not spontaneously recyclize. Subsequent investigation of various A- or B-ring 

derivatives showed that some hCPTs are more potent topo I poisons than CPT and exhibit 

greater antiproliferative activity than CPT in both parental and CPT-resistant cell lines, 

particularly prostate cell lines. One highlight of these first structural studies was 

diflomotecan (14), a 10.11-difluoro-hCPT, which showed high in vitro cytotoxicity, 

promising in vivo efficacy, and was the first hCPT to enter clinical trials.72,73

As described previously, substituted C=N bonds increased antitumor activity in 

aryliminomethyl and oxyiminomethyl CPT analogues. Therefore, a series of novel 9-

benzylideneamino derivatives of hCPT were designed with various substituents, including -

Me, -NMe2, and -OMe, on the benzylidenamino residue. The resulting derivatives showed 

excellent cytotoxic and topo I inhibitory activities. Compared with 3, compounds 122–125 
showed greater growth inhibition (IC50 2.3–9.8 nM) against breast cancer cells.74

Subsequently, the same research group also published a bioisosteric series of compounds 

(126-141) bearing a C=C bond as a linker. From the results shown in Table 7, several hCPT 

compounds with an alkenyl or an (alkoxycarbonyl)ethenyl group exhibited good cytotoxic 

activity comparable or superior to 3 against A-549 cancer cells.75

The high cytotoxicity of hCPT derivatives prompted Zhang et al.76 to investigate a series of 

water-soluble 10-phosphate esters. Most of the resulting compounds displayed moderate 

cytotoxicity against three tested cell lines (142–149, Table 8). From a structure-activity 

relationship (SAR) viewpoint, the cytotoxicity of the phosphodiesters was lower than that of 

the phosphotriesters and the length of the phosphate alkyl chain affected the potency. 

Compound 146 with dibutyl phosphate group showed greater tumor inhibitory activity than 

4 in a A549 xenograft model, potent activity in a DNA cleavage assay at a concentration of 

100 μM, and good stability at both pH 7.4 and 3.0. 76

Seven new 7-trifluoromethylated hCPT derivatives were prepared by Zhu et al.77 Three 

derivatives (150-152) possessed higher in vitro antitumor activity than 3. Further in vitro 

and in vivo results provided convincing evidence that the 7-position of hCPT is a favorable 

site for introduction of a trifluoromethyl group.

To further promote lactone stability, Lu et al.78 recently synthesized a series of hCPTs 

bearing a hydroxy or acetoxy group at the α-position of the E-ring β-hydroxy-ε-lactone 
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(153-160). Compared with 10-hydroxycamptothecin (10-HCPT) and CPT, most of the new 

compounds exhibited similar or better cytotoxic activity against HCT116 and A549 cells. 

When assayed for topo I inhibition, some compounds displayed potent activity at 100 or 10 

μM, equal or superior to the activity of CPT (1), SN-38, and 10-HCPT. Moreover, 

compound 159 retained 90% and 60% of the lactone form after incubation at 37 °C for 8 h 

in phosphate buffered saline (PBS) at pH 7.4 and in PBS containing human serum albumin 

(HSA), respectively, while CPT retained only 30% and 18%, respectively. Therefore, the 

introduction of a second oxygenated substituent in the seven-membered E-ring is feasible 

and produces effective agents for the treatment of human cancer.78

Based on accumulated SAR studies and critical modeling clues, modifications at the 7-

position appear to be the most efficient approach to increase the antitumor potency of CPTs. 

Furthermore, the crystal structures of topo I-DNA in complex with CPT revealed that C-7 

substituents extended into the major groove of DNA, which could reinforce the stability of 

the inhibitor-topo I-DNA covalent complex. Recently Liu et al. presented a postulated 

binding mode of the hCPT compound class with the DNA-Topo I complex. In this model, 

they found a large space around the C-7 position of hCPT that allowed the introduction of 

substituted acyl groups with preservation of two key hydrogen bonds. Accordingly, they 

designed and synthesized a series of novel 7-acyl derivatives of hCPT. Compounds 161-163 
showed highly potent cancer cell growth inhibitory activity with the IC50 values in the range 

of 1 nM to 2.2 nM against A549, MDA-MB-435, and HCT116 tumor cell lines.79

Li et al recently synthesized a series of five-membered E-ring CPT derivatives. Consistent 

with previous observations that five-membered E-ring analogs were inactive with respect to 

Topo I inhibition, the new racemic analogs generally exhibited markedly reduced cytotoxic 

activity against tested tumor cell lines. With IC50 values of 1.28 and 2.03 μM against A549 

and HT-29 cancer cell lines, only compound 163 showed similar cytotoxic activity to 3.80

Recently, due to the important role of fluorine substitution in drug design, a series of (20S,

21S)-21-fluorocamptothecins were designed and synthesized. All of these analogues showed 

potent in vitro antitumor activities and were potent Topo I inhibitors with increased 

hydrolytic stability. Among them, 7-cyclohexyl-21-fluorocamptothecin (165) exhibited the 

best antiproliferative activity against all three tested cancer cell lines (IC50 range: 0.71−0.07 

μM), which was two-fold (A549) and six-fold (HCT116) more active than CPT. This 

compound represents a promising lead for further optimization.81

In continuing these efforts, our group recently reported that a series of 20-sulfonylamidine 

CPT derivatives displayed potent antitumor activity with significantly different drug-

resistance profiles from those of CPT. Among them, compound 166 was more active than 4 
against the growth of A549, DU-145, KB, and KBvin with IC50 values of 0.031, 0.050, 0.14, 

and 0.026 μM, respectively. Mechanistically, 166 induced significant DNA damage by 

selectively inhibiting Topo I and activating the ATM/Chk related DNA damage-response 

pathway. In mouse xenograft models, 166 demonstrated significant activity without overt 

adverse effects at 5 and 10 mg/kg, with two and three mice, respectively, among groups of 

eight undergoing complete regression. Notably, 166 at 300 mg/kg (i.p.) showed no overt 

acute toxicity in contrast to CPT (LD50 56.2 mg/kg, i.p.) and 4 (LD50 177.5 mg/33 kg, i.p.). 
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Thus, 166 is attractive as a potential candidate for anticancer chemotherapy and the 

modification with sulfonylamidine-substituted side chains may overcome some limitations 

of CPT.82

2.2 Antiviral activity

Besides anticancer activity, antiviral activity is another outstanding property of CPT and 

many of its derivatives. Topoisomerase I activity has been associated with various 

retroviruses including Rous sarcoma virus, 83,84 Molone murine leukemia virus,85 equine 

infectious anemia virus, and human immunodeficiency virus (HIV).86 Therefore, several 

studies have been conducted with CPT in order to elucidate the role of topo I in various 

retroviral functions.87 Horwitz et al.89 showed that CPT inhibited DNA and RNA synthesis 

in HeLa cells and induced DNA degradation, and then designed an experiment to determine 

whether it would inhibit growth of viruses that replicate in the cytoplasm of a host cell. 

Results indicated that CPT inhibited DNA synthesis in HeLa cells at a concentration of 10 

μM. Inhibition of viral DNA synthesis was observed when CPT was added at 1 or 2 hours 

after infection.89 Priel et al.90 reported that non-cytotoxic doses of CPT inhibited HIV 

replication in acute infection of H9 cells at a high efficacy (>90%). Moreover, CPT inhibited 

EIAV replication in chronically infected Cf2Th cells. Continuous exposure of these cells to 

CPT for 52 days revealed 85 to 92% inhibition of virus production. Cell viability and growth 

rate were not affected.91

CPT inhibited HIV-1 LTR activity and viral production in cultures of human cells 

expressing HIV-1 LTR activity and cells chronically infected with HIV-1, respectively.92 

The mechanism of HIV-1 infection and the progression of immunosuppression were 

associated with activation of latent virus, which in turn was regulated by the long terminal 

repeat (LTR) in viral (proviral) DNA.93 Based on these results, CPT may interact with a 

protein that either binds to the LTR or is involved in the posttranscriptional process.

Furthermore, some CPT analogues have been evaluated for antiviral activity. TPT (3) was 

efficient in treatment of AIDS-related progressive multifocal leukoencephalopathy.94 Sadaie 

et al.95 reported that 9-nitrocamptothecin (9) inhibited HIV-1 replication in freshly infected 

U937 monocytoid cells. Subsequently, the authors also investigated in vitro anti-HIV 

activities (including HIV-1 and HIV-2) of 10-hydroxy-CPT (167) and 7-hydroxymethyl-

CPT (168).96 The results demonstrated that 168 showed more potent anti-HIV activity than 

CPT, while 167 was less active. Taken together, the above studies indicate that CPT can 

serve as a valuable lead compound for developing a new anti-retroviral drug.

A few studies have demonstrated that CPT is a potent inhibitor of replication, transcription, 

and packaging of double-stranded DNA-containing adenoviruses, papovaviruses, and single 

stranded DNA-containing autonomous parvoviruses. These findings indicated that CPT 

analogues could be developed for use as potent drugs against DNA viruses. Some 

researchers have reviewed the literature focusing on antiviral potential.97,98

Yamada and coworkers99 showed that CPT is active against human HSV-2 due to drug 

inhibition of host cell Topo I, which was apparently involved in the process of transcription, 

but not in the elongation step of HSV-2 DNA synthesis. In addition, mappicine ketone 
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(MPK, 169), a decarboxylated E-ring CPT analogue, has recently been identified as an 

antiviral agent with selective activities against HSV-1, HSV-2, and human cytomagalovirus 

(HCMV) with PR50 values of 2.9, 0.5, and 13.2 μM, respectively. MPK appears to be 

herpesvirus-selective; it does not inhibit other DNA or RNA viruses. Although its 

mechanism of action has not been determined, MPK functions differently from acyclovir 

(ACV) as demonstrated by the observation that ACV-resistant HSV-1 and HSV-2 are 

inhibited by MPK and that MPK resistant mutants are sensitive to ACV at HSV-1 wild-type 

virus levels.100,101 More recently, the authors assessed the in vitro antiviral efficacies of 

CPT analogues against herpes simplex virus type 2 (HSV-2) in Vero cells.103 Several 

compounds exhibited similar or better antiviral activity than ACV against HSV-2 in vitro. 

Among them, compound 170 was the most potent with an IC50 value of 1.3 μg/mL and 

selectivity index (SI) of 27.04.

2.3 Pesticidal activity

In ancient China, the crude extract of C. acuminate containing CPT has been used 

traditionally to control insect pests for centuries, and it was reported to be a potent 

chemosterilant against the housefly and cabbage caterpillar.103,104 It also exhibited 

significant inhibitory activities against several agricultural pests like Empoasca vitis, 

Mythimna separate Walker, Brevicoryne brassicae, Nilaparvata lugens, and Chilo 

suppressalis, supporting its potential use as a field pesticide.105-108 Additionally, a recent 

study showed that CPT could cause visible changes in the midguts from the lepidopteran 

pests Trichoplusia ni and Spodoptera exigua, such as losing the single layer of epithelial 

cells and disrupting the peritrophicmembrane.109 Investigations by Zhong et al.110 also 

demonstrated that CPT-induced apoptosis in SL-1 cells and midgut cells of S. litura. 

Consistent with these results, Zhang et al.111 recently revealed that CPT caused Sf21 and 

IOZCAS-Spex-II cell apoptosis via a mitochondrial-dependent apoptosis signal transduction 

pathway, suggesting that its mode of action may be related to apoptosis. Moreover, 

pretreatment with CPT led to reduction in both the enzymatic activity and the steady 

accumulation of the Topo I protein in IOZCAS-Spex-II cells despite up-regulation of its 

mRNA expression in response to the treatment.112 In connection with these efforts, in order 

to find new CPT-derived insecticides with improved profiles and to clarify the structure–

activity relationships of campothecin analogues, a number of CPT derivatives modified in 

the different positions have been synthesized and evaluated their insecticidal activity against 

some important insect pests by our group;113-117 among which, some compounds exhibited 

insecticidal activity equal to or higher than that of CPT. For example, we synthesized a 

series of spin-labeled CPT derivatives by esterifying the 20-hydroxyl of CPT with L-amino 

acids containing a nitroxyl radical moiety and evaluated their antifeedant and insecticidal 

effects against third-instar larvae of Mythimna separate. In the antifeedant bioassays, the 

spin-labeled compounds were less potent than CPT.113 All of the derivatives showed 

delayed insecticidal activity, which was different from traditional neurotoxic insecticides. 

Furthermore, eight spin-labeled CPT analogues (172-179) were synthesized based on 5-(2’-

hydroxythoxy)-20(S)-camptothecin (171). When tested against fifth-instar larvae of 

Brontispa longissima, compounds 171 and 172 showed promising insecticidal activity with 

corrected mortality rates of 69.55% and 74.07%, respectively.115
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Recently, a series of CPT derivatives via alkylation, oxidation, and esterification at the 5-, 

7-, and 20-positions were synthesized. Among them, compounds 7-CH2OH-CPT, 7-COOH-

CPT, and 10-OCH3-CPT displayed higher antifeedant activity (>90%) than CPT against 

third-instar larvae of Spodoptera litura at 24 h and 48 h. In addition, several compounds, 

including 7-CH2C6H5-CPT, 7-CHO-CPT, 7-CH2OCOC6H5-CPT, 10-O-CH2OCOC6H5-

CPT, 20-CH2OCOC6H5-CPT, and 20-F-CPT exhibited more potent nematocidal activity 

(LC50 2.28, 2.21, 1.37, 1.68, 0.13, and 1.71 mg/L, respectively) against Bursaphelenchus 

xylophilus than CPT (LC50 12.18 mg/L) after 24 h.116,117

More recently, we also investigated a large variety of CPT analogues for antifeedant activity 

against Spodoptera litura. Several compounds, including 20-SH-CPT,21-N-amino-CPT 

lactam, and 7-acetyl-CPT, displayed more potent antifeedant activity than CPT (Table 
10).118

On the other hand, plant-derived CPTs can be used to deter and eliminate termites, 

particularly subterranean species. Pure or raw water-insoluble CPT and its analogs may be 

useful in termite control strategies as barriers at higher concentrations (>50 ppm) by 

preventing termites from colonizing or feeding on particular substrates and structures or as 

toxicants in termiticides and baits particularly at lower concentrations.119

2.4 Antiparasitic activity

African trypanosomes (Trypanosoma brucei species) are parasitic protozoa that cause lethal 

diseases in humans and cattle. Studies showed that CPT was cytotoxic to African 

trypanosomes and related pathogenic hemoflagellates.120 CPT generated covalent DNA–

topoisomerase complexes with both nuclear and kinetoplastic preparations of DNA from 

trypanosomes, leishmanias,121 and other protozoan parasites of medical importance. Bodley 

et al.122 showed that CPT inhibited the nuclear and mitochondrial topo I of T. brucei thus 

blocking DNA replication and inducing the death of bloodstream trypomastigotes (IC50 = 

1.6 μM). In SAR studies, Bodley et al.123 also tested a series of CPT analogues for their in 

vitro effectiveness against African trypanosomes and found that their cytotoxicity was 

closely correlated to the ability to promote the formation of covalent protein–DNA 

complexes. This finding indicated that the sole cellular target of these agents is the parasite's 

topo I. Significantly, antiparasitic activity was increased by addition of substituents to the 

parent ring system (e.g. 10.11-methylenedioxy or ethylenedioxy groups, 7-alkyl groups, or 

9-amino or 9-chloro substituents) (Table 11). Among them, 9-substituted-10,11-

methylenedioxy derivatives were significantly more active than CPT against T. brucei 

bloodstream trypomastigotes. For example, 9-chloro-10,11-methylenedioxy-CPT (IC50 

0.041 μM) was 40 times more potent than CPT (IC50 1.6 μM). Although these CPT 

derivatives were still more toxic against mammalian cells than trypanosomes, selective 

toxicity might be achievable using this lead compound as a starting point.

Recently, Werbovetz et al.124 further examined CPT and four 10,11-methylenedioxy 

analogues the against pathogenic protozoan Leishmania donovani in vitro. Compared with 

CPT, 10,11-methylenedioxy-CPT (180) exhibited 90-fold greater antileishmanial activity 

(EC50 0.064 mM). Introduction of difluoro substitution at the methylene position (181) 
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reduced the activity, while introduction of a chloro (182) or amino (183) group at position 9 

resulted in two-fold greater activity than 180.

Furthermore, Proulx et al.125 3xplored tested the efficacy of free and liposome-loaded CPT 

against leishmaniasis, the parasite burden was significantly reduced when infected mice 

were treated with 2.5 mg/kg body weight CPT via intraperitoneal injections of free and 

liposomal CPT. Its excellent index suggested that a liposomal delivery may be exploited as a 

potential strategy against visceral leishmaniasis.

2.5 Antipsoriasis activity

Psoriasis is a chronic inflammatory skin disease characterized by epidermal keratinocyte 

hyperproliferation, abnormal differentiation, and inflammatory infiltration. Since the early 

1970s, several reports of topical preparations of Camptotheca or CPT in treatment of 

psoriasis have been published.126-129 these early studies showed that, as a topoisomerase 

inhibitor, CPT is effective in psoriasis therapy. Recently Wang et al.130 also reported that 

10-hydroxy-CPT exhibited significant curative efficacy in treatment of psoriasis. 

Subsequently, Lin et al.131,132 revealed that CPT and iso-CPT inhibited the growth of 

cultured normal human adult keratinocytes in vitro by inducing apoptosis. Furthermore, 

study by Lin et al.133,134 demonstrated that the therapeutic mechanism of CPT in psoriasis 

may be associated with its antiproliferative activity and apoptosis of keratinocytes through 

down-regulation of telomerase activity.

2.6 Antifungal/ Antimicrobial activity

Del Poeta et al.135 evaluated antifungal activity of CPT and its analogues in vitro against an 

isogenic series of S. cerevisiae strains including wild-type, △erg6 permeable mutant, △erg6 

△top1 double mutant, and △erg6△top1 mutant strains expressing C. neoformans topo I. 

They found that some derivatives were extremely active antifungal agents with minimum 

inhibitory concentrations (MICs) of less than 0.09 μg/mL when the strain contained 

overexpressed cryptococcal topo I. Particularly, a 10,11-methylenedioxy system in ring A 

(184 and 185), increased interaction with the fungal topo I. These findings suggested that 

CPT and certain derivatives can efficiently target the C. neoformans topo I enzyme to 

produce antifungal activity. Considering CPT's potent antifungal activity, Li et al.136 

evaluated CPT against Alternaria alternata, Epicoccum nigrum, Pestalotia guepinii, 

Drechslera sp., and Fusarium avenaceum. CPT inhibited mycelial growth by approximately 

50% (EC50) at 10–30 μg/mL and fully inhibited growth at 75–125 μg/mL. Recently, Zhang 

et al.137 also reported that CPT was effective against Rhizoctonia solani, Sphaerotheca 

fuliginea, and Pseudoperonospora cubensis under greenhouse and field conditions. Under 

greenhouse conditions, the IC50 and IC90 values of CPT against the three plant pathogens 

were 41.96 mg/L, 40.49 mg/L, 27.48 mg/L, and 756.77 mg/L, 247.02 mg/L, 341.81 mg/L 

respectively. Under field conditions, CPT also showed high inhibitory effects against the P. 

cubensis pathogen; the IC50 and IC90 values were l1.22 mg/L and 69.12 mg/L, respectively.

More recently, Alaghaz et al.138 synthesized a series of 10-substituted CPT 

phosphorothioate analogues and evaluated their antifungal /antimicrobial activity against 

fungal strains Aspergillus niger, Aspergillus flavus (molds), S. cerevisiae, C. albicans, T. 
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longifucus, A. flavus, M. canis, F. solani, and C. glaberata (yeasts). However, none of the 

tested compounds affected fungal growth significantly.

2.7. HIF-1 inhibitory activity

Hypoxia hypoxia-inducible factor 1(HIF-1) has attracted considerable attention as a 

molecular target for new antitumor agents because of its involvement in various aspects of 

cancer cell biology. In 2002, researchers at the National Cancer Institute screened 2000 

diverse compounds for functional inhibition of hypoxia-inducible factor 1 (HIF-1), a master 

regulator of a cancer cell's ability to survive under oxygen deprivation. Active compounds 

included three CPT analogues [TPT (3), CPT 20-ester (S) (186), and 9-glycineamido-20(S)-

CPT HCl (187)]. 139

The best characterized compound (3) inhibited both hypoxia (1% O2)- and iron chelator 

(desferoxime; DFO)-induced HIF-1 activation at submicromolar concentrations. Compound 

3 inhibited HIF-1 by decreasing HIF-1α protein translation in a topo I-dependent, oxygen-

independent manner.140 The HIF-1 inhibitory activity of 3 was reversible and schedule-

dependent in vitro (U251 cells), and required a daily (not intermittent) administration 

schedule in vivo (U251 tumor xenograft model).139 Hence, these drugs may have other 

desirable activities against solid tumors that are independent of topo I poisoning. The 

therapeutic potential of TPT (3) as a HIF-1 inhibitor has been reviewed recently.142 This 

critical clue also prompted Jones and co-workers143 to synthesize several 5-substituted CPT 

analogs through an efficient microwave-mediated procedure. Among the newly synthesized 

compounds, a 5-fluoroethyl CPT analog showed potent HIF-1a inhibitory activity with an 

inhibitory rate of 88% at 10 μM.

More recently, Klausmeyer et al.144 isolated and identified four bioactive CPTs from an 

extract of Ophiorrhiza trichocarpon, which reduced hypoxia induction to 22% of control in 

U251-HRE cells and exhibited an EC50 of 0.21 μg/mL with minimal effect on U251-pGL3 

cells.

2.8. Other biological activities

A study by Clements et al.145 showed CPT was not only capable of inhibiting endothelial 

cell growth in a non-toxic manner, but also it inhibited angiogenic growth. In a study to 

investigate the antiangiogenic and antitumor effects of oral ST1481 (gimatecan) in human 

tumor xenografts, Petrangolini et al.146 suggested that the antiangiogenic properties of 

ST1481 could possibly contribute to its antitumor potential and that this effect might be 

enhanced by continuous low-dose treatment. Recent results have shown that CPT-11 is an 

effective inhibitor of angiogenesis and provide strong implications for wider clinical 

application of this drug for colon cancer.147 This observation demonstrates that, besides the 

tumoricidal activity, CPT may have indirect antitumor activity due its anti-angiogenic 

activity and, thus, may have clinical relevance in treating other conditions such as restenosis 

and psoriasis.

In addition, CPT (10–8 M to 10–6 M) significantly inhibited secretion of newly synthesized 

collagenous proteins into conditioned media by 50%. CPT (10–8 M to 10–6 M) caused a 
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significant dose-dependent inhibition of COL1A2 mRNA levels and COL1A2 promoter 

activity by as much as 60%. The inhibitory effect of CPT on collagen production by 

fibroblasts from patients with systemic sclerosis suggests that CPT may be effective in 

limiting fibrosis in such patients.148 Furthermore, CPT has also proved effective in the 

treatment of rheumatoid arthritis because it reduces the activation of the complement 

system.149, 150

Other biological activities of CPT are also receiving increased interest, it has been reported 

that CPT-11 (4) inhibited acetylcholinesterase activity.151 Inhibition of acetylcholinesterase 

could obviously constitute a dose-limiting factor for utilization of the drug. While the 

reports described above represent a solid foundation, a thorough understanding of the 

manner by which CPT may affect cellular function at loci other than topo I is still in its 

infancy.

More recently, the neurotoxic activity of CPT in cultured cerebellar granule neurons has 

been investigated. The screening results showed that CPT-induced neurotoxicity may be due 

to induction of protein–DNA cross-links and other unknown drug-related interactions rather 

than inhibition of topo I activity alone. 152

The variety of biological activities and medicinal applications exhibited by CPT analogues 

are impressive. Additional systemic investigations of the biological activities utilizing 

numerous compounds should further uncover new physiological information and medicinal 

uses for CPT analogues.

3. Conclusion

Almost five decades after CPT's first isolation, CPT-based drugs remain appealing to many 

researchers worldwide and more CPT analogues are emerging as promising 

chemotherapeutic agents. The discovery of Topo I as CPT's therapeutic target opened a new 

area for anticancer drug development. The tremendous efforts in this field included the total 

syntheses or semisyntheses of CPTs, which have been crucial to make new anticancer drugs 

of this family possible. This review has summarized up-to-date coverage of CPTs in regard 

to structure modification and anticancer activities from 2004 to 2012. However, the 

expectation and value of CPT as a lead compound go beyond the development of anticancer 

agents, as additional new biological activities have been discovered. Based on such various 

biological activities, CPT will continue to attract tremendous attention and long lasting 

interest from both the academic community and the pharmaceutical industry. On the other 

hand, continued studies on the CPT–DNA–topo I interaction may suggest new directions in 

the development of CPT-related biological molecules. Interest in CPTs will undoubtedly 

remain high based both on the current pharmaceutical potential and the further discovery of 

new and better drugs based on varied biological activities.
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Fig 1. 
Structures of camptothecin (1) and camptothecin sodium salt (2).
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Fig. 2. 
Structures of CPT analogs in clinical practice or clinical trials.
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Fig. 3. 
CPT prodrugs and delivery systems currently in clinical trials.
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Fig. 4. 
Structures of 7-substituted lipophilic CPTs (20-23).
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Fig. 5. 
Structures of 7-acyl-CPT derivatives (67,68).
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Fig. 6. 
Structures of 10-position substituted heterocyclic derivatives (74-77).
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Fig. 7. 
Structures of 10-arylcamptothecins (79,80).
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Fig. 8. 
Structures of derivatives containing 1,3-oxazine ring (87, 88).
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Fig. 9. 
Structure of compound 89.
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Fig. 10. 
Structures of glucuronide derivatives 90 and 91.
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Fig. 11. 
Structure of 14-aza-CPT (92).

Liu et al. Page 34

Med Res Rev. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
Structure of thio-CPT 93.
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Fig. 13. 
Structures of 14-amino-CPTs 94 and 95.
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Fig. 14. 
Structures of C5-substituted analogues (96-98).
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Fig. 15. 
Structure of compound 99.
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Fig. 16. 
Structures of compounds 113 and 114.
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Fig. 17. 
Structures of spin-labeled CPTs (115-119).
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Fig. 18. 
Structures of compounds 120 and 121.
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Fig. 19. 
Structures of 9-benzylideneamino hCPT derivatives (122-125).
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Fig. 20. 
Structures of 7-trifluoromethylated homocamptothecin derivatives (150-152).
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Fig. 21. 
Structures of 7-acyl homocamptothecin derivatives (161-163).
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Fig. 22. 
Structure of compound 164.
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Fig. 23. 
Structure of compound 165.
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Fig. 24. 
Structure of compound 166.
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Fig. 25. 
Structures of compounds 167 and 168.
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Fig. 26. 
Structures of compounds 169 and 170.
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Fig. 27. 
Structures of compounds 171-179.
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Fig. 28. 
Structures of compounds 180–183.
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Fig. 29. 
Structures of compounds 184 and 185.
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Fig. 30. 
Structures of compounds 186 and 187.
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Table 1

Cytotoxic Activity (IC50, μM) of 7-(Aryliminomethyl)-CPT Derivatives 24–40.

Compd R1 R2 R3 H460/IC50 (μM)

24 CH3 H H 0.11

25 Cl H H 0.075

26 OCH3 H H 0.058

27 SCH3 H H 0.066

28 C(CH3)3 H H 0.065

29 OH H H 0.032

30 CH3 CH3 H 0.156

31 S-S-o-NH2-Ph H H 0.049

32 H H CH3 0.18

33 H H Cl 0.086

34 H H OCH3 0.166

35 H H SCH3 0.074

36 H H C(CH3)3 0.09

37 H H OH 0.22

38 H H S-p-NH2-Ph 0.24

39 H H S-S-p-NH2-Ph 0.387

40 H H NO2 0.28

TPT (3) ---- ---- 1.38
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Table 2

Cytotoxic Activity (IC50, μM) of Compounds 41–52.

Compd R1 R2 H460/IC50 (μM)

41 CH2OH H 0.21

42 CHO H 0.058

43 CHO OH 6.96

44 CHO OCH3 6.00

45 CN H 0.428

46 CN OH 9.86

47 CN OCH3 0.67

48 CH=NOC(CH3)3 H 0.23

49 CH=NOC(CH3)3 OH 0.36

50 CH=NOC(CH3)3 OCH3 0.32

51 CH=NOCH2CH2NH2 H 2.53

52 CH=NOH H 0.23

TPT (3) CH2-N(CH3)2 OH 1.18
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Table 3

Cytotoxic Activity (IC50, μM) of 7-Cycloalkyl-CPT Derivatives 53–66.

Compd R1 R2 IC50 (μM)

A549/ATCC HT-29

53 cyclopropyl H 0.12 0.12

54 cyclobutyl H 0.05 0.61

55 cyclopentyl H 0.066 0.094

56 cyclohexyl H 0.024 0.02

57 cycloheptyl H 0.015 0.14

58 cyclooctyl H 0.36 0.45

59 H OH 0.11 0.21

60 cyclopentyl OH 0.071 0.058

61 cycloheptyl OH 0.003 0.012

62 H OMe 0.04 0.076

63 cyclobutyl OMe 0.011 0.041

64 cyclopentyl OMe 0.031 0.031

65 cyclohexyl OMe 0.039 0.035

66 cycloheptyl OMe 0.056 0.025

CPT H H 0.047 0.12

TPT (3) ---- ---- 0.36 0.41
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Table 4

Cytotoxic Activity (IC50, μM) of 7-Alkynyl CPT Derivatives 69–74.

Compd IC50 (μM)

Esophageal (Eca-109) Leukemia (K562) Bladder (5637) Gastric (SGC7901)

69 54.8 0.383 1.792 45.4

70 63.9 0.013 0.001 39.2

71 6.8 0.159 0.469 12.0

72 31.3 0.652 2.708 44.7

73 65.2 0.202 0.78 35.2

74 108.6 0.088 0.233 2558.7

SN-38 67.1 0.001 0.001 23.6

TPT (3) 389.5 0.383 1.189 152.0
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Table 5

Cytotoxic Activity (IC50, μM) of 7-Ethyl-9-alkyl-CPT Derivatives 81–86.

Compd R1 R2 R3 IC50 (μM)

Bel-7402 HCT-116

81 OH CH2CH=CH2 CH2CH3 2.75 0.014

82 CH2OH CH2CH=CH2 CH2CH3 2.16 0.068

83 OH CH2CH2CH3 CH2CH3 3.01 0.012

84 CH2OH CH2CH2CH3 CH2CH3 3.84 0.153

85 CH2OH CH2CH3 CH2CH3 2.40 0.061

86 OH CH2CH3 CH2CH3 2.01 0.023

SN-8 OH H CH2CH3 3.19 0.007

HCPT OH H H 2.47 0.148

TPT (3) ---- ---- ---- 3.98 0.100
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Table 6

Cytotoxic activity (IC50, μM) of nitrogen-based CPT ester derivatives 100–112.

Compd R IC50 (μM)

KB KB/VCR A2780 A549 HCT-8 Bel7402

100 0.043 0.100 0.056 0.051 0.042 0.009

101 0.013 0.080 0.027 0.010 0.023 0.008

102 0.054 0.384 0.067 0.068 0.089 0.059

103 0.067 0.092 0.069 0.091 0.076 0.064

104 0.007 0.179 0.016 0.046 0.052 0.018

105 0.043 0.084 0.056 0.055 0.008 0.007

106 0.065 0.129 0.089 0.088 0.066 0.065

107 0.056 0.098 0.092 0.094 0.055 0.051

108 0.071 0.297 0.291 0.255 0.077 0.077
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Compd R IC50 (μM)

KB KB/VCR A2780 A549 HCT-8 Bel7402

109 0.055 0.177 0.080 0.280 0.065 0.047

110 0.009 0.086 0.083 0.088 0.009 0.009

111 0.673 >1.0 >1.0 >1.0 0.862 0.783

112 0.716 >1.0 >1.0 >1.0 0.817 0.802

CPT ---- 0.009 0.009 0.007 0.008 0.007 0.007

TPT (3) ---- 0.062 0.339 0.058 0.087 0.074 0.078
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Table 7

Cytotoxic activity (IC50, μM) of 7-alkenyl-hCPTs 126–141.

Compd R1 R2 IC50 (μM)

A-549

126 H 4-NO2-C6H4 0.259

127 H Ph 0.493

128 H 2-Br-C6H4 3.25

129 H 4-NC-C6H4 2.62

130 H 3-F-C6H4 0.431

131 H 2-F-C6H4 4.38

132 H C6F5 4.68

133 H 4-Me-C6H4 3.35

134 H 2-O-C6H4 2.65

135 H 3-O-C6H4 3.15

136 H 2-CF3-C6H4 0.387

137 H 4-CF3-C6H4 20.6

138 H t-BuOOC 0.811

139 H EtOOC 2.54

140 H MeOOC 0.486

141 Me EtOOC 5.29

TPT (3) ---- ---- 2.64
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Table 8

Cytotoxic Activity (IC50, μM) of Phosphodiester- and Phosphotriester-hCPTs 142–149.

Compd R1 R2 IC50 (μM)

A549 MDA-MB-435 LOVO

142 H Et 11.40 5.26 7.24

143 H C6H5CH2 29.35 10.77 9.31

144 Et Et 8.05 0.79 1.26

145 iso-Pr iso-Pr 11.39 3.40 5.56

146 Bu Bu 2.84 0.51 0.91

147 pentyl pentyl 2.30 0.72 1.19

148 cetyl cetyl >100 >100 >100

149 CF3CH2 CF3CH2 15.51 0.22 5.42

TPT (3) ---- ---- 0.04 <0.001 0.02

CPT-11 (4) ---- ---- 4.61 1.14 4.99
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Table 9

Cytotoxic Activity (IC50, μM) of Compounds 153–160.

Compd R1 R2 IC50 (μM)

HCT-116 A549

153 H H 14.2 49.2

154 OCH3 H 4.4 4.7

155 OCH2O OCH2O 2.1 1.2

156 OCH2CH2O OCH2CH2O 4.9 4.6

157 H H 49.3 16.8

158 OCH3 H 10.6 4.8

159 OCH2O OCH2O 3.1 3.1

160 OCH2CH2O OCH2CH2O 3.4 2.9

10-HCPT ---- ---- 31.2 33.6

CPT ---- ---- 22.9 33.8
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Table 10

Antifeedant activity of CPT analogues against third-instar larvae of Spodoptera litura (Test Concentration = 

1000 μL).

Compd Antifeedant activity (%)

24 h 48 h

CPT 81.73±4.32 81.22±2.43

9-NO2-CPT 52.65±4.86 35.56±4.27

16a-S-CPT 71.47±2.78 60.45±4.39

20-SH-CPT 85.98±2.61 79.91±5.89

21-N-Amino-CPT lactam 92.58±2.11 89.57±2.88

7-Me-CPT 74.40±4.87 68.66±6.97

7-Acetyl-CPT 93.20±2.43 90.63±2.38

7-Methylenedioxybenzoyl-CPT 94.75±3.72 88.82±3.30

5-OH-CPT 67.00±1.56 64.25±6.44

12-NO2-CPT 55.41±1.50 27.97±3.75

10-OH-CPT 75.07±1.54 66.16±2.31

Toosendanin 95.6±72.19 93.89±0.65
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Table 11

Antitrypanosomal activity of CPT derivatives that retain the parent ring system.

Compd EC50 (μM)

(a) CPT (b) 10,11-methylenedioxy-CPT

7-Me ------ 0.044

7-Et 0.63 0.060

7-Propyl 0.80 ------

7-Et-9-NH2 0.86 0.057

7-Et-9-NO2 2.7 0.17

7-Et-10-NH2 0.62 ------

7-Et-10-NO2 0.60 --------

9-Cl 0.81 0.041

9-NH2 0.84 0.074

9-NO2 1.6 0.40

10-Me 2.3 ------

10-Cl 1.5 -------

10-NH2 1.2 ------

10-NO2 2.1 -------

10,11-Dimethoxy >100.0 -------

11-NH2 18 --------

12-NH2 12 --------

7-Me-10,11-ethylenedioxy 0.070 ---------

CPT 1.6 0.16
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