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Abstract: We propose a method of correction for multiple comparisons in MEG beamformer based
Statistical Parametric Maps (SPMs). We introduce a modification to the minimum-variance beamformer,
in which beamformer weights and SPMs of source-power change are computed in distinct steps. This
approach allows the calculation of image smoothness based on the computed weights alone. In the first
instance we estimate image smoothness by looking at local spatial correlations in residual images
generated using random data; we then go on to show how the smoothness of the SPM can be obtained
analytically by measuring the correlations between the adjacent weight vectors. In simulations we show
that the smoothness of the SPM is highly inhomogeneous and depends on the source strength. We show
that, for the minimum variance beamformer, knowledge of image smoothness is sufficient to allow for
correction of the multiple comparison problem. Per-voxel threshold estimates, based on the voxels extent
(or cluster size) in flattened space, provide accurate corrected false positive error rates for these highly
inhomogeneously smooth images. Hum. Brain Mapping 18:1–12, 2003. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

Recent advances in magnetoencephalography
(MEG) have lead to the use of beamformer-based anal-
yses to provide estimates of the neuronal activity un-
derlying the measured external magnetic fields [Gross
et al., 2001; Robinson and Rose, 1992; Robinson and
Vrba, 1999; Sekihara et al., 1999; Van Veen et al., 1997].

A beamformer is essentially a collection of spatial
filters each tuned to a different brain region. By look-
ing at task related changes in the output of these
spatial filters across brain locations, a beamformer-
based statistical parametric map (SPM) can be pro-
duced. The beamformer formalism is attractive as it
allows imaging of both phase-locked and non-phase-
locked stimulus related neuronal activity, such as
event related desynchronization (ERD) and synchro-
nization (ERS) [Pfurtscheller et al., 1996].

To date, most beamformer studies have involved
the mapping of primary sensory-motor cortex
[Cheyne et al., 2000; Hashimoto et al., 2001]; these
include cross modal studies [Barnes et al., 2001; Tani-
guchi et al., 2000] that have shown strong spatial
correspondence between sites of ERD and those of
blood oxygenation level dependent (BOLD) signal
change. The ability to localize ERD phenomena has
made way for the use of box-car type MEG experi-
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ments that do not rely on strict stimulus-response time
locking [first demonstrated by Cheyne et al., 2000].
Interestingly, Singh et al. [2001, 2002] have recently
described box-car language and biological motion ex-
periments that show changes in ERD and ERS across
many cortical areas that clearly correspond with re-
gions of BOLD signal change.

No studies, however, have addressed the problems
of assigning corrected significance levels to these im-
ages. This lack of a statistical framework complicates
quantitative cross-modality comparisons, especially
where SPMs from two modalities may have different
intrinsic smoothness. In this study we present a
method for assessing the smoothness of beamformer
based SPMs that leads naturally to correction of the
multiple comparison problem.

The principle behind beamformer analysis is sim-
ple: for any location in the brain an optimal set of
weights, or spatial filter, can be calculated such that
the weighted sum of MEG channels provides a milli-
second by millisecond estimate of the electrical current
at that point. This spatial filter output can be thought
of as a virtual electrode placed at the neuronal source
location. Through systematic scanning, a virtual elec-
trode can be produced for all possible brain locations.
Using simple box-car design experiments, beam-
former based SPMs of electrical activity can be pro-
duced by comparing active and passive levels of spec-
tral power at each source location.

There are several attractive properties of beam-
former based analysis [see Van Veen et al., 1997 for a
more detailed discussion]:

1. There are no a priori assumptions about the num-
ber of active sources (as in dipole modeling) [Su-
pek and Aine, 1993]

2. The solutions are analytical and not subject to
extensive searches for global minima of some
cost function (as in dipole modeling) [Huang et
al., 1998]

3. All estimates of per-voxel power or statistical
change can be made sequentially and have no
influence on other voxels in the source space
[Van Veen et al., 1997]

4. There is no tendency for sources to drift to the
surface (as in typical minimum norm based ap-
proaches) [Grave de Peralta-Menendez and
Gonzales-Andino, 1998]

5. The solutions depend on data covariance and
can therefore be used to image changes in spec-
tral power that are not necessarily phase-locked
to a stimulus, such as ERD and ERS [Pfurtscheller
and Lopes da Silva, 1999]

6. A statistical difference calculation can be made at
all points within a 3D volume giving SPMs of
activity that, given anatomical information, can
be transformed into standard space to produce
group statistical maps [Singh et al., 2001, 2002].

The main limitations of using beamformer tech-
niques are that:

1. Any spatially separate yet covariant sources will
be suppressed [Mosher et al., 1992; Mosher and
Leahy 1998; Van Veen et al., 1997]. It has been
shown, however, that temporal correlation must
be relatively high (�0.7) before cancellation takes
place [Van Veen et al., 1997]. These effects are
further mitigated by using longer stretches of
data that are presumably less likely to contain
perfectly covariant activity over the whole time
window.

2. The spatial smoothness of the resulting SPMs
will be inhomogeneous and anisotropic and will
require statistical flattening before any correc-
tions for multiple comparisons can be made. This
is complicated by the fact that the beamformer
weights are data dependent and therefore the
spatial resolution at any region of the source
space will depend on the particular dataset ana-
lysed.

In this work, this second limitation of beamformer-
based analysis is addressed. Our approach is to split
the beamformer design and statistical imaging stages
into distinct steps. We show how measures of spatial
smoothness can be used to characterize the properties
of the beamformer. We present a statistical frame-
work, based on the functional magnetic resonance
imaging (fMRI) and positron emission tomography
(PET) literature [Andrade et al., 2001; Kiebel et al.,
1999; Worsley et al., 1999], to statistically flatten the
images and allow for correction of multiple compari-
sons.

We describe a modification of a standard minimum
variance beamformer [Robinson and Vrba, 1999; Van
Veen et al., 1997] in which the weight calculation and
statistical test stages are treated separately. We point
out how the weights, and hence the beamformer prop-
erties, are determined entirely by the data window
over which the covariance is estimated (the covariance
window).

We also derive analytical formulae that describe the
underlying image smoothness, or full width half max-
imum (FWHM) of a Gaussian point spread function,
in terms of the beamformer weights. Having calcu-

� Barnes and Hillebrand �

� 2 �



lated image smoothness, we then show how a choice
of appropriate contrast windows can be used to calcu-
late a beamformer-based SPM.

The validity of our approach is demonstrated with
simulation studies. We show the effect of source am-
plitude on the effective FWHM at each point in the
resulting SPMs. Given these smoothness estimates, we
show how statistical flattening [Worsley et al., 1999],
based on the resel count for individual image voxels,
can be used to correct for false positive rates across the
inhomogeneously smooth SPMs.

MATERIALS AND METHODS

The data processing path for beamformer-based
analysis is outlined in Figure 1. MEG data is collected
over a number of epochs, each containing a stimulus
or task window and a rest period. Some time, or
time-frequency, range within each epoch is used to
define a covariance window (Tcov). The choice of covari-
ance window ultimately determines the spatial filter
properties of the beamformer. For each possible
source � a weight vector W�, or spatial filter, is calcu-
lated. The output of this spatial filter, when applied to
the MEG data, gives an estimate of the electrical ac-
tivity, termed virtual electrode output, at �. Defining a

contrast window to consist of a pair of time (or time-
frequency) segments Tactive and Tpassive, a statistical
parameter at � can be computed from measures of
spectral power change across all pairs of contrast win-
dows. A volumetric SPM is computed from the itera-
tion of the above procedure throughout the source
space.

More formally, let m(t) be a column vector of N
MEG channels at a single time instant t. Define a
spatial filter centered on dipolar source element � by
the column vector of N coefficients W�. Where � is
made up of both dipole location and orientation pa-
rameters. In this study, for simplicity, we deal with the
case in which all parameters of � are known; in prac-
tice, either orientation is estimated [non-linear beam-
former: Vrba and Robinson, 2001] or calculations are
made at orthogonal orientations and summed [linear
beamformer: Van Veen et al., 1997] or alternatively,
cortical surface information is made use of (work in
progress).

The beamformer estimate of activity at element � is
given by:

y�t� � W�
Tm�t� (1)

Figure 1.
Schematic showing the partitioning of MEG
data and the processing steps involved in mak-
ing the SPM. The MEG data (m(t)) can be
divided into epochs, each epoch containing a
stimulus or task-related time period defined
by a stimulus window. A data segment of inter-
est, or covariance window (Tcov), is used to
calculate the MEG data covariance that in turn
will determine the properties of the spatial
filter (W�). At each source location �, the
spatial filter gives rise to an estimate of the
electrical activity (or virtual electrode output
y�(t)). A SPM value at � is produced by statis-
tical comparisons made on the virtual elec-
trode output between the time-frequency
ranges specified by the contrast windows (in
this case Tactive and Tpassive).
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For a minimum variance beamformer [Robinson and
Vrba, 1999; Van Veen et al., 1997], weights are calcu-
lated so as to minimise the projected power at each
source location subject to the constraint that the filter
maintains a unity passband at this point.

The estimated power at source � is given by:

P� � W�
TCW�, (2)

where C is the N � N covariance matrix calculated
over the covariance window (Tcov). It should be noted
that projected power is only minimized over this win-
dow [Capon, 1969].

C � E��m�t� � m� ��m�t� � m� T�, t � Tcov (3)

Define H� to be an N column vector containing the
lead field of source � (the lead field is defined as the
signal produced in all sensors by a unit source at that
location and orientation).

The linear constrained minimum variance beam-
former can be expressed as:

minw0�P�� subject to W�
TH� � 1 (4)

That is, the weights are chosen so that the power at
source � is minimised subject to the constraint that the
spatial filter maintains a unity passband at this point.

The solution to equation (4) is [Van Veen et al., 1997]

W�
T � �H�

TC�1H��
�1H�

TC�1 (5)

That is, the choice of covariance window completely
determines the spatial filter, or weights W�, for any
source �. Using equations (2) and (5), the source power
within the covariance window can be directly com-
puted:

P� � 	H�
TC�1H�


� 1 (6)

One problem with this measure is that noise at the
sensors is aliased nonuniformly throughout the source
space [Robinson and Vrba, 1999; Van Veen et al.,
1997]. For a single sample test statistic therefore it is
necessary to compensate for this effect by including a
noise term in the denominator.

X� �
	H�

TC�1H�

�1

[H�
T��1H�]�1 , (7)

where X� is the neural activity index [Van Veen et al.,
1997] or pseudo-Z [Robinson and Vrba, 1999] at � and
� is the covariance matrix of channel noise.

For a two-sample test statistic, however, this nor-
malization stage becomes redundant. Rather than use
the neural activity index as a metric of source strength,
we use a statistical quantity describing the change in
power at � between contrast windows (in this case,
Tactive vs. Tpassive). Although sensor noise will still be
non-uniformly distributed throughout the source
space, in any two sample comparison it will be a
constant (given that the sensor noise is stationary)
affecting the magnitude of the two power measures at
�, but not the statistical difference between them. Let
the estimated source power in any time-frequency
interval at source � be given by

Y� � E�y��t, f�2� (8)

For each epoch i, divided into active and passive time
portions of a contrast window, these power estimates
can be expressed as:

Y�
act�i� � E�y�

act�t, f�2�, t � Tactive, f � ftest (9)

Y�
pass�i� � E�y�

pass�t, f�2�, t � Tpassive, f � ftest, (10)

where Y�
act(i) is a measure of the power in the ith

active time window over frequency band ftest. For
example, the power in the 8–10 Hz band (ftest) over
time 0–2 sec (Tactive).

For a total of Iact and Ipass individual contrast win-
dows, the SPM value for element � can be obtained
from the two-sample t-test (with degrees of freedom G
� Iact  Ipass � 2) on the change in source power at �.
In this work we do not consider the case where con-
trast windows overlap, which would reduce the effec-
tive degrees of freedom. All power estimates are based
on Hanning windowed data and therefore, even when
time windows abut, the effect of the temporal corre-
lations at the window edges due to filtering is negli-
gible.

Note that the algorithm implemented by Robinson
and Vrba [1999] and Vrba and Robinson [2001] differs
from the above in two important respects.

First, Robinson and Vrba assume that the error vari-
ance in their pseudo-Z statistic is due to the sensor
noise alone (equation 7) and not variability in the
neural signal.

Second, in the algorithms presented by Robinson
and Vrba, there is no distinction between covariance
and contrast windows. That is, when two time-fre-
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quency windows are defined, the average covariance
across both windows determines the beamformer
properties and the power difference between the two
windows, obtained from equation (6) directly, gives a
measure of the statistical difference. In our analysis,
there is a decoupling of beamformer design and sta-
tistical test stages such that the beamformer weights
can be estimated based on broadband data whereas
statistical tests can be carried out on narrow time-
frequency ranges within this broad time-frequency
window. In our experience, although narrow (time or
frequency) contrast windows are often desirable, nar-
row covariance windows are not. The reason being
that covariance estimates based on low degrees of
freedom will tend to overestimate covariance between
channels; in this case the beamformer will use these
spurious correlations to suppress apparently (but not
truly) covariant sources.

Computation of spatial smoothness

Estimates of SPM smoothness are necessary to cal-
culate the number of independent image components
or resels. In techniques such as fMRI and PET, image
smoothness is generally most robustly computed from
local correlations within images of the random ele-
ments or residuals [Kiebel et al., 1999] left over from
the general linear model (GLM) fit. Correction for false
positive error rates can then be based on the number
of resels within the source space [Poline et al., 1995;
Worsley et al., 1996, 1999].

As mentioned earlier, the characteristics of the MEG
beamformer will depend on the data within the co-
variance window. The SPMs produced by any beam-
former-based algorithm, however, can be thought of
as originating from some generic scanner with inho-
mogeneous spatial passband. For any beamformer
based algorithm, if random data is substituted for real
data in the contrast windows, random volumetric
SPMs will result. These random SPMs will, however,
have the same spatial smoothness as the true SPM
produced from the real data (the spatial smoothness is
governed by the weight vectors that are kept identical
for the random and real data). Local spatial gradients
in the resulting images then give smoothness esti-
mates within the source space. To present a unified
format to the functional imaging literature we shall
refer to these projections of random data as ‘residuals’
although this is not strictly true. Note that this method
relies on the assumption that source-space smoothness
measures are adequate to estimate the number of in-
dependent components within the SPMs (see Discus-
sion).

More formally, assume that the beamformer has
already been designed for a particular covariance win-
dow in some real data set, giving weights W� for every
source element �.

To generate residuals we substitute white noise in
place of the MEG data in the contrast windows.

Let �(t) be a time series of Gaussian white noise in
N MEG channels.

The random time series n�(t) at virtual electrode � is
given as

n��t� � W�
T��t� (11)

Arbitrarily assigning two sections of �(t) to be Tactive
and Tpassive, the residual (null signal) for any realisa-
tion i of �(t) at � is given

di� � E�ni�
2 �t1�� � E�ni�

2 �t2��, t1 � Tactive, t2 � Tpassive

(12)

Setting all residuals from M realisations of Tactive and
Tpassive to have unit norm gives

�i� �
di�

��
i�1

M

di�
2

, (13)

where �i� is the normalised residual at � for noise
realisation i.

Following Worsley et al. [1999], we divide the cubic
lattice that forms the source space into a tetrahedrally
connected mesh (five tetrahedra per voxel). For clarity
at this point we introduce a parallel notation and
define source element � to be at location 0 and the
connecting vertices of a single tetrahedral element to
be at locations 1, 2 and 3. Then �i0, �i1, �i2, �i3 are the
normalized residuals at element � (or element 0) and
its neighbouring elements (1–3) at realisation i. The
image smoothness is estimated from the differences
between the normalized residuals ��� containing M
rows, where the ith row can be expressed as:

��i� � ��i0 � �i1, �i0 � �i2, �i0 � �i3� (14)

The resolution element or resel estimate at point �,
r(�), is given by [Worsley et al., 1999]

r��� �
�4 loge�2���3/2

3! � ����
T����1/2 (15)
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Converting back into a cubic lattice simply involves
summing the resels within each voxel (v), giving r(v).
Assuming that the voxels are cubic of side length dx,
then the filter FWHM at any voxel v is given by:

FWHM��� �
dx

3�r���
(16)

As mentioned above, equation (16) can be evaluated
empirically using residuals projected from realisations
of random data. A more elegant approach, however, is
to use the fact that the correlations between residuals
are intrinsically linked to the correlations between
weights (see Appendix). Letting cjk be the Pearson
product moment correlation coefficient between
weight vectors Wj and Wk

cjk �
Wj

T � Wk

��Wj
T � Wj��Wk

T � Wk�
(17)

The elements of ���
T��� can be expressed as

���
T��� � � a11 a12 a13

a21 a22 a23

a31 a32 a33

� (18)

Where the elements of ���
T��� are given by

ajk � �
i�1

M

��i0 � �ij���i0 � �ik� � 1 � c0j
2 � c0k

2 � cjk
2 (19)

For the diagonal elements, this simplifies to

ajj � �
i�1

M

��i0 � � j0�
2 � 2�1 � c0j

2 � (20)

SIMULATION SET-UP

Smoothness estimates

In the first stage of the analysis we used simulated
data to examine our smoothness metric. For all simu-
lations we used the configuration of a 151 channel CTF
Omega system [Vrba et al., 1999]. A source space was
formed based on a subject’s head outline as measured
during an experimental recording session. The source
space was divided into a regular 3D lattice (0.2 cm side
length) of source elements (or potential current di-
poles). The orientation of each element was set to be

orthogonal to both the line joining it to the sphere
centre and the vector defining the posterior–anterior
direction. An active dipolar source was simulated at a
depth of 3 cm from the scalp surface at 14 different
source strengths (ranging from 0.1–200 nAm). The
source was given a sinusoidal activation profile lasting
for 100 msec and of period 20 msec; 100 epochs of
MEG data were simulated with a per-channel white
noise level of 90 fT rms (10fT/�Hz, 81 Hz band-
width). All forward problem and lead field calcula-
tions used the best fitting sphere to the subject’s head
outline as a volume conductor model. Beamformers
were designed for each data set using covariance win-
dows of 200 msec spanning 100 msec of activation and
100 msec of preceding white noise. The time-fre-
quency contrast windows used were the 100 msec of
activation (Tactive) and the 100 msec pre-activation
(Tpassive) in the 40–60 Hz band (ftest). Estimates of
smoothness were either estimated from 50 randomly
generated sets of residual data (equations 11, 12) or
calculated directly from the neighbouring weight vec-
tors (equations 17–20).

False positive rate

We set out to investigate the statistical thresholds
necessary to set corrected type-1 error rates for the
SPMs produced by the above simulations. We did this
by using a pre-existing set of beamformer coefficients
and simulating a situation in which there was no
statistical difference between contrast windows. Any
SPM values that crossed a preset threshold would be
due to chance alone. The beamformer designed for the
data from the 0.2 nAm source in the above simulations
was used; however in this simulation, the contrast
windows spanned sections of MEG data that con-
tained only Gaussian white noise (and no signal)
(equations 11, 12). For each realisation (of 100 epochs
of data) a single random volumetric SPM was pro-
duced (a two- sample t-statistic with 198 df). For com-
putational efficiency, each SPM was generated on a
cubic lattice of side 1cm hence the necessity of choos-
ing a source amplitude (0.2 nAm) known to give a
minimum FWHM of greater than 2 cm (see results,
Fig. 3). This null-hypothesis scenario was repeated
3,000 times to produce estimates of the Type 1 error
rate for specific choices of t-statistic threshold. For
each image, the error rate count was incremented (by
one) if any voxel within the source space exceeded its
preset threshold. Only voxels within the head volume
were used in the analysis. We calculated false positive
rates for both global and voxel-wise thresholding.
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Thresholds were set based on the expected value of
the Euler characteristic of the 3D SPM [Worsley et al.,
1996]. The expected number of excursion sets (or clus-
ters) m to exceed threshold U is given by

E�m� � �
d�0

3

Rd�d�U�, (21)

where Rd are the d-dimensional resel counts and �d(U)
is the d-dimensional Euler Characteristic density func-
tion for a t-statistic threshold U [Worsley et al., 1996].

The total resel count (or volume) was calculated
analytically from the beamformer coefficients, by sum-
ming over all the voxels in the head volume. Resel
counts for each dimension Rd were calculated given
the assumption that this volume was also approxi-
mately spherical in resel space [Worsley et al., 1996].

From Friston et al. [1996a], the probability of obtain-
ing at least one cluster of spatial extent r resels or
more, exceeding a threshold U is given by

P�U, r� � 1 � exp��E�m�P�n � r�� (22)

Where the above probability that the cluster contains
at least r resels is given by

P�n � r� � exp��� � r2/D� (23)

and

� � ���D
2 � 1�E�m�

R���U�
�

2/D

, (24)

where the dimensionality of the SPM is set by D (�3),
R is the total resel volume, � is the cumulative density
function for the unit Gaussian distribution and � de-
notes the gamma function.

We used two different thresholding approaches: lo-
cal and global. For local thresholding we treated each
SAM voxel as a single cluster of volume r(v) resels. For
a given false positive rate we then calculated the
threshold level U(v) that one would expect a cluster of
this size to exceed. For global thresholding, we looked
at the effect of the assumption of uniform SPM
smoothness on the false positive rate, and used the
mean resel volume rav to set the same threshold at all
voxels, where

rav �
R

Nvoxels (25)

Where rav is the mean resel volume, R is the total resel
volume, and Nvoxels is the total number of voxels. The
above measures were computed directly from the
SPM matlab function spm_P.m (http://www.fil.ion.
ucl.ac.uk/spm, 01/12/2001).

RESULTS

Smoothness estimates

The measure of spatial smoothness derived in the
previous section gives an insight into the performance
of the algorithm for a given covariance window. For a
single simulated source we investigated the effect of
SNR on both the spatial smoothness and the resulting
SPM.

Figure 2A,C shows roughness (1/FWHM) in the
coronal plane of voxels passing through the location of
the simulated source at 3 cm depth for current densi-
ties of 2 and 10 nAm respectively. The roughness
image peaks at the source location showing that vox-
els in this region have the smallest FHWM, that is,
weight vectors relating to adjacent sources are chang-
ing the fastest. This is an intuitive property of a min-
imum variance beamformer, which strives to mini-
mise its spatial passband to minimise estimated source
power (equation 4). Comparing Figures 2A and C
shows that as the source power increases the rougher
the source space, or the more focal the eventual t-SPM,
becomes.

In Figure 2B,D the SPMs for the optimal contrast
windows (comparing the time window containing the
signal with a pre-stimulus baseline period) are shown.
As predicted from the smoothness measures, the
SPMs are more focal for the higher source strength.
The critical difference between the SPMs and the
smoothness measures is that the smoothness measures
depend uniquely on the choice of covariance window
whereas the SPMs depend on both the covariance
window and the contrast windows chosen. That is, the
smoothness measures describe the properties of the
beamformer whereas the SPMs show the changes in
estimated source power for a particular experimental
hypothesis.

In Figure 3 the relationship between FWHM and
source strength, hinted at in Figure 2, is examined in
more detail. Both empirical (dotted) and analytical
(solid line) estimates of FWHM at the simulated
source location are plotted as functions of source
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strength. It is clear that the analytical estimates based
on the correlations between weights (equations 17–20)
and empirical results from generating pseudo-residual
images (equations 11, 12) are in good agreement.
FWHM is clearly inversely related to source strength,
however in this case it saturates at 4 mm. This satu-
ration is due to spatial under-sampling causing a deg-
radation in the measure of resels as FWHM ap-
proaches twice the grid spacing (in this case 2 mm)
[Friston et al., 1996a].

False positive rate

Using the beamformer designed for the 0.2 nAm
source (see Materials and Methods) we computed the
type-1 error rate in the SPMs for contrast windows
consisting of Gaussian white noise for different
thresholding strategies. Ideal performance, that is,
where required and achieved error rates are identical,
is shown as a dotted line in Figure 4. Global measures
(dotted line), where the assumption is that the SPMs

Figure 2.
Plots of spatial roughness (1/FWHM) of residual images (A,C) and
subsequent SPM images (B,D) for source strengths 2 and 10 nAm
respectively at a fixed dipole location (3 cm depth). The maps are
in the coronal (x) plane with the z axis in the inferior-superior
direction passing through the dipole location and 1 cm anterior to
the sphere centre. For (A,C), the maps are roughest, or least
smooth, at the location of the simulated source. Note the change
in smoothness across the images of approximately an order of
magnitude. Also observable (A,C) are roughness peaks close to

the sphere center, these peaks seem to arise due to numerical
instability as the magnitudes of the lead field vectors approach 0.
In this case, the minimum FWHMs are 8 mm and 5 mm for source
of strengths of 2 and 10 nAm respectively. The SPMs were
computed, based on a two-sample t-statistic, by using a contrast
window in which Tpassive and Tactive contain data from 100 msec
before and during the signal, respectively. The roughness maps
depend solely on the choice of covariance window, whereas the
t-maps depend on the choice of contrast window as well.
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are uniformly smooth (equation 25), give rise to
slightly inflated false positive rates (see discussion).
Using local thresholding (solid line), where each voxel
is assigned a different threshold level dependent on its
extent in resel space, leads to a more accurate predic-
tion of error rate. Figure 4B shows the distribution of
per-voxel threshold levels across the image as com-
pared to the global threshold estimate for a corrected
significance level of P � 0.05. The large spread of
per-voxel thresholds (due to variations in image
smoothness) helps explain the differences observed in
Figure 4A.

DISCUSSION

We have described a method for assessing the spa-
tial smoothness of MEG beamformer based statistical
parametric maps. Simple analytical expressions relat-
ing correlations between adjacent weight vectors to
image smoothness have been derived and are in good
agreement with our simulations (Fig. 3). The statistical
images produced are least smooth (i.e., have lowest
FWHM) around electrical sources and FWHM de-
creases with increasing source strength as has been
previously reported [Gross et al., 2001; Van Veen et al.,
1997; Vrba and Robinson, 2001]. The spatial smooth-

Figure 3.
FWHM at the dipole location vs. source strength for a dipole
simulated at approximately 3 cm depth for both analytical (solid)
and empirical (dotted) smoothness estimates. As SNR increases
the spatial filter becomes increasingly selective. The saturation
(here at FWHM � 4 mm) is due to the spatial under-sampling of
the grid (2 mm spacing here). Note also that the analytical and
empirical smoothness estimates are in good agreement.

Figure 4.
(A) The false-positive error rate per SPM volumetric image for the
beamformer weights designed for the 0. 2 nAm source at 3 cm
depth. Ideal false positive rates, where the achieved rate should
match the required rate are shown as a dotted line. The use of a
global thresholding strategy (circles), where uniform smoothness
is assumed, tends to produce over inflated error rates. The use of
local thresholding (solid), where the threshold for each voxel is
determined from its extent in resel space, is very close to ideal.
(B) The distribution of per voxel thresholds (histogram) as com-
pared to the global threshold (point) for corrected significance
level P � 0.05. It is clear that there is a wide spread of per voxel
thresholds, being lowest around the simulated source, where the
images are least smooth (Fig. 2).
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ness measure enabled us to derive per voxel threshold
levels that account for the inhomogenous smoothness
of the images. The accuracy of these estimates de-
pends however on adequate sampling of the source
space (Fig. 3). We have shown that using these spatial
smoothness measures it is possible to set accurate
corrected false-positive error rates for the SPMs
(Fig. 4).

The method we propose differs slightly from that of
other beamformer based algorithms such as SAM
[Robinson and Vrba, 1999], the critical difference be-
ing that one can compute weights based on wide-band
data yet make statistical comparisons on narrow-band
data within this. SAM is a special case of this ap-
proach, where the same data is used to compute the
weights and make the statistical comparison. The
main advantage of our algorithm is that it enables a
compromise between the signal suppression implicit
in beamformers constructed from narrow-band data
(due to spurious correlations) and the decrease in
beamformer spatial resolution when constructed from
wide-band data (due to lower SNR).

Although the Student t-statistic is used throughout
this work, it is a subject for further investigation as to
whether it is the most appropriate test given the na-
ture of the MEG data arising from ERD/ERS phenom-
ena in the brain. Further work needs to address
whether non-parametric tests may be more appropri-
ate. In future we anticipate the need to move to more
versatile statistical analyses, such as the General Lin-
ear Model [Friston et al., 1995] to allow for the incor-
poration of other variables such as models of habitu-
ation [Friston et al., 1996b] or different time-frequency
ranges.

In this study we dealt exclusively with contrast
windows that have no temporal overlap and have
been considered to be independent. Due to the high
temporal resolution of MEG, the time constant of the
post-synaptic potential (�10 msec) and the fact that
even abutting contrast windows are Hanning win-
dowed before analysis, this assumption is reasonable.
In selecting distinct analysis windows, however, we
have sacrificed the temporal resolution of the statisti-
cal comparison for statistical power. Future work
should allow for the comparison of overlapping con-
trast windows and incorporate adjustment of the de-
grees of freedom estimate to take this into account.

The smoothness estimates used here to calculate the
degree of independence between the source space el-
ements clearly rely on the assumption that only local
correlations between voxels exist (as in smoothed
fMRI and PET images). In MEG data, where each
virtual electrode is formed from a linear mixture of the

recording channels there is also the possibility of cor-
relations between distant voxels. It is therefore doubt-
ful that this result will generalize to any linear inverse
solution (such as minimum norm). The minimum
variance beamformer, however, is designed to mini-
mise correlations between sources and this becomes
most efficient as the sources become spatially sepa-
rated [Van Veen et al., 1997]. The algorithm attempts
to assign nominally orthogonal components of the
signal space to different spatial locations; these or-
thogonal components can be thought of as the time-
courses within nominally independent (but oddly
shaped) voxels. The results are still surprisingly accu-
rate (Fig. 4A), especially given that for N channels
there can be at maximum N independent virtual elec-
trodes. Perhaps this last fact accounts for the slightly
higher than specified false-positive rate.

The SPMs are highly inhomogeneous in smooth-
ness, with typical FWHMs varying over at least an
order of magnitude (Fig. 2). In our error rate simula-
tions we were forced to use a very low source power
to keep the spatial sampling rate at a computationally
manageable level (given that there were 3,000 simula-
tions). Thus, although the results show similar error
rates for local and global measures (Fig. 4), we predict
that the global measures will continue to diverge from
ideal as the images become less smooth. In practice,
the computational burden of high spatial sampling
could be relieved as it need not be regular; we antic-
ipate a scheme whereby spatial sampling is increased
locally until the estimated resel volume reaches a con-
stant.

The statistical flattening described can be simply
formulated in fewer dimensions [Worsley et al., 1999]
and, in a similar manner to that being used in fMRI
[Andrade et al., 2001], we anticipate its use with vir-
tual electrode sites that are mapped directly to the
cortical surface.

Most importantly, knowledge of both image
smoothness and corrected significance levels is essen-
tial to make quantitative comparisons of statistical
parametric maps across scanning modalities [Barnes
et al., 2001; Taniguchi et al., 2000; Singh et al., 2001,
2002].
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APPENDIX

We show the relationship between the correlation
between weights and the correlation between residu-
als. As an example we derive an expression for the
sum of the squares of the differences between normal-
ized residuals (the term a11 in equation 18).

Equation (12), which gives the change in source
power (or residual) at source element �, can be re-
expressed in terms of the weights
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di� � �W�
TN1W� � W�

TN2W�� (26)

Where N1 and N2 are the expected covariance matrices
of channel noise over time periods Tactive and Tpassive

respectively.

Ni,1 �
1
m �i,1�i,1

T , Ni,2 �
1
m �i,2�i,2

T (27)

and m is a constant normalizing for the number of
samples in Tactive and Tpassive. The residual can be ex-
pressed as

di� � W�
T�Ni,1 � Ni,2�W� (28)

or, defining

�i � Ni,1 � Ni,2 (29)

gives

di� � W�
T�iW� (30)

The normalized residual at realization i is given by

�i� �

W�
T�iW�

��
i�1

M

�W�
T�iW��

2

(31)

Examining term a11 in equation (18)

a11 � �
i�1

M

��i0 � �i1�
2 (32)

As the sum of the square of the normalized residuals
is defined to be unity (equation 13)

a11 � 2� 1 � �
i�1

M

�i0�i1� (33)

Where the summation term is simply the correlation
between the normalized residuals (that is the same as
the correlation between residuals).

Evaluating the summation

�
i�1

M

�i0�i1 �
W0

T�iW0

��
i�1

M

�W0
T�iW0�

2

�
W1

T�iW1

��
i�1

M

�W1
T�iW1�

2

(34)

As �i is diagonal, this simplifies to

�
i�1

M

�i0�i1 �
W0

TW0

��W0
TW0�

2 �
W1

TW1

��W1
TW1�

2 (35)

and, as the covariance matrix of weight vectors is
symmetric

W0W1
T � W1W0

T (36)

the correlation between residuals is given by

�
i�1

M

�i0�i1 �
W0

TW1

��W0
TW0�

2 �
W0

TW1

��W1
TW1�

2 (37)

that is equivalent to the square of the correlation be-
tween the weights (equation 17)

�
i�1

M

�i0�i1 � c01
2 (38)

Hence, (see also equation 20):

a11 � 2�1 � c01
2 � (39)
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