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Prediction of Peptide Conformation by the

Multicanonical Algorithm1
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Abstract

We test the effectiveness of the multicanonical algorithm for the tertiary struc-
ture prediction of peptides and proteins. As a simple example we study Met-
enkephalin. The lowest-energy conformation obtained agrees with that determined
by other methods such as Monte Carlo simulated annealing. But unlike to simulated
annealing the relationship to the canonical ensemble remains exactly controlled.
Thermodynamic quantities at various temperature can be calculated from one run.

A protein or a peptide is a molecule that consists of a chain of N amino acid residues.
There are 20 different amino acids known in nature. When N is large one calls the
molecule a protein, otherwise a peptide. The prediction of tertiary structures of proteins,
which determine their biological function, from their primary sequences remains one of
the long-standing unsolved problems (for recent reviews, see, for example, Refs. [1]). It is
widely believed that this structure corresponds to the global minimum in the energy. So
the problem amounts to finding the global minimum energy out of a huge number of local
minima separated by high tunneling barriers. Within the presently available computer
resources, the traditional methods such as molecular dynamics and Monte Carlo simula-
tions at relevant temperatures tend to get trapped in local minima. One of the methods
which which seem to alleviate this multiple-minima problem is simulated annealing.[2]
However, a disadvantage of simulated annealing is that there is no established protocol
for annealing and a certain number (which is not known a priori) of runs are necessary
to evaluate the performance. Moreover, the relationship of the obtained conformations to
the equilibrium canonical ensemble at a fixed temperature remains unclear.

These problems may be overcome by the multicanonical algorithm which was recently
proposed by Berg et al.[3] Originally developed to overcome the supercritical slowing
down of first-order phase transitions,[4] it has also been tested for systems with con-
flicting constraints such as spin glasses.[5, 6, 7] The latter systems suffer from a similar
multiple-minima problem and it was claimed that the multicanonical algorithm outper-
forms simulated annealing in these cases.[6]
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The idea of this method is based on performing Monte Carlo simulations in a multi-

canonical ensemble[3, 8] instead of the usual (canonical) Gibbs-ensemble. In the canoni-
cal ensemble, configurations at an inverse temperature β̂ ≡ 1/RT are weighted with the

Boltzmann factor PB(E) = exp
(

−β̂E
)

. The resulting probability distribution is given
by

PB(E) ∝ n(E)PB(E) , (1)

where n(E) is the spectral density. In the multicanonical ensemble,[3, 8] on the other
hand, the probability distribution is defined in such a way that a configuration with any
energy enters with equal probability:

Pmu(E) ∝ n(E)Pmu(E) = const. (2)

Then it follows that the multicanonical weight factor should have the form

Pmu(E) ∝ n−1(E) . (3)

In order to define a explicit form of this weight factor, we introduce two parameters α(E)
and β(E) as follows:[3]

Pmu(E) = exp
{

−(β̂ + β(E))E − α(E)
}

. (4)

For any fixed β(E) and α(E) this leads to the canonical weight factor with the inverse
temperature β = β̂+β(E), hence the name “multicanonical”. For a numerical simulation
one needs estimators for the multicanonical parameters β(E) and α(E). The iterative
procedure by which one can get such estimators is described elsewhere.[9] Once the mul-
ticanonical parameters are determined, one multicanonical run is in principle enough to
calculate all thermodynamic quantities by re-weighting.[10] Since in the multicanonical
ensemble all energies enter with equal probability a simulation may overcome the barriers
between local minima by connecting back to the high temperature states. In this way the
global minimum can be explored.

In the present work we apply the multicanonical algorithm to the problem of pro-
tein folding, the tertiary structure prediction of peptides and proteins. The purpose of
this work is primarily to test the effectiveness of the algorithm. For this reason we have
studied one of the simplest peptide, Met-enkephalin. The lowest-energy conformation for
the potential energy function ECEPP/2 [11] is known[12] and analyses with Monte Carlo
simulated annealing with ECEPP/2 also exist.[13, 14]

Met-enkephalin has the amino-acid sequence Tyr-Gly-Gly-Phe-Met. For our simula-
tions the backbone was terminated by a neutral NH2– group at the N-terminus and a
neutral –COOH group at the C-terminus as in the previous works of Met-enkephalin.[12]
The potential energy function that we used is given by the sum of the electrostatic term
Ees, the van der Waals energy EvdW , and hydrogen-bond term Ehb for all pairs of atoms
in the peptide together with the torsion term Etors for all torsion angles:

Etot = Ees + EvdW + Ehb + Etors (5)

Ees =
∑

(i,j)

332qiqj
ǫrij

, (6)
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Figure 1: Definition of dihedral angles

Figure 2: Average energy < E > and specific heat C of Met-enkephalin as a function of
temperature evaluated by multicanonical algorithms. The results of canonical simulations
at fixed temperatures (50 K and 300 K) are also plotted (✷).

EvdW =
∑

(i,j)

(

Aij

r12ij
−

Bij

r6ij

)

, (7)

Ehb =
∑

(i,j)

(

Cij

r12ij
−

Dij

r10ij

)

, (8)

Etors =
∑

l

Ul (1± cos(nlαl)) . (9)

rij is the distance between the atoms i and j, and αl is the torsion angle for the chemi-
cal bond l. For a definition of these angles which represent the true degrees of freedom
see Fig. 1. The parameters (qi, Aij , Bij, Cij, Dij, Ul and nl) for the energy function were
adopted from ECEPP/2,[11]. The effect of surrounding atoms of water is neglected and
the dielectric constant c is set equal to 2. The computer code KONF90,[15] was modified
to accommodate the multicanonical method. The peptide-bond dihedral angles ω were
fixed at the value 180◦ for simplicity, which leaves 19 angles φi,Ψi and χi as independent
variables.

In Fig. 2a we show the average energy, obtained by our method in a run with 105



Table 1: Table I. Energy and dihedral angles of the lowest-energy conformations of Met-
enkephalin obtained by multicanonical runs. Conformation A is the lowest-energy con-
formation obtained by Monte Carlo simulated annealing (taken from Ref. 13).

Conformation A 1 2 3 4 5 6

E [ kcal/mol ] −11.9 −11.9 −12.0 −12.0 −12.1 −12.0 −11.9

φ1 98 90 91 90 97 96 98
ψ1 154 153 152 154 151 153 156
φ2 −161 −160 −157 −161 −158 −161 −163
ψ2 69 72 64 71 71 68 65
φ3 65 64 66 63 64 64 66
ψ3 −93 −95 −92 −95 −94 −89 −92
φ4 −85 −82 −80 −77 −83 −85 −80
ψ4 −27 −26 −29 −32 −30 −31 −29
φ5 −83 −81 −82 −78 −80 −82 −86
ψ5 142 142 138 137 145 151 147
χ1
1 −179 179 −177 179 179 −178 −176
χ2
1 −112 −110 −117 −109 −111 −115 −114
χ3
1 149 144 146 143 149 145 142
χ1
4 180 −176 178 177 180 −178 180
χ2
4 73 79 81 86 79 78 78
χ1
5 −65 −64 −67 −67 −66 −67 −66
χ2
5 180 −179 180 180 −176 180 176
χ3
5 179 178 179 −179 −179 −178 −178
χ4
5 −55 −66 −59 −62 −61 −60 −57

sweeps, as a function of temperature. The value ≈ −12 kcal/mol at T = 50 K is very
close to the global-minimum energy obtained by other methods.[12, 13, 14] In Fig. 2b we
likewise present the “specific heat” (per residue), which is defined by

C = β2 < E2 > − < E >2

5
. (10)

It has a peak around T = 300 K, which indicates that this temperature is important for
peptide folding.

During the production run the system reached the global-energy minimum region six
times. The lowest-energy conformation within each visit is listed in Table I together
with the global-minimum energy conformation (Conformation A in Table I) obtained by
simulated annealing.[13] Conformations 1–6 are the results at Monte Carlo steps 20128,
39521, 44462, 65412, 89413, and 95143. Hence, the system reached the lowest-energy re-
gion in every 5000 to 20000 Monte Carlo steps. The energies are almost all equal, and the
lowest-energy value in the present work (−12.1 kcal/mol) is slightly less than the previ-
ous result (−11.9 kcal/mol) by simulated annealing.[13] Most of the dihedral angles of the
six conformations also agree with the corresponding ones of Conformation A within ≈ 5◦ .

We have applied the recently developed multicanonical algorithm to the problem of
predicting the peptide conformation. This method avoids getting trapped in a local min-



imum of energy function by connecting back to high temperature states and enhances in
this way the probability to find the global minimum. We have demonstrated the effective-
ness of the algorithm by reproducing the lowest-energy conformation of Met-enkephalin.
Furthermore, the multicanonical algorithm can yield various thermodynamic quantities
as a function of temperature from only one production run.
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