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Abstract 

In order to prepare swellable/erodible time-dependent colon delivery systems with improved 

efficiency in delaying drug release, the application of an outer Eudragit
®

 NE film, which contained 

the superdisintegrant Explotab
®

 V17 as a pore former, was attempted. Tablet cores were 

successively spray-coated with a hydroxypropyl methylcellulose (HPMC) solution and diluted 

Eudragit
®

 NE 30 D wherein fixed amounts of Explotab
®

 V17 were present. The resulting two-layer 

systems yielded lag phases of extended duration as compared with formulations provided with the 

HPMC layer only. By raising the thickness of the outer film, longer lag times were generally 

observed whereas the effectiveness in deferring the drug liberation was reduced by increasing the 

pore former content, which, however, also resulted in a lower data variability. The films containing 

20% of Explotab
®

 V17 effectively and consistently prolonged the in vitro lag phase imparted by 

HPMC as a function of their thickness. Stored for 3 years under ambient conditions, a two-layer 

system with this outer film composition pointed out unmodified release patterns. The same system, 

proved to meet gastroresistance criteria when enteric-coated. The results obtained indicated that the 

proposed strategy would enable the preparation of erodible delivery systems with reduced size, 

possibly suitable as multiple-unit dosage forms. 
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Introduction 

In the field of oral delivery, not only dosage forms intended for prolonged release but also for a 

time-dependent or site-targeted drug liberation have drawn growing interest over the last two 

decades.
1-3

 Colon delivery, in particular, is a current focus of research because of its possible 

application in the treatment of large bowel pathologies, such as primarily inflammatory bowel 

disease (IBD), and to improve the oral bioavailability of peptides and proteins.
4-6

 Indeed, the colon 

is considered as a potentially favorable absorption site for these molecules especially due to the 

lower levels of proteases and greater responsiveness of the mucosa to permeation enhancers as 

compared with proximal intestinal regions.
7-9

 For colon delivery purposes, dosage forms for 

pulsatile release, intended to release the active ingredient following lag phases of programmable 

duration, can be exploited according to the time-based formulation approach, which is based on the 

relatively consistent small intestinal transit time (SITT).
10-13

 In this case, pulsatile delivery systems 

need to be enteric coated, so that unpredictable gastric residence time may be overcome, and 

provide a lag phase comparable to SITT. 

Pulsatile delivery systems can be designed in the form of a drug-containing core and a 

hydrophilic swellable/erodible polymer coating that undergoes glassy-rubbery transition when in 

contact with aqueous fluids, thereby delaying the onset of drug liberation.
14

 In this case, rather thick 

functional layers are usually needed for in vivo delay phases consistent with colon targeting goals to 

be achieved. When a multiple-unit configuration of these systems is sought, the issue of a relatively 

high thickness for the polymer coatings can be particularly critical. Indeed, the resulting size may 

not comply with the dimensional requirements of such dosage forms, thus preventing their well-
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known benefits from being seized.
15-17

 Furthermore, the attainment of a prompt and quantitative 

release after the lag phase may be hindered by the bulky swollen polymer barrier. 

Such problems have been encountered throughout the development of the Chronotopic
TM

 

system, an erodible device characterized by a functional hydroxypropyl methylcellulose (HPMC) 

coating. When formulated in single units, this delivery platform proved to yield the desired in vitro 

and in vivo release performance and was recently demonstrated viable as an insulin carrier.
18-22

 

However, in order to prepare such a system from small-sized cores, e.g. when shifting from tablet- 

to minitablet-based formulations, a modification in its design was necessary. In particular, thin 

insoluble films provided with water permeability and marked flexibility characteristics were 

recently proposed for application onto its low-viscosity HPMC layer.
23

 Such films were intended to 

slow down the penetration of water into the functional HPMC coating thereby enhancing the 

inherent efficiency in delaying the drug liberation. However, they were expected not to exert a 

major influence on the swelling/erosion-dependent release mechanism of the system. For this 

purpose, a neutral polymethacrylate (Eudragit
®

 NE 30 D) was selected as the film-forming agent in 

view of its favorable tensile properties and the mild process conditions involved. In addition, 

various superdisintegrants were evaluated for use as "non-conventional" pore formers able to impart 

the required permeability properties to the acrylic layer and ultimately aid its break-up.
24

 The 

preliminary screening, mainly performed with free films containing the superdisintegrants under 

investigation (Explotab
®

 V17, Ac-Di-Sol
®

, Kollidon
®

 CL and Kollidon
®

 CL-M) at differing 

concentrations (10%, 15%, 20% on the dry polymer), indicated that Explotab
®

 V17-based 

formulations would offer a potentially adequate balance between improvement of the permeability 

of Eudragit
®

 NE and maintenance of its advantageous flexibility properties.
23

 Therefore, such films 

were considered suitable candidates for application to the erodible delivery system previously 

described. 

The aim of this work was thus to apply the identified Eudragit
®

 NE/Explotab
®

 V17 film 

formulations to HPMC-coated tableted cores and explore their impact on the overall release 
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performance in order to assess the viability of the proposed approach in the design of erodible 

systems for time-dependent colon delivery with enhanced efficiency in delaying drug release and, 

consequently, reduced dimensions possibly consistent with those of multiple-unit dosage forms. 

 

Materials and Methods 

Materials 

Colloidal silica (Syloid
®

 244, Grace Davison, Columbia, Maryland, USA); copovidone (Kollidon
®

 

VA64, BASF, Ludwigshafen, Germany); hydroxypropyl methylcellulose (HPMC, Methocel
®

 E50, 

Colorcon, Gallarate, Italy); magnesium stearate (Carlo Erba Reagenti, Milan, Italy); 

microcrystalline cellulose (Avicel
®

 PH101, FMC Europe, Brussels, Belgium); paracetamol fine 

powder (Mallinckrodt, Hazelwood, Missouri, USA), paracetamol for direct compression 

(Compap™ Coarse L Mallinckrodt); poly(ethylacrylate, methylmethacrylate) 2:1, aqueous 

dispersion 30% (Eudragit
®

 NE 30 D, Evonik Röhm, Germany, distributed by Rofarma, Milan, 

Italy); poly(methacrylic acid, ethyl acrylate) 1:1, aqueous dispersion 30% (Eudragit
®

 L 30 D-55, 

Evonik Röhm); polyethylene glycol (PEG 400, ACEF, Fiorenzuola D'Arda, Italy); sodium starch 

glycolate (Explotab
®

 V17; Explotab
®

, JRS Italia, Castenedolo, Italy). 

 

Methods 

A physical mixture consisting of 80.0% paracetamol for direct compression, 2.0% copovidone, 

12.5% microcrystalline cellulose, 4.5% sodium starch glycolate, 0.5% colloidal silica and 0.5% 

magnesium stearate was compacted by a rotary machine (AM-8S, Officine Ronchi, Milan, Italy) 

equipped with concave punches of either 5 mm in diameter and 5 mm in curvature radius or 2.5 mm 

in diameter and 3 mm in curvature radius in the case of tablet and minitablet cores, respectively. 

The cores were checked for weight (n=20), height by a digital micrometer (Absolute, Mitutoyo, 

Kawasaki, Japan; n=20), crushing strength (crushing tester TBH28, Erweka, Heusenstamm, 

Germany; n=10), friability (friabilometer TA3R, Erweka; 6.5 g sample) and disintegration time 
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(USP 36 disintegration apparatus DT3, Sotax, Basel, Switzerland; n=6). The measured values of 

tablet weight, height and crushing strength were 80.6± 0.1 mg, 3.98± 0.02 mm and 6.9± 0.5 kp, 

whereas such values were 10.2± 0.6 mg, 2.01± 0.06 mm and 1.46± 0.7 kp in the case of minitablets. 

Friability and disintegration time were < 0.3% and < 1 min with both tablet and minitablet cores. 

These units were subsequently coated by a rotary fluid bed (GPCG 1.1, Glatt, Binzen, Germany) 

with an 8.0% w/v HPMC – 0.8% w/v PEG 400 aqueous solution. The adopted operating conditions 

were: 750 g batch size, 55-60°C inlet air temperature, 40-45°C outlet air temperature, 26-28°C 

product temperature, 95 m
3
/h inlet air volume, 0.8 mm nozzle port size, 2.0 bar atomizing pressure 

and 2.5 g/min spray rate.
25

 HPMC-coated cores along with uncoated ones were subsequently coated 

by a bottom-spray fluid bed with Eudragit
®

 NE 30 D, as such or containing 10, 15 or 20% w/w on 

the dry polymer of Explotab
®

 V17. The superdisintegrant powder was allowed to swell in deionized 

water, and the resulting suspension was mixed with Eudragit
®

 NE 30 D under gentle stirring. The 

following operating conditions were set up: 200 g batch size, 35-37°C inlet air temperature, 27-

29°C outlet air temperature, 26-28°C product temperature, 65-70 m
3
/h inlet air volume, 1.2 mm 

nozzle port size, 2.0 bar atomizing pressure and 2 g/min spray rate. In order to check the 

progression of the coating process, weight gain (n=20) was calculated by subtracting the mean 

weight of uncoated cores from that of coated ones. Curing was then carried out at 40°C for 24 h in 

an oven. 

Coat thickness was measured by scanning electron microscope (SEM; Sigma, Zeiss, Oberkochen, 

Germany) analysis. Digital photomicrographs of cross-sectioned two-layer systems were acquired 

after gold sputtering. The obtained data were the average of 20 measurements performed in 

differing areas of the coating of several units. In the case of nominal 10 µm, 20 µm and 30 µm 

thicknesses of the outer Eudragit
®

 NE/Explotab
®

 V17 film, the measured values were 9.3±2.1 µm, 

22.0±3.5 µm and 31.3±4.1 µm, whereas those relevant to the inner HPMC coating were 249.2±20.6 

µm and 148.5±15.6 µm. 
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An outline of all formulations that were manufactured and evaluated is reported in Table 1; only the 

one having a minitablet core, 250 µm HPMC coating and 20 µm Eudragit
®

 NE/Explotab
®

 V17 film 

containing 20% of Explotab
®

 V17 (mHENex20) was further coated with diluted Eudragit
®

 L 30 D-

55 (15.9% of dry polymer in the coating suspension) by bottom-spray fluid bed up to a nominal 

enteric film thickness of 100 µm, corresponding to a 10 mg/cm
2
 amount of polymer. The coating 

conditions were: 200 g batch size, 30-32°C inlet air temperature, 23-25°C outlet air temperature, 

22-24°C product temperature, 65-70 m
3
/h inlet air volume, 1.2 mm nozzle port size, 2.0 bar 

atomizing pressure and 3 g/min spray rate. A final curing step was then performed at 40°C for 2 h 

in an oven. 

In vitro release tests (n=3) were carried out by means of a modified disintegration testing method 

(800 ml of fluid, 37±1°C) in order to overcome adhesion of the hydrated HPMC coating to the 

vessels of a paddle dissolution apparatus, as described previously.
26

 All formulations were tested in 

phosphate buffer pH 6.8. Only the enteric-coated system was tested in HCl 0.1 N for 2 h and, 

subsequently, in phosphate buffer pH 6.8. Fluid samples were withdrawn at successive time points 

and assayed by spectrophotometer (Lambda 25, Perkin Elmer, Monza, Italy) at λ=248 nm after 

verifying agreement of results between the relevant method and a HPLC one. For this purpose, the 

approach reported in USP 37 General Chapter "Analytical Data-Interpretation and Treatment" 

("Comparison of analytical methods", p. 519) was followed.
27

 Samples were collected at 4 selected 

time points (0.6-70.0 µg/ml concentration range) during the release test of cores and coated systems 

having maximum coat thicknesses and Explotab
®

 V17 concentrations. Each sample was analyzed 

(n=6) by both UV and reverse phase-HPLC (column: C18 at 40°C, mobile phase: deionized water 

for HPLC/acetonitrile/perchloric acid 3000:1000:3 v/v at pH=2.4, flow rate: 1.2 ml/min, detection: 

UV at 248 nm, injection volume: 40 µl) using freshly prepared standard solutions as a reference. 

The 95% confidence intervals for the differences in the sample means (UV minus HPLC) fell in the 

±2% range with respect to the HPLC mean, which was considered acceptable within the scientific 

context concerned.
27,28
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Release testing of the two-layer minitablet-based system with 20% of Explotab
®

 V17 in the outer 

film, stored in sealed plastic bags under ambient conditions (25±1°C/55±5% RH) for 3 years, was 

repeated at programmed time points. In vitro lag time was expressed as the time to 10% drug 

release (t10%) in phosphate buffer pH 6.8. t10% values were calculated by linear interpolation of data 

immediately before and after 10% drug release. In order to statistically compare t10% means, 

unpaired two-group two-tail t-student test was performed (Excel 2007, Microsoft, Redmond, 

Washington, USA) accounting for heteroscedasticity. The differences were considered significant 

with p <0.05.  

The morphological changes of two-layer minitablet-based systems occurring upon the relevant 

exposure to aqueous media were evaluated by placing each sample (n=3), fixed on a pin, in a beaker 

containing 50 ml of phosphate buffer pH 6.8 immersed in an oscillating bath (SW22, Julabo Italia, 

Milan, Italy; 37±1°C, 100 rpm). At predetermined time intervals, measurements of the sample 

diameter were performed on digital photographs (digital photocamera Nikon D70, Nital, Torino, 

Italy) with the aid of an image-editing software (Photoshop 7.0, Adobe, San Jose, California, USA). 

The % variation in diameter was calculated according to the following equation: 

 

where d0 and dt are the starting diameter and the diameter measured at each time point, 

respectively.
29

 

 

Results and Discussion 

According to the results from a previous screening study, Eudragit
®

 NE formulations containing 

Explotab
®

 V17 were selected for more in-depth evaluation in terms of impact on the in vitro release 

performance of HPMC-coated pulsatile delivery systems.
23

 Eudragit
®

 NE/Explotab
®

 V17 films, at 

10%, 15% or 20% of superdisintegrant on the dry polymer, were thus applied to tablets (5 mm) and 
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minitablets (2.5 mm), chosen as cores of reduced size, provided with a swellable/erodible HPMC 

coating of 250 µm. 

The aqueous film-coating process was feasible with all tested compositions, requiring only minor 

adjustments of the operating conditions when shifting from tablet to minitablet cores. Coated 

systems with nominal outer film thicknesses of 10 µm, 20 µm and 30 µm were obtained within 60 

min of processing. Such films were continuous and, possibly due to the incorporated 

superdisintegrant particles, presented a rough surface (Figure 1). 

When subjected to in vitro release testing, tablet-based devices provided with Eudragit
®

 NE films 

having 10% of Explotab
®

 V17 (tHENex10) and thickness of 10 µm gave rise to a typical pulsatile 

delivery profile with a significantly more extended (p<0.05) lag time as compared with starting 

HPMC-coated units (tH) (Figure 2). In particular, the mean t10%, i.e. the time to 10% release, was 

more than tripled by the presence of the external coat. However, the individual data were affected 

by a relatively high variability, which appeared worsened in the case of 20 µm-thick films. Indeed, 

one of the three specimens with this nominal outer film thickness did not start releasing within the 

whole duration of the test (10 h), and only one showed a fast and quantitative liberation of the 

active ingredient after a lag phase of approximately 9 h. Such a delay phase was by far longer than 

those in the 60-120 min range formerly shown by analogous systems, tested under the same 

conditions, which were demonstrated to yield in vivo lag times potentially suitable for time-

controlled colon targeting.
25

 These findings may indicate that, at the coating thickness of 20 µm, a 

10% concentration of the pore former would not be sufficient to ensure a homogeneous distribution 

thereof in the film thus resulting in a slow and erratic hindrance to the hydration of the underlying 

HPMC layer. Accordingly, the in vitro behavior of tHENex10 with a 30 µm nominal thickness of 

the outer film was not considered worthy of evaluation. 

The systems with 15% and 20% of Explotab
®

 V17 in the Eudragit
®

 NE coat, i.e. tHENex15 and 

tHENex20, respectively, still yielded significantly longer (p<0.05) lag times as compared with one-

layer HPMC-coated units, although the relevant duration was reduced with respect to that of 
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tHENex10 except for tHENex15 with 10 µm-thick film (Figures 3 and 4). Notably, fairly 

reproducible lag times were observed prior to a fast liberation of the tracer drug in the case of outer 

films of 10 µm. On the other hand, with thicker coats, namely 20 and 30 µm, the onset of release 

was poorly reliable and, due to the high variability encountered, the performance could not be 

distinguished as a function of the coating level. 

As expected, the percentage of Explotab
®

 V17 and the thickness of the external film had an 

opposite influence on the release pattern (Table 2). The superdisintegrant content would indeed 

affect the permeability of the polymeric barrier, reasonably because of the hydrophilicity conferred 

and the gaps formed following hydration and possible leaching out of the pore former into the bulk 

medium. This would lead to an earlier and faster swelling of HPMC and, in turn, break-up of the 

system. In contrast, by increasing the thickness of the outermost coat, the relevant toughness would 

also be enhanced. Therefore, when thicker films are applied, HPMC would not only undergo a 

slower hydration because of hindered penetration of water but also need to swell to a greater extent 

before the disruption of the overlaid coating occurs, thus being reflected in longer lag phases and, 

possibly, in an erratic onset of release. 

When considering two-layer systems based on minitablet cores, only the film-forming formulations 

at 15% and 20% of superdisintegrant (mHENex15 and mHENex20, respectively) were considered 

(Figures 5 and 6). The unreliable release data obtained from tHENex10 systems were indeed 

ascribed to an insufficient concentration of pore former. 

Minitablets with a 250 µm HPMC coating (mH) provided shorter delay phases than the previously 

investigated tablet-based systems (tH) reasonably because of the overall smaller amount of polymer 

applied (7.0 mg vs. 21.6 mg). Moreover, although able to prolong the duration of the delay period as 

compared with the starting HPMC-coated minitablets, the film formulations containing 15% and 

20% of Explotab
®

 V17 were generally demonstrated less effective than in the case of two-layer 

systems based on 5 mm tablets, and a more pronounced slow drug liberation phase, during which 

~15% of active ingredient leached out via a diffusion mechanism, was evident prior to the release 
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pulse. This may be ascribed to the relatively larger surface area available for diffusion exposed by 

smaller units, and, in addition, the wider surface might lead to a broader spread of the disintegration 

pressure exerted by the core upon water inflow, which would less effectively promote a prompt 

break-up of the system at the end of the lag phase. As previously observed with the systems 

prepared from 5 mm cores, the release profiles of mHENex15 and mHENex20 were also strongly 

affected by the coating level and superdisintegrant content of the outer film. By raising the former, 

longer lag times were achieved from both formulations. However, the extent of variability markedly 

increased with the film thickness in the case of mHENex15. While the films containing Explotab
®

 

V17 at 20%, because of the higher hydrophilicity, turned out to extend the duration of the lag phase 

to a lesser extent than mHENex15, the relevant data variability was reduced thus pointing out a 

more reliable performance and, possibly, a minor impact on the HPMC swelling and erosion 

phenomena. Interestingly, the average t10% of mHENex20 with outer films of 20 and 30 µm, 

respectively, was more than three- and four-fold as compared with the mH reference formulation 

(Table 3).  

In order to investigate the role played by the applied films, the changes undergone by mHENex15 

and mHENex20 systems with 30 µm-thick Eudragit
®

 NE/Explotab
®

 V17 coats while immersed in 

phosphate buffer pH 6.8 were monitored vs. the reference one-layer system (mH) (Figures 7 and 8). 

The latter showed an initial increase in volume due to the swelling of HPMC, directly exposed to 

the medium (Figure 7a). Afterwards, a progressive reduction in size, brought about by the erosion 

and dissolution of the hydrated polymer, was observed until complete disintegration at 90 min. 

As compared with mH, mHENex15 was subject to a slower expansion that also continued after the 

external film started to break up (Figure 7b). In this respect, it was hypothesized that the poor 

permeability of such a film would not enable a rapid hydration of the underlying HPMC layer, and 

the consequently slow swelling process would not result in a fast and homogeneous rupture of the 

film itself, which rather underwent the gradual formation of breaches and fissures. 
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In the case of mHENex20 (Figure 7c), a swelling phase was initially noticed, much faster than with 

mHENex15 though slower than with mH. This was ascribed to a relatively rapid permeation of 

water through the external film, which allowed extensive hydration of HPMC while maintaining its 

integrity and progressively adapting to the expansion of the core unit. Subsequently, after failure of 

such a film and direct exposure of HPMC to the fluid, the hydrophilic polymer layer underwent a 

gradual erosion that led to a decrease in the system size. 

Accordingly, the % variation in diameter vs. time curves obtained pointed out marked differences 

between the two-layer formulations under investigation (Figure 8). The pattern of mHENex20 was 

less differentiated from that of systems coated with HPMC only, with a slower and more persistent 

swelling that would account for the extended delays observed in the previous drug release profiles. 

Interestingly, mHENex20 had already reached its maximum expansion by the time of break-up of 

the outer film, which was thereby demonstrated not to limit the extent of swelling of the HPMC 

layer. This was not surprising in view of the tensile properties displayed by isolated films with the 

same composition.
23

 Indeed, the wet free film underwent a more than four-fold elongation at break. 

Soon after the outer film disruption, i.e. when the polymer erosion/dissolution was no longer 

hampered, the diameter of mHENex20 started to decrease. By contrast, mHENex15 gained a % 

increase in volume by far lower than that exhibited by the other investigated systems over the same 

timeframe and kept expanding after rupture of the relevant film. As wet isolated films with the same 

composition were able to stretch up to approximately 5 times with respect to their original length, 

and no limitation to the extent of swelling was highlighted in the case of mHENex20 despite the 

greater amount of Explotab
®

 V17, which could have been expected to more deeply impact on the 

inherent flexibility properties of the polymethacrylate, the possibility that the HPMC expansion 

would mechanically be restrained in mHENex15 could be ruled out. The applied film was thus 

assumed to hinder a fast and extensive water uptake in view of its low permeability barrier 

characteristics. 
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Moreover, by relating the observed morphological changes to the profile of drug concentration in 

the immersion fluid, the onset of drug release from mHENex20 was assessed to coincide with the 

beginning of the core disintegration (data not shown). Because this occurred largely after breakage 

of the outer film, it was hypothesized that the latter would merely act as a temporary hindrance to 

water uptake and erosion phenomena rather than as a rupturable coating chiefly responsible for 

controlling the onset of release. 

The film containing 20% of Explotab
®

 V17 was thus demonstrated to provide the desired 

prolongation of lag time without any major influence on the release mode, i.e. a fast release phase 

after the delay period was preserved. In order to better elucidate the role of such a film formulation 

in the control of drug liberation, systems without the intermediate hydrophilic coat were prepared 

and evaluated (Figure 9). Minitablets provided with a Eudragit
®

 NE/Explotab
®

 V17 (20%) film 

(mENex20) of 20 µm showed a reproducible latency on the order of minutes, and a somewhat 

sigmoidal release profile. Although extended by the film of 30 µm, the lag period was much shorter 

than that exhibited by the corresponding two-layer system and still far from suitability for colon 

delivery purposes. From these results it was inferred that the Eudragit
®

 NE/Explotab
®

 V17 film 

formulation as such would provide a minor contribution to the overall duration of the lag phase. It 

was therefore evident that the HPMC layer would also be needed for a sufficient delay in the onset 

of drug liberation to be achieved and, probably, for the outer film break-up to be promoted, thereby 

avoiding a major impact on the rate of release. Importantly, because the lag time observed with two-

layer units (mHENex20) was longer than the sum of those yielded by each single layer, a 

synergistic interplay should be assumed to operate between the HPMC and Eudragit
®

 

NE/Explotab
®

 V17 coats. 

The influence of the HPMC coating level was subsequently explored with the aim of further 

reducing, if possible, the overall dimensions of the final dosage forms whilst preserving a consistent 

pulsatile release behavior. For this purpose, minitablet-based systems provided with a thinner 

HPMC coat (150 µm) along with a 10 µm, 20 µm or 30 µm Eudragit
®

 NE film with Explotab
®

 V17 
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at 20% (mH150ENex20) were prepared, and their performance was compared with that of the 

corresponding systems having a 250 µm thick HPMC layer (Figure 10). In these cases, the duration 

of the lag period was shorter as expected in view of a lower HPMC coating level. Moreover, 

although such two-layer formulations proved capable of prolonging the lag time lapse imparted by 

the sole HPMC coating, the variability in the onset of the release pulse and the tendency to a 

diffusive drug liberation were amplified when increasing the thickness of the outer Eudragit
®

 

NE/Explotab
®

 V17 to 30 µm. In this respect, it is likely that, at a thickness of 150 µm, the 

expansion of the HPMC coating would be lower thus turning out less effective in aiding rupturing 

of the overlaid film, as highlighted during the release test. Therefore, not only the permeability and 

flexibility characteristics of the external coat but also the extent of swelling of the hydrophilic layer 

could be critical for the achievement of the desired release profile. 

Finally, the release performance of the mHENex20 system with an outer film of 20 µm, stored 

under ambient conditions, was evaluated over a three-year time lapse (Figure 11). t10% data were not 

significantly changed throughout the whole period, which indicated that the behavior of the overall 

formulation would not be altered as a consequence of storage, and the impact of any possible 

change in the dissolution characteristics of paracetamol would not be highlighted.
30

 

The same system was subjected to enteric coating in view of the final goal of the work, i.e. the 

design and evaluation of an oral delivery system for time-dependent colonic release. Such a system 

was able to withstand exposure to a 0.1 N HCl solution for 2 h and, when immersed in phosphate 

buffer pH 6.8, the release pattern provided was comparable to that shown by its non-gastroresistant 

counterpart, thus confirming the formation of a continuous Eudragit
®

 L film and lack of alteration 

of the underlying functional layers possibly brought about by enteric coating (Figure 12).  

 

Conclusions 

Previously identified Eudragit
®

 NE/Explotab
®

 V17 film-forming formulations containing differing 

amounts of the superdisintegrant (10-20% on polymer) were applied to HPMC-coated tablet and 
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minitablet cores up to increasing levels. The outer films were generally demonstrated to extend the 

lag phase imparted by HPMC as a function of their thickness and superdisintegrant content. 

Particularly, the formulation with 20% of Explotab
®

 V17 proved able to consistently enhance the 

efficiency of the hydrophilic layer in delaying the onset of drug liberation without any major impact 

on the relevant rate. Indeed, such a film was assumed to only slightly affect the swelling pattern of 

the underlying HPMC layer and not to limit its expansion upon hydration. The swellable/erodible 

coating was confirmed to play a crucial role in defining the release pattern, and a sufficient 

thickness thereof was needed in order to preserve the pulsatile release mode pursued. However, the 

performance obtained was proved to result from a synergistic interplay between the two overlaid 

layers. 

The release behavior of a two-layer delivery system consisting in minitablet cores provided with a 

250 µm HPMC coat and a 20 µm Eudragit
®

 NE film at 20% of Explotab
®

 V17 was demonstrated 

consistent over a period of 3 years, during which the samples were stored under ambient conditions. 

Finally, the application of a Eudragit
®

 L gastroresistant coating prevented not only the drug 

liberation but also activation of the time-programmed lag phase while this formulation was 

immersed in the acidic fluid, without hindering the pulsatile release behaviour expected in the 

subsequent buffer medium. 

Based on the overall results, the application of Eudragit
®

 NE/Explotab
®

 V17 films with appropriate 

thickness and composition was proved to be a viable formulation strategy to enhance the efficiency 

of the previously proposed swellable/erodible time-dependent colon delivery system in delaying 

drug release, thus allowing the relevant size to be reduced and the versatility as well as feasibility of 

the release platform to be improved. 
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Table 1. Outline of a two-layer system and summary of the formulations prepared 

 

 

 
 

 

 

Formulation code Composition 

T Tablet core (5 mm) 

tH Tablet core (5 mm) + HPMC (250 µm) 

tHENex10 Tablet core (5 mm) + HPMC (250 µm) + Eudragit
®

 NE/Explotab
®

 V17 10%  

tHENex15 Tablet core (5 mm) + HPMC (250 µm) + Eudragit
®

 NE/Explotab
®

 V17 15% 

tHENex20 Tablet core (5 mm) + HPMC (250 µm) + Eudragit
®

 NE/Explotab
®

 V17 20% 

M Minitablet core (2.5 mm) 

mH Minitablet core (2.5 mm) + HPMC (250 µm) 

mHENex15 Minitablet core (2.5 mm) + HPMC (250 µm) + Eudragit
®

 NE/Explotab
®

 V17 15%  

mHENex20** Minitablet core (2.5 mm) + HPMC (250 µm) + Eudragit
®

 NE/Explotab
®

 V17 20%  

mENex20 Minitablet core (2.5 mm) + Eudragit
®
 NE/Explotab

®
 V17 20% 

mH150ENex20 Minitablet core (2.5 mm) + HPMC (150 µm) + Eudragit
®

 NE/Explotab
®

 V17 20%  

* % of Explotab
®

 V17 on dry Eudragit
®

 NE 

** This formulation was enteric coated with Eudragit
®

 L 30 D-55 

HPMC 250 µm (H) or 150 µm (H150) Tablet core 5 mm (t) or 2.5 mm (m) 

Eudragit
® 

NE (EN) / Explotab
® 

V17 at 10% (ex10), 15% (ex15) or 20% (ex20)* 
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Table 2. t10% of tablet-based formulations 

 

Formulations t10% ± S.D.(min) 

tH 33.3 ± 3.4 

tHENex10 10 µm 110.8 ± 27.3 

tHENex10 20 µm 530.4° 

tHENex10 30 µm - 

tHENex15 10 µm 137.1 ± 11.1 

tHENex15 20 µm 349.4 ± 69.4 

tHENex15 30 µm 438.9 ± 97.9 

tHENex20 10 µm 74.5 ± 8.2 

tHENex20 20 µm 212.9±44.0 

tHENex20 30 µm 260.5 ± 47.9 

°Mean of two replicates.  
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Table 3. t10% of minitablet-based formulations 

 

Formulations t10% ± S.D.(min) 

mH 22.3 ± 1.5 

mHENex15 10 µm 75.2 ±5.2 

mHENex15 20 µm 204.0 ± 69.3 

mHENex15 30 µm 214.3 ± 62.7 

mHENex20 10 µm 51.1 ± 0.9 

mHENex20 20 µm 69.3 ± 3.6 

mHENex20 30 µm 126.8 ± 10.4 

mH150 16.7 ± 2.7 

mH150ENex20 10 µm 31.7 ± 4.8 

mH150ENex20 20 µm 56.5 ± 4.6 

mH150ENex20 30 µm 100.3 ± 15.0 
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Figure 1. SEM photomicrographs of (a) mHENex20 with outer film of 10 µm (magnification 122x) and (b) 
cross section of the same formulation (magnification 371x).  

80x125mm (300 x 300 DPI)  
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Figure 2. Individual release profiles of paracetamol from tH and tHENex10 with outer film of increasing 
thicknesses.  

80x56mm (300 x 300 DPI)  
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Figure 3. Individual release profiles of paracetamol from tH and tHENex15 with outer film of increasing 
thicknesses.  

80x56mm (300 x 300 DPI)  
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Figure 4. Individual release profiles of paracetamol from tH and tHENex20 with outer film of increasing 
thicknesses.  

80x56mm (300 x 300 DPI)  
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Figure 5. Individual release profiles of paracetamol from mH and mHENex15 with outer film of increasing 
thicknesses.  

80x56mm (300 x 300 DPI)  
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Figure 6. Individual release profiles of paracetamol from mH and mHENex20 with outer film of increasing 
thicknesses.  

80x56mm (300 x 300 DPI)  
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Figure 7. Photographs of (a) mH, (b) mHENex15 and (c) mHENex20 with outer films of 30 µm immersed in 
phosphate buffer pH 6.8 at successive time points.  

140x76mm (300 x 300 DPI)  

 
 

Page 28 of 33Journal of Pharmaceutical Sciences



  

 

 

Figure 8. Mean % variation in diameter vs. time curves of mH and mHENex15 as well as mHENex20 with 
outer films of 30 µm immersed in phosphate buffer pH 6.8. Arrows and vertical bars indicate time of outer 

film break-up and standard deviation, respectively.  

80x56mm (300 x 300 DPI)  
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Figure 9. Individual release profiles of (a) mENex20 with outer film of 20 µm and (b) mENex20 with outer 
film of 30 µm.  

80x112mm (300 x 300 DPI)  
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Figure 10. Individual release profiles of paracetamol from mH and mH150ENex20 with outer film of 
increasing thicknesses.  

80x69mm (300 x 300 DPI)  
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Figure 11. t10% of mHENex20 with outer film of 20 µm at successive time points during 3 years of storage under ambient conditions (n=3, vertical bars indicate 

S.D.).  

79x58mm (300 x 300 DPI)  
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Figure 12. Individual release profiles of paracetamol from gastroresistant mHENex20 with Eudragit® 
NE/Explotab® V17 film of 20 µm.  

84x56mm (300 x 300 DPI)  
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