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Abstract

Breast cancer is a known heterogeneous disease. Current clinically utilized histopathologic 

biomarkers may undersample tumor heterogeneity, resulting in higher rates of misdiagnosis for 

breast cancer. MRI can provide a whole-tumor sampling of disease burden and is widely utilized 

in clinical care. Texture analysis can provide a localized description of breast cancer, with 

particular emphasis on quantifying breast lesion heterogeneity. The object of this review is to 

provide an overview of texture analysis applications towards breast cancer diagnosis, prognosis, 

and treatment response evaluation and review the role of image-based texture features as 

noninvasive prognostic and predictive biomarkers.

One in eight women are diagnosed with breast cancer in the United States each year.1,2 

Breast cancer is a known heterogeneous disease, with inter- and intratumor heterogeneity 

demonstrated in genomic, histologic, and radiologic analyses.3–5 Intratumor heterogeneity 

can manifest itself spatially, with microenvironment-specific factors driving the progression 

and distribution of distinct subpopulations.6 Additionally, the dynamic behavior of breast 

cancer cells can lead to temporal intratumor heterogeneity, where disease presentation is 

altered longitudinally due to growth or in response to systemic and local therapies.6 

Currently, diagnostic, prognostic, and treatment decisions for breast cancer are made 

primarily on the basis of established histopathologic biomarkers originating from tissue 

samples acquired from core biopsy or surgical excision. While advanced treatment and 

management options have reduced the number of breast cancer-related deaths, 30% of 

women are either under- or overtreated for breast cancer.7,8 As such, these histopathologic 

biomarkers may be an undersampling of the heterogeneous tumor, suggesting a clinical need 

for whole-tumor sampled biomarkers.

Imaging allows for noninvasive sampling of disease burden, with the ability to longitudinally 

monitor response to treatment.9,10 Magnetic resonance imaging (MRI) is highly sensitive for 

primary lesion detection, particularly for high-risk women.10 Specific MRI sequences such 

as diffusion weighted (DW) MRI and dynamic contrast-enhanced (DCE) MRI can provide 

further insight into tissue architecture and vascularization of and around the tumor.11,12 
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Current clinical analysis of MR images is largely qualitative, using DCE-MRI to identify 

tumor regions with contrast uptake or monitor morphologic appearance.13

Recent advances in medical image analysis have highlighted the implementation of 

computer vision principles and analytic techniques used to quantify and describe medical 

images.14–16 Image texture has been previously defined as repeating patterns of local 

variations in gray-level intensities.15,17 Texture analysis has most broadly been used to 

characterize the spatial distribution of gray-level intensities within an image, capturing 

image patterns usually unrecognizable or indistinguishable to the human eye. The original 

utilization of texture analysis can be traced back to computer vision applications for surface 

inspection and orientation, image and object classification, and shape determination, while 

current applications extend even beyond medical image analysis.17–19 Within the scope of 

breast imaging, texture analysis has emerged as a quantitative, surrogate measure for breast 

parenchymal patterns when applied to images taken during mammographic and tomographic 

screenings, serving to augment conventional measures of breast percent density in breast 

cancer risk assessment.20 As developments in MRI have led to improved resolution for 2D 

and 3D insight into the structure and function of the human body, MRI is now widely 

utilized for breast cancer screening, diagnosis, and treatment response.9,21 As such, textural 

information extracted from MR images can have high clinical relevance.22–30 As compared 

to a global or qualitative report of breast tumor appearance, texture analysis can provide a 

refined, local description of tumor complexity, heterogeneity, and kinetic behavior as seen in 

MRI. This quantitative characterization of MR images can have specific applications 

towards the diagnosis, prognosis, and treatment of breast cancer.

Commonly Extracted Texture Features

Texture analysis aims to extract high-throughput information characterizing image texture 

within a defined region of interest (ROI). For the analysis of breast lesions as presented in 

MRI, texture features are often extracted from an ROI selected within a segmented lesion, or 

from the whole lesion itself. Additionally, recent studies have shown clinical associations of 

texture within the peritumor region as well, emphasizing the importance of the tumor 

microenvironment as presented in MRI.31,32

The most commonly used texture features can be stratified by the statistical order of the 

voxel information encoded within the image. Specifically, first-order texture features include 

common statistical measures derived from a gray-level histogram, such as mean, median, 

and skewness. Second-order texture features are often derived from the co-occurrence 

matrix, as determined by Haralick and Shanmugam,33 and the run-length matrix,34 while 

higher-order texture features encode structural and frequency-based texture information 

(Fig. 1).

First Order: Gray-Level Histogram Features

A gray-level histogram can be generated by calculating a frequency count of the number of 

voxels of each gray-level intensity value, where the total number of discretized gray-levels is 

often a user-selected parameter. From the resulting histogram, first-order statistical features 

may be derived, including the mean, median, and variance. Higher moment features can also 

Chitalia and Kontos Page 2

J Magn Reson Imaging. Author manuscript; available in PMC 2020 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be extracted from the histogram including skewness, the measure of the histogram 

distribution symmetry, and kurtosis, a measure of the histogram distribution shape. While 

many descriptors can be extracted from the histogram, they often provide cursory insight 

into the underlying texture, do not account for gray-level intensity spatial relationships 

within an image, and are dependent on user-selected parameters (Table 1).

Second Order: Gray-Level Co-Occurrence Matrix and Run-Length Features

Gray-level co-occurrence matrix (GLCM) features are the most commonly extracted texture 

features for MRI quantification. A GLCM encodes the frequency that two voxels of specific 

gray-level intensities are positioned a specified distance away from each other in a specified 

image orientation.33 GLCM texture features are most often quantified in the four diagonal 

image orientations of 0°, 45°, 90°, and 135°. Second-order texture features can then be 

extracted from the co-occurrence matrix. Examples of such features include contrast, a 

descriptor of the intensity contrast between a pixel and its neighbor as determined by the 

distance parameter; correlation, a descriptor of the linear gray-level dependence; and 

homogeneity, a descriptor of the closeness of distribution in the co-occurrence matrix to the 

matrix diagonal. Other second-order features such as energy, a descriptor of the certainty of 

gray-level co-occurrence, and cluster shade, a descriptor of asymmetry in gray-level values, 

can also be extracted. Entropy, or the randomness of the GLCM, is another commonly 

extracted feature, often indicating image heterogeneity (Table 2). Run-length features 

measure the coarseness of an image in specified linear directions34–36 (Table 3).

Higher Order: Structural and Transformation-Based

Structural texture features capture the intensity variations between central voxels and 

surrounding neighboring voxels37 (Table 4). Extending texture analysis beyond the spatial 

orientation of gray-level intensity values, transformation-based texture features capture 

texture information encoded in a different space, such as the frequency space. 

Transformation-based methods include the Fourier transform, Gabor transform, and Wavelet 

transform.38–40 The wavelet transform, in particular, is commonly used due to its ability to 

capture the MR images frequency content both at varying image scales and multiple 

specified directions.

Applications in Breast Computer-Aided Diagnosis

Computer-aided diagnosis (CAD) of breast tissue was one of the earliest applications of 

texture analysis in the breast.41 Gibbs and Turnbull42 were one of the first to apply texture 

analysis toward classifying breast lesions as benign or malignant. The authors reported using 

2D DCE-MR images from a cohort of 79 women, of which 45 were diagnosed with breast 

cancer. An ROI was selected to encompass the entire lesion, within which gray-level 

intensity values were discretized to 32 levels. Within each lesion ROI, a co-occurrence 

matrix was determined for adjoining pixels in 0°, 45°, 90°, and 135° directions. The co-

occurrence matrices of each direction were averaged and 14 GLCM texture features were 

extracted. Texture features of variance, sum entropy, and entropy were concluded to be the 

most significant when discriminating between benign and malignant lesions, as determined 

by logistic regression performance, suggesting that features quantifying image texture could 
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be a useful tool in lesion delineation. Subsequent studies have followed this preliminary, yet 

promising, conclusion by utilizing more complex measures of image texture to diagnose 

breast lesions as benign or malignant.43–49 Nie et al44 investigated the utility of breast lesion 

texture in parallel with lesion morphology features, using a retrospective study size of 71 

women, of which 28 and 42 were diagnosed with benign and malignant lesions, respectively. 

Ten GLCM texture features were extracted from a co-occurrence matrix summarizing the 

entire lesion, while eight morphologic features were extracted as well. The study found that 

the performance of three texture features: GLCM entropy, GLCM Sum Average, and GLCM 

Homogeneity, and three morphology features resulted in an area under the curve (AUC) of 

the receiver operating characteristic (ROC) curve of 0.86. Holli et al47 proposed using 

texture features to distinguish between cancerous and healthy breast tissue within a 15 × 15 

pixel ROI, and found that, with 100% accuracy, a combined set of 277 texture features 

including histogram-based, GLCM, and wavelet features was able to distinguish between 

healthy and cancerous breast ROIs. Similar conclusions were reported by Nagarajan et al,43 

who found that GLCM-based texture features quantifying lesion heterogeneity were 

particularly accurate when classifying small lesions as benign or malignant. While many of 

these studies share similar conclusions with regard to specific texture features having high 

discriminatory capacities, there is a lack of literature for comparative studies performed on 

the same dataset with defined parameters for extracted features.

A multiparametric CAD approach was suggested by Bhooshan et al46 leveraging T2-

weighted and T1-weighted DCE-MRI. GLCM texture features were extracted from breast 

images from each imaging sequence, while kinetic features were extracted from the DCE-

MR images to build a multiparametric feature vector. The study found that the 

multiparametric feature vector outperformed features extracted from an individual imaging 

sequence when differentiating between malignant and benign lesions, suggesting that texture 

analysis, when applied to T2-weighted MR images, provided additional discriminatory 

information beyond that extracted from T1-weighted imaging.

Traditional applications of texture analysis towards breast diagnosis largely focused on 2D 

texture features extracted from a 2D slice from 3D images. This idea was extended by Chen 

et al,48 who extracted 3D GLCM texture features from a 3D breast lesion segmentation. The 

3D GLCM features yielded a higher diagnostic accuracy than 2D GLCM features extracted 

from a 2D ROI, when distinguishing between malignant and benign breast lesions, showing 

an advantage for 3D breast lesion characterization.

Beyond CAD: Texture Analysis for Histopathologic and Molecular Subtype 

Classification

The promising conclusions of MRI texture analysis in breast cancer diagnosis suggest an 

architectural difference between the imaging presentation of benign and malignant lesions 

that can be quantified using texture features. Recent studies have begun extending this idea, 

hypothesizing that underlying tumor biological differences can be imaged using MRI and 

characterized using texture analysis. Consequently, many groups have employed texture 

analysis to distinguish between the heterogeneous histopathologic32,45,47,50 and 
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molecular51–54 subtypes of breast cancer, with a larger goal of utilizing image texture 

features to provide a personalized diagnosis (Table 5).

In an attempt to distinguish between invasive lobular carcinoma (ILC) and invasive ductal 

carcinoma (IDC), Holli et al47 extracted a total of 277 histogram, GLCM, run-length, and 

wavelet features. The authors found that of these only GLCM-related features characterizing 

lesion complexity and randomness were significantly different between ILC and IDC 

lesions. Similar conclusions were reported by Waugh et al,50 who found that entropy, a 

texture measure of pixel distribution randomness, was significantly different between lobular 

and ductal lesions, suggesting a difference in underlying growth patterns and tumor 

heterogeneity.

Increasing the scope of texture analysis to include the surrounding microenvironment in 

addition to the breast lesion, Wang et al32 investigated the role of kinetic contrast uptake 

texture in differentiating between histopathologic subtypes of breast cancer. Texture features 

were extracted from pharmacokinetic parametric maps generated from DCE-MR images of 

the tumor and surrounding parenchyma. Adding texture features characterizing 

heterogeneous uptake in the breast parenchyma to a model containing lesion texture features 

allowed for the identification of triple-negative breast cancers (TNBC). The study concluded 

that the characterization of heterogeneity, both within the lesion as well as the surrounding 

parenchyma, could provide noninvasive insight into the heterogeneous tumor behavior 

associated with more aggressive subtypes. These results were similar to those found in 

previous studies,55,56 indicating the clinical value of lesion and peritumoral contrast uptake 

quantification. Texture features quantifying lesion heterogeneity have also been shown to aid 

in delineating between molecular subtypes of breast cancer. Studies have shown a textural 

difference between the MR presentation of luminal A and luminal B subtypes, with luminal 

B lesions having a more quantifiably heterogeneous appearance.51,54

Texture Analysis for Breast Cancer Prognosis and Therapy Response 

Prediction

Recent studies have shown promising conclusions when exploring the relationship between 

breast lesion texture and risk of recurrence, and the value of image texture as a noninvasive 

prognostic biomarker45,57–61 (Table 6). Kim et al57 performed a retrospective analysis of 

203 women diagnosed with invasive breast cancer, extracting histogram uniformity and 

entropy features from both T2-weighted MR images and T1-weighted DCE-MRI. Univariate 

and multivariate associations between these texture features and disease-free survival 

determined that increased tumor heterogeneity in T2-weighted MRI could be used to stratify 

patients more at risk for recurrence. That study suggested that tumor heterogeneity, as 

quantified by lesion texture, could be used in MRI as an independent prognostic marker. 

Similar conclusions were drawn by Park et al,59 who generated a multivariate feature vector 

based on morphologic, histogram texture, and GLCM texture features, from which 

specifically GLCM cluster tendency, GLCM variance, and GLCM sum variance were 

selected for in a model stratifying patients at risk for recurrence. Mahrooghy et al60,61 

extracted wavelet texture features from within tumor subregions partitioned by 
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pharmacokinetic behavior and concluded that the spatial frequency texture pattern captured 

using wavelets within the heterogeneous subregions could serve as a strong prognostic 

biomarker for predicting risk of tumor recurrence (AUC = 0.88).

The potential for texture analysis in breast cancer treatment has been demonstrated in recent 

studies, showing the potential for MRI-extracted texture features to serve as noninvasive 

predictive biomarkers31,35,56,57,62–72 (Table 7). In order to predict response to treatment, 

some studies utilize first-order statistical texture measures extracted from the tumor ROI. 

Specifically, Johansen et al71 calculated three first-order statistical features of mean, 

standard deviation, and prediction from a relative signal intensity histogram generated from 

prechemotherapy DCE-MR scans. Of these, skewness and kurtosis were found to be 

strongly correlated with complete response to therapy. Similarly, Padhani et al72 conducted a 

retrospective study of 25 women diagnosed with primary invasive cancer, imaged using 

DCE-MRI before and after the first cycle of treatment. Leveraging contrast enhancement, 

the authors generated a histogram from a pharmacokinetic parametric map of the full lesion 

ROI, and concluded that responsive patients displayed a decrease in pharmacokinetic range, 

and proposed that this could be attributed to a decrease in heterogeneity after the first cycle 

of treatment.

While histogram texture can provide useful information regarding the distribution of gray-

level intensity values, it is limited when capturing spatial heterogeneity within a lesion, as it 

largely ignores the spatial relationships between voxels. Studies extracting higher-order 

texture features can further quantify the relation between tumor heterogeneity and response 

to therapy. To this end, Teruel et al62 extracted second-order statistical GLCM features from 

pharmacokinetic maps generated from DCE-MR images of women diagnosed with locally 

advanced breast cancer. Eight GLCM features were found to significantly differ between 

responders and nonresponders, and GLCM sum variance was able to predict response to 

treatment with an AUC of 0.77. Similar conclusions were drawn by Thibault et al,63 who 

expanded this 2D analysis by extracting 3D GLCM texture features from DCE-MR 

pharmacokinetic parametric maps in order to predict response to neoadjuvant chemotherapy 

(NAC). The 3D GLCM texture features were particularly significant in identifying early 

responders to NAC, with results showing nonresponders having higher microvascular 

heterogeneity. In a retrospective study of 36 women who underwent NACT, the change in 

tumor heterogeneity between pretreatment and mid-treatment, as calculated by entropy and 

uniformity changes, was predictive of pathologic complete response (pCR) with an AUC of 

0.84.65 Comparing this performance to change in tumor size (AUC = 0.66) demonstrates a 

greater sensitivity for lesion texture in characterizing an early response to pCR.

Current clinical predictions for achieving pCR are based on tumor histopathologic 

characteristics. As intratumor heterogeneity is associated with adverse clinical outcomes, the 

limited tissue taken during biopsy may be inadequate for a whole-tumor-based prediction.
5,73 Michoux et al66 performed a retrospective analysis on the DCE-MR scans of 69 patients 

diagnosed with IDC undergoing NAC. For each woman, texture, kinetic, and morphology-

based features were extracted from within the pretreatment lesion ROI. The authors 

concluded that only four parameters—three texture features (GLCM inverse difference 

moment, gray-level nonuniformity, and long run high gray-level emphasis), and the washin 
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slope kinetic feature—were found to classify nonresponders with 84% sensitivity. Of 

particular note, clinically utilized histopathologic predictive biomarkers such as estrogen 

receptor (ER) status, progesterone receptor (PR) status, Ki67 status, and human epidermal 

growth factor receptor 2 (HER2), along with tumor grade, were not significant when 

classifying early response, further highlighting the utility of texture analysis. Similarly, 

Golden et al64 extracted GLCM-based texture features from pharmacokinetic parametric 

maps generated from DCE-MR images of women diagnosed with TNBC, in order to predict 

pCR, residual lymph node metastases, and residual tumor with lymph node metastases. The 

predictive performance of GLCM texture features was compared to “patterns of response,” a 

qualitative description of lesion appearance before and after chemotherapy, as determined by 

a radiologist. The GLCM texture features extracted from prechemotherapy MR images 

could predict pCR and residual lymph node metastasis with a reported AUC of 0.68 when 

classified in a logistic regression model. In contrast, the radiologist determined “patterns of 

response” did not predict any of three outcome measures.

The conclusions drawn from studies implementing texture analysis for breast cancer 

diagnosis, prognosis, and treatment suggest that texture features demonstrating increased 

lesion heterogeneity are associated with aggressive growth, unfavorable prognosis, and poor 

treatment outcomes.31,57,61,67,74–76 In addition, they propose a method for noninvasively 

quantifying the underlying biology of tumor subregions driving recurrence, response, and 

resistance to therapy (Fig. 2).

Texture Analysis Study Designs

Effective use of texture analysis on MR images of breast cancer is highly dependent on 

appropriate study design and statistical evaluation. There are numerous methods for texture 

feature extraction, resulting in a myriad of ways to quantify an image’s texture. 

Consequently, having a high-dimensional texture feature set as compared to a relatively 

smaller sample size can result in the overfitting of a statistical learning model, resulting in 

false-positive classification and over-or underestimated statistical associations. Additionally, 

redundant texture features can often decrease performance accuracy. To alleviate this, 

methods such as principal component analysis or independent component analysis can be 

used to reduce the dimensionality of the texture feature set.77 Feature selection methods can 

also be used to reduce texture feature redundancy and promote relevant texture features for 

analysis. Statistical correction methods, such as the Benjamini–Hochberg correction,78 can 

be used to reduce false positives in statistical association conclusions. Ideally, results should 

be validated using an independent dataset, to ensure the veracity of the texture analysis. 

While finding comparable independent datasets is not always feasible, splitting the initial 

dataset into discovery and validation sets is an alternative solution to ensure repeatability. 

Similarly, crossvalidation can be used to identify robust conclusions. Lastly, utilization of 

publicly available datasets and detailed methodology of specific texture parameters used 

during feature extraction can allow for study repeatability.
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Future Directions

Texture analysis is limited by user-defined feature parameters, such as selecting the number 

of discretized gray levels within an image, MR acquisition protocol, and image quality.
15,48,79 As such, the literature largely lacks repeated studies performed on the same datasets 

with standardized texture feature extraction. Additionally, while texture features provide 

quantitative measures of breast tumor texture, the direct biological interpretation of specific 

texture feature values remains largely uncertain. Leveraging the specific properties of 

various functional MRI imaging techniques, texture analysis can be used to quantify 

different tissue properties. Texture analysis applied to DCE-MRI or DW-MRI could provide 

insight on the distribution or longitudinal development of tumor vascularization and 

diffusion, respectively. Similarly, statistical associations between image-derived texture 

features and histopathologic or genomic expression data could lead to a biological basis for 

tumor texture. Further work is needed to explore the relationships between specific texture 

features and underlying biology.

Many studies aiming to analyze MRI presentations of breast lesions for diagnostic, 

prognostic, and treatment applications have expanded the number and type of features 

extracted to include morphology, texture, and pharmacokinetic features, allowing for a 

thorough and quantitative characterization of all tumor properties. This has developed into 

the new field of “radiomics,” broadly defined as the extraction of high-throughput 

quantitative features from images obtained from medical imaging modalities.80–82 The 

promising conclusions from studies employing texture analyses have demonstrated that 

features defining high lesion heterogeneity have been associated with more aggressive 

diagnoses and poor response to treatment. Benefited by the whole-tumor sampling and 

visualization of tumor vasculature afforded by MRI, one of the largest aims in radiomics is 

to accurately characterize and quantify intratumor heterogeneity.4,5,73 Current advances 

within radiomics also include quantifying underlying tumor biology by investigating 

relationships between radiomic features extracted from complementary imaging modalities,
83 gene expression pathways,53,84 and existing clinical definitions for breast cancer.85,86 

Additionally, leveraging radiomic information from alternative imaging modalities in 

combination with that acquired from MRI could augment breast tumor characterization.87 

Moving forward, radiomic analysis has the potential for use in fully characterizing tumor 

biology to serve as a noninvasive, quantitative tumor assay, complementing proteomic and 

genomic tumor analyses for a comprehensive and personalized understanding of breast 

cancer.
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FIGURE 1: 
Representative 5 × 5 pixel image with six possible gray levels (0–5) (a). Gray-level 

histogram generated from representative image (b). Gray-level co-occurrence matrix 

generated for 0°. The co-occurrence matrix encodes the frequency that two pixels are located 

a specific distance (1 pixel) away from one another (c). Run-length matrix generated for 0°. 

Run-length matrix encodes the coarseness of an image in a specified linear direction (d).
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FIGURE 2: 
Representative images of a nonrecurrent and recurrent breast tumor (a). Examples of texture 

feature maps showing distributions of histogram texture features (b), co-occurrence matrix 

texture features (c), and structural texture features (d).
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