Forthcoming in the Journal of Applied Econometrics Version: January 20, 2001

MODEL UNCERTAINTY IN
CROSS-COUNTRY GROWTH REGRESSIONS

CARMEN FERNANDEZ
School of Mathematics and Statistics, University of Saint Andrews, U.K.

EDUARDO LEY
IMF Institute, International Monetary Fund, Washington DC, U.S.A.

MARK F. J. STEEL
Institute of Mathematics and Statistics, University of Kent at Canterbury, U.K.

SUMMARY

We investigate the issue of model uncertainty in cross-country
growth regressions using Bayesian Model Averaging (BMA). We find
that the posterior probability is very spread among many models
suggesting the superiority of BMA over choosing any single model.
Out-of-sample predictive results support this claim. In contrast with
Levine and Renelt (1992), our results broadly support the more “opti-
mistic” conclusion of Sala-i-Martin (1997b), namely that some vari-
ables are important regressors for explaining cross-country growth
patterns. However, care should be taken in the methodology em-
ployed. The approach proposed here is firmly grounded in statistical
theory and immediately leads to posterior and predictive inference.

1. INTRODUCTION

Many empirical studies of the growth of countries attempt to identify the factors ex-
plaining the differences in growth rates by regressing observed GDP growth on a host
of country characteristics that could possibly affect growth. This line of research was
heavily influenced by Kormendi and Meguire (1985) and Barro (1991). Excellent recent
surveys of these cross-section studies and their role in the broader context of economic
growth theory are provided in Durlauf and Quah (1999) and Temple (1999a). A more
specific discussion of various approaches to model uncertainty in this context can be
found in Temple (1999b) and Brock and Durlauf (2000). The latter paper advocates a
decision-theoretic approach to policy-relevant empirical analysis.

In this paper we focus on cross-country growth regressions and attempt to shed further
light on the importance of such models for empirical growth research. Prompted by
the proliferation of possible explanatory variables in such regressions and the relative
absence of guidance from economic theory as to which variables to include, Levine and
Renelt (1992) investigate the “robustness” of the results from such linear regression
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models. They use a variant of the Extreme-Bounds Analysis introduced in Leamer
(1983, 1985) and conclude that very few regressors pass the extreme-bounds test. In
response to this rather negative finding, Sala-i-Martin (1997b) employs a less severe
test for the importance of explanatory variables in growth regressions, the aim being
“to assign some level of confidence to each of the variables”! rather than to classify them
as robust versus non-robust. On the basis of his methodology, Sala-i-Martin (1997b)
identifies a relatively large number of variables as important for growth regression.

Here we set out to investigate this issue in a formal statistical framework that explic-
itly allows for the specification uncertainty described above. In particular, a Bayesian
framework allows us to deal with both model and parameter uncertainty in a straight-
forward and formal way. We also consider an extremely large set of possible models
by allowing for any subset of up to 41 regressors to be included in the model. This
means we have a set of 24! = 2.2 x 10'2 (over two trillion!) different models to deal
with. Novel Markov chain Monte Carlo (MCMC) techniques are adopted to solve this
numerical problem, using the so-called Markov chain Monte Carlo Model Composition
(MC3) sampler, first used in Madigan and York (1995).

Our findings are based on the same data as those of Sala-i-Martin? and broadly
support the more “optimistic” conclusion of Sala-i-Martin (1997b), namely that some
variables are important regressors for explaining cross-country growth patterns. How-
ever, the variables we identify as most useful for growth regression differ somewhat from
his results. More importantly, we do not advocate selecting a subset of the regressors,
but we use Bayesian Model Averaging, where all inference is averaged over models,
using the corresponding posterior model probabilities as weights. It is important to
point out that our methodology allows us to go substantially further than the previous
studies, in that we provide a clear interpretation of our results and a formal statistical
basis for inference on parameters and out-of-sample prediction. Finally, let us briefly
mention that this paper is solely intended to investigate a novel methodology to tackle
the issues of model uncertainty and inference in cross-country growth regressions, based
on the Normal linear model. We do not attempt to address here the myriad of other
interesting topics, such as convergence of countries, data quality or any further issues
of model specification.

2. THE MODEL AND THE METHODOLOGY

Following the analyses in Levine and Renelt (1992) and Sala-i-Martin (1997b) as well
as the tradition in the growth regression literature, we will consider linear regression
models where GDP growth for n countries, grouped in a vector y, is regressed on an
intercept, say «, and a number of explanatory variables chosen from a set of k£ variables

1 For each variable, he denotes the level of confidence by CDF(0) and defines it as the maximum
of the probability mass to the left and the right of zero for a (Normal) distribution centred at the
estimated value of the regression coefficient and with the corresponding estimated variance. He deals
with model uncertainty by running many different regressions and either computing CDF(0) based on
the averages of the estimated means and variances (approach 1), or redefining CDF(0) as the average
of the CDF(0)’s resulting from the various regressions (approach 2). In both cases, the averaging over
models is either done uniformly or with weights proportional to the likelihoods. See also our footnote
14 in this context. Regressors leading to CDF(0)> 0.95 are classified as “significant”.

2 We thank Xavier Sala-i-Martin for making his data publicly available at his website. The data are
also available at this journal’s website.
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in a matrix Z of dimension n x k. Throughout, we assume that rank(c, : Z) = k + 1,
where ¢,, is an n-dimensional vector of 1’s, and define (3 as the full k-dimensional vector
of regression coefficients.

Whereas Levine and Renelt and Sala-i-Martin restrict the set of regressors to always
contain certain key variables and then allow for four® other variables to be added, we
shall allow for any subset of the variables in Z to appear in the model. This results in
2% possible models, which will thus be characterized by the selection of regressors. We
denote by M; the model with regressors grouped in Z;, leading to

Yy = ai, + Z;fB; + oe, (1)

where 3; € RF (0 < k; < k) groups the relevant regression coefficients and o € R is a
scale parameter. In line with most of the literature in this area (see e.g., Mitchell and
Beauchamp, 1988, and Raftery, Madigan and Hoeting, 1997), exclusion of a regressor
means that the corresponding element of  is zero. Thus, we are always conditioning
on the full set of regressors Z. Finally, we shall assume that ¢ follows an n-dimensional
Normal distribution with zero mean and identity covariance matrix.

In our Bayesian framework, we need to complete the above sampling model with a
prior distribution for the parameters in M}, namely «, 5; and o. In the context of model
uncertainty, it is acknowledged that the choice of this distribution can have a substantial
impact on posterior model probabilities (see e.g., Kass and Raftery, 1995, and George,
1999). Raftery et al. (1997) use a “weakly-informative” prior which is data-dependent.
Here we follow Ferndndez, Ley and Steel (2001) who, on the basis of theoretical results
and extensive simulations, propose a “benchmark” prior distribution that has little
influence on posterior inference and predictive results and is, thus, recommended for the
common situation in which incorporating substantive prior information into the analysis
is not possible or desirable. In particular, they propose to use improper noninformative
priors for the parameters that are common to all models, namely « and o, and a g-prior
structure for 3;. This corresponds to the product of

pla,0) <ot (2)
and N
p(B; | a0, M;) = [ (B; | 0,0%(9Z5Z;)7 1), (3)

where fi.(w | m,V) denotes the density function of a g-dimensional Normal distribu-
tion on w with mean m and covariance matrix V. Ferndndez et al. (2001) investigate
many possible choices for g in (3) and conclude that taking g = 1/ max{n, k?} leads
to reasonable results. Finally, the £ — k; components of 3 which do not appear in M;
are exactly equal to zero. Note that in (2) we have assumed a common prior for o
across the different models. This is a usual practice in the literature (e.g., Mitchell
and Beauchamp, 1988, Raftery et al., 1997) and does not seem unreasonable since, by
always conditioning on the full set of regressors, o keeps the same meaning (namely the
residual standard deviation of y given Z) across models. The distribution in (2) is the
standard noninformative prior for location and scale parameters, and is the only one

3 Levine and Renelt (1992) consider one up to four added regressors, Sala-i-Martin (1997a,b) restricts
the analysis to exactly four extra regressors.
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that is invariant under location and scale transformations (such as induced by a change
in the units of measurement). As Fernandez et al. (2001) show, the prior in (2) and
(3) has convenient properties (marginal likelihoods can be computed analytically) while
leading to satisfactory results from a posterior and predictive point of view.

So far, we have described the sampling and prior setting under model M;. As already
mentioned, a key aspect of the problem is the uncertainty about the choice of regressors
—1.e., model uncertainty. This means that we also need to specify a prior distribution
over the space M of all 2¥ possible models:

2k
P(M;)=p;, j=1,...,2" withp;>0and > p;=1. (4)

J=1

In our empirical application, we will take p; = 27% 50 that we have a Uniform distribu-
tion on the model space. This implies that the prior probability of including a regressor
is 1/2 independently of the other regressors included in the model. This is a standard
choice in the absence of prior information but other choices —e.g., downweighing mod-
els with a large number of regressors, are certainly possible. See Chipman (1996) for
priors that allow for dependence between regressors.

The Bayesian paradigm now automatically deals with model uncertainty, since the
posterior distribution of any quantity of interest, say A, is an average of the poste-
rior distributions of that quantity under each of the models with weights given by the
posterior model probabilities. Thus

2k

PA|y:ZPA|y,MjP(Mj | y). (5)

Jj=1

Note that, by making appropriate choices of A, this formula gives the posterior distri-
bution of parameters such as the regression coefficients or the predictive distribution
that allows to forecast future or missing observables. The marginal posterior probabil-
ity of including a certain variable is simply the sum of the posterior probabilities of all
models that contain this regressor. The procedure described in (5), which is typically
referred to as Bayesian Model Averaging (BMA), immediately follows from the rules of
probability theory —see, e.g., Leamer (1978).

We now turn to the issue of how to compute P |, in (5). The posterior distribution
of A under model Mj, Pa |y u,, is typically of standard form (the following sections
mention this distribution for several choices of A). The additional burden due to model
uncertainty is having to compute the posterior model probabilities, which are given by

Ly (Mj )pj

i:l ly(Mh)ph

(6)
where [, (M;), the marginal likelihood of model Mj, is obtained as

ly(Mj) = /p(y ’ a76j707Mj>p(a70)p(ﬁj ‘ 0570-3Mj)d04dﬁj dO’, (7)
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with p(y | «, Bj, 0, M;) the sampling model corresponding to (1) and p(«a, o) and p(3; |
«, 0, M;) the priors defined in (2) and (3), respectively. Ferndndez et al. (2001) show
that for the Bayesian model in (1) — (4) the marginal likelihood can be computed
analytically. In the somewhat simplifying case where, without loss of generality, the
regressors are demeaned, such that ¢/, Z = 0, and defining X; = (v, : Z;), § = th,y/n
and Mx, = I, — X;(X}X;)"' X}, they obtain

g kj/2 1 g —(n—1)/2
l,(M;) x | —— —— ' Mxy+ ———(y —ytn) —_l,n) : 8
y (M) <g+1> (gHy Xyt S =T (Y = ge) (8)
Since marginal likelihoods can be computed analytically, the same holds for the posterior
model probabilities, given in (6), and the distribution described in (5).

In practice, however, computing the relevant posterior or predictive distribution
through (5), (6) and (8) is hampered by the very large amount of terms involved in
the sums. In our application, we have £k = 41 possible regressors, and we would thus
need to calculate posterior probabilities for each of the 24! = 2.2 x 10'? models and
average the required distributions over all these models. Exhaustive evaluation of all
these terms is computationally prohibitive. Even using fast updating schemes, such
as that proposed by Smith and Kohn (1996), in combination with the Gray code or-
der, computations become practically infeasible when k is larger than approximately
25 (see George and McCulloch, 1997).* In order to substantially reduce the compu-
tational effort, we shall approximate the posterior distribution on the model space M
by simulating a sample from it, applying the MC? methodology of Madigan and York
(1995). This consists in a Metropolis algorithm —see, e.g., Tierney (1994) and Chib
and Greenberg (1996)— to generate drawings through a Markov chain on M which has
the posterior model distribution as its stationary distribution. The sampler works as
follows: Given that the chain is currently at model M, a new model M is proposed
randomly through a Uniform distribution on the space containing M, and all models
with either one regressor more or one regressor less than M. The chain moves to M;
with probability p = min{1, [{,(M;)p;]/[l,(Ms)ps]} and remains at M, with probability
1—p. Raftery et al. (1997) and Fernandez et al. (2001) use MC? methods in the context
of the linear regression model.

In the implementation of MC2, we shall take advantage of the fact that marginal
likelihoods can be computed analytically through (8). Thus, we shall use the chain
to merely indicate which models should be taken into account in computing the sums
in (5) and (6) —i.e., to identify the models with high posterior probability. For the
set of models visited by the chain, posterior probabilities will be computed through
appropriate normalization of [, (M;)p;. This idea was called “window estimation” in
Clyde, Desimone and Parmigiani (1996) and was denoted by “Bayesian Random Search”

4 The largest computational burden lies on the evaluation of the marginal likelihood of each model.
In the context of our application and without use of fast updating schemes or Gray code ordering, an
estimate of the average rate at which we can compute I, (M;) is over 36,000 per minute of CPU time
(on a state-of-the-art Sun Ultra-2 with two 296 MHz CPUs, 512Mb of RAM and 3.0Gb of swap space
running under Solaris 2.6), which would imply that exhaustive evaluation would approximately take
115 years. Even if fast updating algorithms and ordering schemes can be found that reduce this by
a factor k = 41 (as suggested in George and McCulloch, 1997), this is still prohibitive. In addition,
storing and manipulating the results —e.g., to compute predictive and posterior densities for regression
coefficients— seems totally unfeasible with current technology.
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in Lee (1996). In addition, Ferndndez et al. (2001) propose to use this as a convenient
diagnostic aid for assessing the performance of the chain. A high positive correlation
between posterior model probabilities based on the empirical frequencies of visits in
the chain on the one hand, and the exact marginal likelihoods on the other hand,
suggests that the chain has reached its equilibrium distribution. Of course, the chain
will not cover the entire model space since this would require sampling all 24! models, an
impossible task as we already mentioned. Thus, the sample will not constitute, as such,
a perfect replica of the posterior model distribution. Rather, the objective of sampling
methods in this context is to explore the model space in order to capture the models
with higher posterior probability (see George and McCulloch, 1997). Nevertheless, our
efficient implementation (see footnote 13) allows us to cover a high percentage of the
posterior mass and, thus, to also characterize a very substantial amount of the variability
inherent in the posterior distribution.

3. POSTERIOR RESULTS

We take the same data as used and described in Sala-i-Martin (1997b), covering 140
countries, for which average per capita GDP growth was computed over the period 1960-
1992. Sala-i-Martin starts with the model in (1) and a large set of 62 variables that could
serve as regressors.” He then restricts his analysis to those models where three specific
variables are always included (these are the level of GDP, life expectancy and primary
school enrollment rate, all for 1960) and, for each of the remaining 59 variables, he adds
that variable and all possible triplets of the other 58. He finally computes CDF(0) for
that regressor as the weighted average of the resulting CDF(0)’s (approach 2 described
in footnote 1° ), to conclude that 22 of the 59 variables are “significant”, in that CDF(0)
is larger than 0.95. Thus, in all he considers 455,126 different models,” which we will
denote by Mg.

We shall undertake our analysis on the basis of the following set of regressors. Firstly,
we take the 25 variables that Sala-i-Martin (1997b) flagged as being important (his three
retained variables and the 22 variables in his Table 1, page 181). We have available
n = 72 observations for all these regressors. We then add to this set all regressors that
do not entail a loss in the number of observations. Thus, we keep n = 72 observations
which allows us to expand the set of regressors to a total of k = 41 possible variables.
Z will be the 72 x 41 design matrix corresponding to these variables (transformed by
subtracting the mean, so that ¢, Z = 0), and we shall allow for any subset of these 41
regressors, leading to a total set of 24! = 2.2 x 10'?2 models under consideration in M.
Since we do not start from the full set of 62 variables, we do not cover all models in Mg.

5 This set of possible regressors does not include the investment share of GDP, which was included
in Levine and Renelt (1992) as a variable always retained in the regressions. However, they comment
that then the only channel through which other variables can affect growth is the efficiency of resource
allocation. Sala-i-Martin (1997a) finds that including investment share in all regressions does not
critically alter the conclusions with respect to those of Sala-i-Martin (1997b).

6 He comments that levels of significance found using approach 1 in footnote 1 were virtually identical.
However, see our discussion at the end of this Section.

7 Note that the (almost) 2 million regressions in the title of his paper result from counting each model
four times, since he distinguishes between identical models according to whether a variable is being
“tested” or merely added in the triplet—see also his footnote 3.
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On the other hand, since we allow for any combination of regressors, our model space
is of much larger size than Mg. Clearly, we cover the subset of Mg that corresponds
to the 41 regressors considered here. This intersection between M and Mg consists
of 73,815 models and will be denoted by M in the sequel. In view of the fact that
M contains all models in Mg using Sala-i-Martin’s (1997b) favoured regressors, we
would certainly expect that a relatively large fraction of the posterior mass in Mg is
concentrated in M.

To analyse these data, we use the Bayesian model in (1)-(4) with a Uniform prior
on model probabilities, i.e., p; = 27% in (4). Since n < k?, we shall take g = 1/k? in
the prior in (3). Given the size of M we would expect to need a fairly large amount
of drawings of the MC? sampler to adequately identify the high posterior probability
models. We shall report results from a run with 2 million recorded drawings after a
burn-in of 1 million discarded drawings, leading to a correlation coefficient between
visit frequencies and posterior probabilities based on (8) of 0.993. The results based on
a different run with 500,000 drawings after a mere 100,000 burn-in drawings are very
close indeed. In particular, the best 76 models (those with posterior mass above 0.1%)
are exactly the same in both runs. Many more runs, started from randomly drawn
points in model space and leading to virtually identical results, confirmed the good
behaviour of the sampler. More formally, we can estimate the total posterior model
probability visited by the chain following George and McCulloch (1997), by comparing
visit frequencies and the aggregate marginal likelihood for a predetermined subset of
models. Basing such an estimate on the best models visited in a short run, we estimate
the model probability covered by the reported chain to be 70%, which is quite reasonable
in view of the fact that we only visit about one in every 15 million models.®

Let us now focus on the results obtained in a typical chain of 2 million recorded draws:
149,507 models are visited and the best model obtains a posterior probability of 1.24%.
The mass is very spread out: the best 25,219 models only cover 90% of the posterior
model probability, making BMA a necessity for meaningful inference. The 76 models
with posterior probabilities over 0.1% all have in between 6 and 12 regressors,” which is
not greatly at odds with the 7-regressor models in Mg. Indeed, M, the intersection of
M and Mg, is allocated 0.38% posterior probability, which is 112,832 times the prior
mass.'% So there is a small but nonnegligible amount of support for the class of models
chosen by Sala-i-Martin, and the best model in M receives a posterior probability of
0.30%.

Marginal posterior probabilities of including each of the 41 regressors CDF(0) that

8 Tn order to put this covered probability estimate in perspective, we have to consider the trade-off
between accuracy and computing effort. If we run a longer chain of 5 million draws, after a 1 million
burn-in, we visit about twice as many models, which account for an estimated 77% of the posterior
mass, at the cost of more than tripling the CPU requirements. Posterior results are virtually unaffected
as all added models have very low posterior probability.

9 The Bayes factor, obtained from (8) as Bjs = ly(M;)/ly(Ms), has a built-in mechanism to avoid
overfitting through the first factor. It can easily be seen that for the values of g and n used here, having
one more regressor should be offset by a decrease in the sum of squared residuals of about 10% in order
to have a unitary Bayes factor. For asymptotic links between our Bayes factors and various classical
model selection criteria, see Fernandez et al. (2001).

10" for comparison, the posterior probability of the best 73,815 models (the same number of models as
in M) multiplies the corresponding prior probability by about 29.5 million.
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were at the basis of the findings of Sala-i-Martin (1997b). An arrow in front of a regressor
identifies the 22 important regressors of Sala-i-Martin (1997b, Table 1) and regressors
with double arrow are the ones he always retained in the models. Starting with the latter
three, it is clear that GDP in 1960 and (to a lesser degree) life expectancy can indeed be
retained without many problems, but that is not the case for primary school enrollment.
The 22 regressors that Sala-i-Martin flags as important have posterior probabilities of
inclusion ranging from as low as 1.7% to 100.0%. Nevertheless, the Spearman rank
correlation coefficient between CDF(0) and marginal posterior inclusion probabilities is

0.94.

Of course, this is only a small part of the information provided by BMA, which really
provides a joint posterior distribution of all possible 41 regression coefficients, consisting
of both discrete (at zero, when a regressor is excluded) and continuous parts. Among
other things, it will provide information on which combinations of regressors are likely
to occur, avoiding models with highly collinear regressors. For example, Civil liberties
and Political rights are the two variables with the highest pairwise correlation in the
sample: it is 0.96. Thus, it is quite likely that if one of these variables is included in a
model, the other will not be needed, as it captures more or less the same information.
Indeed, the posterior probability of including both these variables is 0.1%, which is
much smaller than the product of the marginal inclusion probabilities (about 0.7%).

Thus, the marginal importance of regressors derived from our methodology does not
lead to the same results as found in Sala-i-Martin (1997b), but the results are not too
dissimilar either. However, there are a number of crucial differences. Firstly, BMA
addresses the issue of probabilities of models, not just of individual regressors, and thus
provides a much richer type of information than simply that indicated by Table I. In
addition, an important difference is that we have a coherent statistical framework in
which inference can be based on all models, averaged with their posterior probabilities.
So there is no need for us to choose a particular model or discard any of the regressors.
As we shall see in the next section, using BMA rather than choosing one particular
model is quite beneficial for prediction. In contrast, there is no formal inferential or
modelling recipe attached to the conclusions in Sala-i-Martin. Does one adopt a model
with all important regressors included at the same time or with a subset of four of those?
If model averaging is the implicit message, it is unclear how to implement this outside
the Bayesian paradigm.

Figure 1 graphically presents the marginal posterior distribution of some regression
coefficients. A gauge on top of the graphs indicates (in black) the posterior probability
of inclusion of the corresponding regressor (thus revealing the same information as in
Table I). The density in each of the graphs describes the posterior distribution of the
regression coefficient given that the corresponding variable is included in the regression.
Each of these densities is itself a mixture as in (5) over the Student-t posteriors for
each model that includes that particular regressor. A dashed vertical line indicates the
averaged point estimate presented in Tables 1 of Sala-i-Martin (1997a,b). Two vertical
dotted lines indicate a classical 90% confidence interval using the averaged variance of
Sala-i-Martin (1997a,b), allowing for an informal comparison with his findings. The
first two coefficients graphed in Figure 1 indicate the marginal effects on growth of
two key variables: the initial level of GDP, and investment in equipment. The former
was associated with conditional convergence of countries by Barro and Sala-i-Martin
(1992), but this view was later challenged (see Durlauf and Quah, 1999). In any case,
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Table I. Marginal evidence of importance
BMA Sala-i-Martin

Regressors Post.Prob. CDF(0)

= 1  GDP level in 1960 1.000 1.000
— 2 Fraction Confucian 0.995 1.000
= 3 Life expectancy 0.946 0.999
— 4 Equipment investment 0.942 1.000
— 5  Sub-Saharan dummy 0.757 0.997
— 6  Fraction Muslim 0.656 1.000
— 7  Rule of law 0.516 1.000
— 8  Number of Years open economy 0.502 1.000
— 9  Degree of Capitalism 0.471 0.987
—> 10  Fraction Protestant 0.461 0.966
— 11  Fraction GDP in mining 0.441 0.994
— 12 Non-Equipment Investment 0.431 0.982
— 13 Latin American dummy 0.190 0.998
—> 14  Primary School Enrollment, 1960 0.184 0.992
— 15  Fraction Buddhist 0.167 0.964
16  Black Market Premium 0.157 0.825

— 17  Fraction Catholic 0.110 0.963
— 18  Civil Liberties 0.100 0.997
19  Fraction Hindu 0.097 0.654

— 20  Primary exports, 1970 0.071 0.990
— 21  Political Rights 0.069 0.998
— 22 Exchange rate distortions 0.060 0.968
23 Age 0.058 0.903

— 24  War dummy 0.052 0.984
25  Size labor force 0.047 0.835

26  Fraction speaking foreign language 0.047 0.831

27  Fraction of Pop. Speaking English 0.047 0.910

28  Ethnolinguistic fractionalization 0.035 0.643

—> 29  Spanish Colony dummy 0.034 0.938
— 30 S.D. of black-market premium 0.031 0.993
31  French Colony dummy 0.031 0.702

— 32 Absolute latitude 0.024 0.980
33  Ratio workers to population 0.024 0.766

34  Higher education enrollment 0.024 0.579

35  Population Growth 0.022 0.807

36  British Colony dummy 0.022 0.579

37  Outward Orientation 0.021 0.634

38  Fraction Jewish 0.019 0.747

— 39 Revolutions and coups 0.017 0.995
40  Public Education Share 0.016 0.580

41  Area (Scale Effect) 0.016 0.532

it is widely accepted to be of theoretical and empirical importance and was one of the
few regressors that Levine and Renelt (1992) found to be robust. The importance of
Equipment investment was stressed in DeLong and Summers (1991). Whereas the in-
clusion of both variables receives strong support from BMA and Sala-i-Martin’s classical
analysis, the actual marginal inference on the regression coefficients is rather different,
as can be judged from Figure 1. The next row of plots corresponds to two variables
(Standard deviation of black market premium and Revolutions and coups) that are each
included in Sala-i-Martin’s analysis (with CDF(0) > 0.993), yet receive very low pos-
terior probability of inclusion in our BMA analysis (3.1% and 1.7%, respectively). For
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Figure 1. Posterior densities of selected coefficients




MODEL UNCERTAINTY IN GROWTH REGRESSIONS 11

the Standard deviation of the black market premium the confidence interval suggests
much smaller spread than the (model averaged) posterior distribution. For Revolutions
and coups we find that, in addition, the posterior mode is also quite far from the av-
eraged classical point estimates. The same combination of differences in both spread
and location is present for the next two coefficients: Absolute latitude and Spanish
colony, which are both identified as important regressors in Sala-i-Martin, but get less
than 3.5% posterior inclusion probability. The next two coefficients are illustrative of
the opposite situation. The regressors Fraction Hindu and Black market premium are
excluded in Sala-i-Martin (1997b), but BMA results indicate these are relatively impor-
tant variables. Finally, Non-Equipment investment and Fraction Catholic are identified
as important by Sala-i-Martin and also receive substantial posterior probability of in-
clusion in BMA. However, whereas the confidence interval accords reasonably well with
the posterior results from BMA for Non-Equipment investment, it is quite different for
Fraction Catholic: the second mode (with opposite sign!) is not at all picked up by the
classical analysis.

Generally, averaged point estimates are often not too far from the posterior modes
resulting from BMA, but most classical confidence intervals are far narrower than their
posterior counterparts, thus severely underestimating uncertainty. This is not surpris-
ing in view of the fact that Sala-i-Martin’s confidence intervals are based on the aver-
aged variances (formula (5) in Sala-i-Martin, 1997b), which amounts to neglecting the
(weighted) variance of point estimates across models. This also explains why CDF(0)
using approach 1 (as defined in footnote 1 and presented in Sala-i-Martin, 1997a) is
virtually always larger than with approach 2.

4. PREDICTIVE RESULTS

An important quality of a model is that it can provide useful forecasts. In addition,
such a predictive exercise immediately provides a benchmark for evaluating the model’s
adequacy. We consider predicting the observable y; given the corresponding values of
the regressors, grouped in a k-dimensional vector z¢ (which has been transformed in
the same way as Z, by subtracting the average of the original regressors over the n
observations on which posterior inference is based!! ).

Prediction naturally fits in the Bayesian paradigm as all parameters can be integrated
out, formally taking parameter uncertainty into account. If we also wish to deal with
model uncertainty, BMA as in (5) provides us with the formal mechanism, and we can
characterize the out-of-sample predictive distribution of y¢ by

2k:
1 %k
plyr | ) =Y fslys | n—1,9+ ——2} 8},
, g+1
i=1 (9)
n—1 1 1 _ _
T {1+ﬁ+—g+12},j(Z§ZJ’) Y2pi ) P(M; | ),

J

where fg(x | v,b,a) denotes the p.d.f. of a univariate Student-t distribution with v
degrees of freedom, location b (the mean if v > 1) and precision a (with variance

I This s merely to assign the same interpretation to the regression coefficients in posterior and pre-

dictive analysis.
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v/{a(v —2)} provided v > 2) evaluated at z. In addition, 2y ; groups the j elements of
zy corresponding to the regressors in Mj, 87 = (Z;Zj)_lZé.y and

1 g
df = ——y'Mx. ——(y = Ytn) (y — Ytn). 10
i 1Y x3y+g+1(y Yin) (Y — Gtn) (10)

We shall now split the sample into n observations on which we base our posterior
inference and ¢ observations which we retain in order to check the predictive accuracy of
the model. As a formal criterion, we shall use the log predictive score (LPS), introduced
by Good (1952). It is a strictly proper scoring rule, in the sense that it induces the

forecaster to be honest in divulging his predictive distribution. For f =n+1,...,n+¢q
(i.e., for each country in the prediction sample) we base our measure on the predictive
density evaluated in these retained observations ¥,41, ..., Yn+q, Damely:
1
LPS=—= " Inp(ys | v). (11)
f=n+1

The smaller LPS is, the better the model does in forecasting the prediction sample.
Interpreting values for LPS can perhaps be facilitated by considering that in the case
of i.i.d. sampling, LPS approximates an integral that equals the sum of the Kullback-
Leibler divergence between the actual sampling density and the predictive density in
(9) and the entropy of the sampling distribution (see Ferndndez et al., 2001). So LPS
captures uncertainty due to a lack of fit plus the inherent sampling uncertainty, and
does not distinguish between these two. Here we are necessarily faced with a different
zy for every forecasted observation (corresponding to a specific country), so we are
not strictly in the context of observations that are generated by the same distribution.
Still, we think the above interpretation may shed some light on the calibration and
comparison of LPS values. If, for the sake of argument, we assume that we fit the
sampling distribution perfectly, then L P.S approximates entropy alone. In the context of
a Normal sampling model with fixed standard deviation o, this latter entropy can then
be translated into a value for o, using the fact that entropy equals In(o. \/ﬁ) Thus,
a known Normal sampling distribution with fixed o, would induce the same inherent
predictive uncertainty as measured by LPS, if we choose o, = exp(LPS)/v2me. Of
course, as a direct consequence, a difference in LP.S of, say, 0.1, corresponds to about
a 10% difference in values for o..

We shall use LPS to compare four different regression strategies: the BMA approach,
leading to (9), the best model (i.e., the one with the highest posterior probability) in
M, the best model in M, and the full model with all k£ regressors. As a benchmark
for the importance of growth regression, we also include LPS for the “null model”, i.e.,
the model with only the intercept where no individual country characteristics are used.
We would expect this model to reproduce the marginal growth distribution (without
conditioning on regressors) pretty well. As the sample standard deviation of growth is
0.01813, we could then roughly expect LPS values for the null model around the entropy
value corresponding to o, = 0.01813, which is —2.591. For the regression models, we
would hope that they predict better, since they use the information in the regressors,
and this should ideally be reflected in a smaller LPS or a conditional o, value under
0.01813.

The partition of the sample into the inference and the prediction sample is done
randomly, by assigning observations to the inference sample with probability 0.75. The
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Table II. Predictive Performance

Number of Times LPS
Best Worst  Beaten by Null Min Mean Max
BMA 9 0 2 -3.470 -2.977 -2.408
Best Model in M 0 8 12 3370 -2316 -1.268
Best Model in M[ 8 0 4 -3.460 -2.838 -1.341
Full Model 3 8 12 -3.266 -2.261 -0.940
Null Model 0 4 -2.850 -2.560 -1.853

results of twenty different partitions are summarized in Table II. Besides numerical
summaries of the LPS values, we also indicate how often the model is beaten by the
trivial null model, and how often the model performs best and worst. The following
key characteristics emerge: the null model performs in a fairly conservative fashion and
its mean LPS is very close to what we expected on the basis of the sample standard
deviation. The full model and the best model in M are beaten by the benchmark
null model in over half the cases, and clearly perform worst of the regression models.
The best model in M; does quite a bit better and generally improves a lot on the
null model, but can sometimes lead to very bad predictions (the maximum value of
LPS corresponds to o, = 0.0633, 3.5 times that of the sample). In contrast, the BMA
approach never leads us far astray: it is only beaten by the null model twice and the
largest value of LPS corresponds to o, = 0.0218 (and this occurs in a case where
it actually outperforms all other models by a large margin). It performs best most
frequently and the best prediction it produced corresponds to o, = 0.0075 which is only
about 40% of the sample standard deviation. The mean LPS value for the BMA model
corresponds to o, = 0.0123, i.e., a reduction of the sample standard deviation by about
a third.

The fact that BMA does so much better than simply taking the best model is com-
pelling evidence supporting the use of formal model averaging rather than the selection
of any given model. Interestingly, the best model in M does better than the best model
in M (which contains M7y). This underlines that the highest posterior probability on
the basis of the inference sample does not necessarily lead to the best predictions in the
prediction sample. In addition, M is restricted to those models that include the three
regressors always retained by Sala-i-Martin on theory grounds. This extra information
(although not always supported by the data) may help in predicting.'?

In summary, the use of regression models with BMA results in a considerable predic-
tive improvement over the null model, thus clearly suggesting that growth regression is
not a futile exercise, although care should be taken in the methodology adopted.

5. DISCUSSION

The value of growth regression in cross-country analysis has been illustrated in the
predictive exercise in the previous Section. We agree with Sala-i-Martin (1997b) that
some regressors can be identified as useful explanatory variables for growth in a linear
regression model, but we advocate a formal treatment of model (and parameter) uncer-
tainty. In our methodology the marginal importance of an explanatory variable does

12 of course, this relative success of the best model in M; has no immediate bearing on the predictive
performance of a classical analysis.
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not necessarily imply anything about the size or sign of the regression coefficient in a
set of models, but is based entirely on the posterior probabilities of models containing
that regressor. In addition, we go one step further and provide a practical and theoret-
ically sound method for inference, both posterior and predictive, using Bayesian Model
Averaging (BMA). From the huge spread of the posterior mass in model space and the
predictive advantage of BMA, it is clear that model averaging is recommended when
dealing with growth regression.

Our Bayesian paradigm provides us with a formal framework to implement this model
averaging, and recent Markov chain Monte Carlo (MCMC) methods are shown to be
very powerful indeed. Despite the huge model space (with 2.2 trillion models), we obtain
very reliable results without an inordinate amount of computational effort.'3

The analysis in Sala-i-Martin (1997b) is not Bayesian and thus no formal model
averaging can occur, even though he considers weighing with the integrated likelihood.!*
In addition, the latter analysis evaluates all models and is thus necessarily restricted
to a rather small set of models, Mg, which seems not to receive that much empirical
support from the data. Even though we find a roughly similar set of variables that
can be classified as “important” for growth regressions, a crucial additional advantage
is that our results are immediately interpretable in terms of model probabilities and
all inference can easily be conducted in a purely formal fashion by BMA. It is not
clear to us what to make of the recommendations in Sala-i-Martin (1997b): should
the applied researcher use all of the regressors identified as important or mix over the
corresponding models in Mg? However, the latter would have to be without proper
theoretical foundation or guidance if a classical statistical framework is adopted.

In our view, the treatment of a very large model set, such as M, in a theoretically
sound and empirically practical fashion requires BMA and MCMC methods. In addi-
tion, this methodology provides a clear and precise interpretation of the results, and
immediately leads to posterior and predictive inference.
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