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Abstract
Interest is increasing in epistasis as a possible source of the unexplained variance missed by
genome-wide association studies. The Genetic Analysis Workshop 16 Group 9 participants
evaluated a wide variety of classical and novel analytical methods for detecting epistasis, in both
the statistical and machine learning paradigms, applied to both real and simulated data. Because
the magnitude of epistasis is clearly relative to scale of penetrance, and therefore to some extent,
to the choice of model framework, it is not surprising that strong interactions under one model
might be minimized or even disappear entirely under a different modeling framework.
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INTRODUCTION
The term “epistasis” was first described by the English geneticist William Bateson [1907] to
denote the suppression of gene expression at one locus by a gene at another locus. However,
modern geneticists more often think of epistasis using Fisher’s [1918] conceptualization, as
a departure from additivity in the penetrance for two or more loci, in the same way that
dominance is a departure from additivity in the penetrance at one locus. Thus, penetrance
models of epistasis require additional interaction terms (each with its own corresponding
parameter) in and above the additive “main effect” terms for each locus. In this framework a
test of epistasis is a test of whether these gene-gene (G×G) interaction term(s) are zero or
not, and lack of epistasis represents a special class of all possible multi-locus penetrance
functions. It is of course an empirical question whether epistasis plays a major or minor role
for any given trait in any particular population or defined subsample. But interest has lately
been increasing in epistasis as one possible source of the so called “dark matter” or “missing
R2” in genome-wide association scans (GWAS) for complex traits (i.e., the fact that the
cumulative main effects from GWAS signals account for far less of the total predictive R2

than the estimated heritabilities of these traits). Correspondingly, analytical methods to
detect and estimate the degree of epistasis are becoming more sophisticated and more
numerous. In an attempt to compare and contrast the advantages and disadvantages of
various epistatic models and methods of detection, investigators participating in Genetic
Analysis Workshop 16 (GAW16) Group 9 applied a number of traditional as well as novel
methods to three large, complex trait data sets.

Data
Eight groups analyzed the North American Rheumatoid Arthritis Consortium rheumatoid
arthritis (RA) data (GAW16 Problem 1 [Amos et al., 2009]): Chanda et al. [2009], Clarke et
al. [2009], Huang et al. [2009], Jung et al. [2009], Li et al. [2009], Liang et al. [2009],
Manning et al. [2009], and Mukherjee et al. [2009]. Three groups analyzed the Framingham
Heart Study (FHS) data (GAW16 Problem 2 [Cupples et al., 2009]): An et al. [2009],
Malzahn et al. [2009], and Yao et al. [2009]. Finally, three groups analyzed the simulated
data which was based upon FHS (GAW16 Problem 3 [Kraja et al., 2009]): Culverhouse et
al. [2009], Kovac and Dube [2009], and Malzahn et al. [2009]. While most groups assessed
discrete traits (RA, coronary heart disease, type 2 diabetes), five groups also focused on
quantitative traits including triglyceride/high-density lipoprotein ratio [An et al., 2009], anti-
cyclic citrinullated peptide and rheumatoid factor IgM [Mukherjee et al.. 2009], low-density
lipoprotein [Kovac and Dube, 2009], coronary artery calcification (CAC) and coronary
event [Culverhouse et al., 2009], and CAC and body mass index [Malzahn et al., 2009]. Two
groups assessed longitudinal quantitative traits in the FHS data including changes in
triglyceride/high-density lipoprotein ratio [An et al., 2009] and changes in CAC and body
mass index [Malzahn et al., 2009].

Methods for detecting epistasis
Approaches to detecting epistasis can be classified as either statistical or machine learning
methods. Statistical methods make formal models of stochasticity or randomness, and most
propose formal hypothesis tests of epistasis. By contrast, machine learning methods
[Alpaydin, 2004] tend to be more heuristic, data-mining techniques that do not necessarily
rely on formal statistical tests, but concentrate on efficient algorithms to identify epistatic
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patterns in high-dimensional spaces, such as the space of all possible G×G interactions
among a set of candidate genes, for instance. Some machine learning methods do build their
search algorithm around formal statistical models. An early example of such a technique is
stepwise regression. Each stage in the “variable selection” model-building process is a
formal statistical multiple regression model, but using the stepwise algorithm itself to add
and delete new predictors is a heuristic way to reasonably search the space for all possible
models, and we typically do not worry about such formal statistical issues as corrections for
multiple comparisons between submodels, the possibility of partial null hypotheses, or other
probability issues concerning multiple models considered simultaneously. In GAW16 Group
9, both statistical models and machine learning approaches were used to attempt to identify
epistasis, as summarized in Table I, and discussed below.

Statistical methods for epistasis
The general approach of statistical epistasis methods is to take the null hypothesis as “no
epistasis” (additivity), which is preferred unless there is overwhelming evidence in the data
in favor of epistasis. A significance level is provided that quantifies the probability of
observing the data (or more extreme data) if the null is true (i.e., no epistasis). Thus, in the
typical hypothesis testing paradigm, statistical methods tend to conclude in favor of the null
of no epistasis, unless there is strong evidence in favor of epistasis. This is also in keeping
with standard epidemiological practice about interactions in general, in which we tend to
favor simpler models with no interaction over more complex models requiring interaction,
under the principle of Occam’s Razor. If we can reasonably model the data assuming
additivity, we prefer this over requiring epistasis to explain the data. In fact, many statistical
tests for epistasis are done in the context of specified multivariate penetrance models, which
tend to be one form or another of generalized linear models (GLMs).

Generalized linear model
GLM notation developed by Nelder and Wedderburn [1972] is a general framework for
describing multivariable linear models. Given a stochastic random variable phenotype, Y,
and a set of (fixed, non-random) predictors, X (which includes genes Gi and Gj), we assume
that (Y|X) follows a specified parametric probability distribution, P, such that:

where D[X] denotes the design matrix for X, which includes as a submatrix [Gi || Gj ||
GiXGj], i.e., the design matrix contains main effect terms for each of Gi and Gj (additive as
well as dominance terms for each gene) as well as interaction terms between Gi and Gj (in
general, four terms for additive×additive, additive×dominance, dominance×additive, and
dominance×dominance). β is an unknown parameter vector of intercept and slopes that we
estimate from the data, and we are typically interested in the β-coefficients corresponding to
the epistasis terms in the model. l (.) is a known, specified link function that is 1-1 and
invertible. This framework is quite general, and many of the classical models of statistics
can be formulated this way by an appropriate choice of probability distribution and link
function, as shown in Table II. In fact, most of the epistasis statistical models used in
GAW16 can be cast into this canonical GLM formulation, which allows us to compare and
contrast models.

Case-only
Clarke et al. [2009] considered modeling a binary trait as being influenced by two bi-allelic
disease susceptibility loci, F and G, according to a model of joint locus effects. Here, F
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denotes a candidate gene single-nucleotide polymorphism (SNP) and G denotes an
“equilibrium SNP” (i.e., tag SNPs covering a region which themselves are pairwise in low
linkage disequilibrium (LD) r2<0.2). They tested for G×G interaction between gene and
equilibrium SNPs using GLM tests based on logistic odds, proportional odds, and
multinomial link functions. For each model, there are two regressions: first, F is modeled as
the outcome variable and G the predictor, then vice versa. The outcome variable is
categorized appropriately according to the relevant model: a binary categorization for the
logistic model, an ordinal categorization for the proportional odds model, and a nominal
categorization for the multinomial model, which result in three different link functions in the
GLM formulation. The predictor variable is categorized as an ordinal variable in all three
regressions.

Family mixed model
Kovac et al. [2009] and An et al. [2009] used a family-mixed model [Borecki and Province,
2008], which is an extension of the multiple regression model, to deal with association in
family data. It can overcome the problem of non-independence of residuals within pedigrees
that produces inflation of type I error if one applies regular regression and ignores family
relationships. This GLM uses a gaussian probability distribution and an identity link
function, just as in linear regression, but includes an additional random effect component
predictor for pedigrees.

Allelic scoring method
The underlying principle of this method of Jung et al. [2009] is to identify the association of
allelic combination between two unlinked markers with a disease trait so that subjects are
assigned an allelic score given their observed genotype information. The score is a
conditional probability of obtaining the particular allelic combination given the observed
genotypes at the two loci of each subject. A linear trend of proportion of cases over total
number of subjects at each allelic combination can be modeled using an extension of the
Cochran-Armitage trend regression.

Omnibus test (OT)
Liang et al. [2009] applied the OT of Chatterjee et al. [2006] to detect epistasis. The
omnibus method tests for gene-based effects by considering all SNPs in a given gene or
region as a single group and evaluates this gene assuming a second known gene or other risk
factor plays a role. Specifically, the method forms L(G) latent factors from linear
combinations of G loci, and tests the GLM E[Y|L(G)] = l −1 (D[L(G)] β) with Lm×Ln latent
interactions. It then infers Gi×Gj interactions from Lm×Ln interactions and latent path
loadings. The application to GAW16 Problem 1 used a logistic regression approach
(binomial distribution with a logit link in the GLM) but the significance of the test gene
effect includes both the main effect and the interaction between this gene and the known risk
factor or gene. For the genes identified by these methods, logistic regression was used to test
formally whether the interaction terms were significant predictors.

Principal-component analysis (PCA)
Li et al. [2009] extended the original PC approach to test for association between disease
and multiple SNPs in a candidate gene in order to incorporate a test for G×G interaction.
The procedure involves the following steps. 1) Let glk be the number of minor alleles at SNP
k for lth subject, l = 1, …, N, k = 1, …, K. 2) Calculate the correlation matrix R, where Rij =
cor(gi, gj) and gi and gj represent the genotypes of all subjects for SNP i and SNP j,
respectively. 3) Decompose R by singular value decomposition: R= AΛAT. 4) Determine
the factor loading by . 5) Determine the PCs by PC = GA, where G is the
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standardized N×K matrix of genotypes. The standardized genotypes are calculated as:

, where  is the mean genotype across subjects and

 is the standard deviation.

Li et al. [2009] used PCs that explained at least 80% of the variation as the gene
representation to perform a G×G interaction analysis by applying logistic regression to test
for interaction between every combination of two PCs. Once significant PC interactions
were identified, PC loadings were used to determine the influence of a specific SNP on the
PCs because the loading represents the correlation of a SNP with a component.

Interactions among main effect genes and interactions among pathway genes
In a GWAS, or even when there are a large number of candidate genes, there can be too
many possible G×G interactions to evaluate exhaustively. Manning et al. [2009] utilized two
complementary approaches to reduce the number of possible G×G interactions to test. The
first strategy is to use a two-stage approach test for interactions only among genes that show
significant main effects. In Stage 1, a set of additive GLMs are fit, one variant at a time, and
the susbset of variants that show significance are selected for further consideration. In Stage
2, a series of two-variant GLMs are refit, which include every pairwise combination of the
main effect subset as well as their respective interactions. The second approach, interactions
among pathway genes, is similar in spirit and design. Again, a subset of genes is selected in
Stage 1 and interactions are only evaluated among genes in that subset, but in this strategy,
the Stage 1 subset is selected based on external biological knowledge that genes belong to
the same relevant pathway, rather than based internal statistical tests from the data itself,
interactions among pathway genes.

Two-step approach
Li et al. [2009] modified the two-step approach of Murcray et al. [2009] to detect gene-
environment interaction to be applied to detect G×G interaction. In the first step, a GLM
model is fit predicting G from F in the combined case-control data, using the approximate
method to detect epistasis in PLINK (note that this analysis does not involve phenotype,
only the two genotypes). This can be considered as a modified version of the case-only
approach for epistasis. Only those SNPs that show significant epistasis in Step 1 are carried
forward to Step 2, in which a saturated logistic model (GLM with binomial distribution and
logit link) is fit. The test of the G×G product term is the final test of epistasis.

Longitudinal nonparametric association test (LNPT)
Malzahn et al. [2009] adopted a test statistic from the area of clinical studies [Brunner et al.,
2001]. The LNPT tests for association of longitudinal quantitative traits with respect to a set
of influencing factors. The latter divide the cohort into subgroups. The LNPT tests the null
hypothesis of no difference in trait distribution F between these subgroups H0

F: CF=0,

where C is a contrast matrix and  is the set of distribution functions  ordered by
observational time point t and the influencing factors (kls) of interest (for example, two
factors k, l = 0, 1, 2 for SNP genotype at two bi-allelic loci and additional factors for
covariates, e.g., sex s={m, w}). The LNPT test statistic is invariant with respect to monotone
trait transformations. The LNPT is not a GLM because no distributional assumptions are
made about F and the test is not restricted to contrasts of expected values. However, its test
statistic resembles a heteroscedastic repeated measures GLM ANOVA, which is performed
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on the mid-ranks of the longitudinal traits, estimating longitudinal covariance from the ranks
without assuming any structure. The LNPT requires that individuals be followed up at the
same time intervals, but individuals with partially missing values for the longitudinal
phenotype can be included for computation of the test statistic. The LNPT yields a set of
adjusted p-values for tests of average effects of the loci, covariates (e.g., sex), number of
exam, and for tests of all interactions.

Cox model
Malzahn et al. [2009] converted longitudinal quantitative traits to event-time data, testing for
evidence of G×G interactions with the established semi-parametric Cox model of survival
analysis [e.g., Therneau and Grambsch, 2000]. Event time was defined as age at the first
exam when the longitudinal trait crossed a predefined threshold. Event times are invariant
with respect to monotone transformations of the trait. The Cox model estimates hazard ratios
HR(Gi) to quantify the impact of a genotype Gi on event-time. Significance of G×G
interactions (rejection of H0: HR(G1, G2)=HR(G1)HR(G2)) was evaluated with the
likelihood ratio test.

UNPHASED
Kovac et al. [2009] utilized a haplotype approach to epistasis, as implemented in the
program UNPHASED [Dudbridge, 2008]. It uses a likelihood framework for primarily
haplotype-based analysis of data, which can include both familial and unrelated subjects.
The test for G×G interaction for a quantitative trait compares the null hypothesis of equal
contributions for all gene combinations (in haplotype form) sharing the same alleles at the
conditioning marker, versus the alternative hypothesis of differential multiplicative
contributions from the test marker. The test uses a likelihood-ratio chi-square statistics to
compare models with and without the interaction terms.

Machine learning methods for epistasis
Complementary to the statistical methods for epistasis are the machine learning ones, which
typically are high-dimensional heuristic search algorithms to detect G×G interactions that
mostly rely upon split samples with cross validation to avoid fitting to noise. Some use the
basic GLM to evaluate particular interactions, but many of these detection methods do not
utilize a formal G×G model per se, and therefore do not provide an estimate of effect size.
The emphasis is on efficient search among a large number of possible G×G interactions to
determine which are signals and which are noise, rather than on detailed modeling of any
particular G×G interaction.

Multifactor dimensionality reduction (MDR) and generalized MDR (GMDR)
Mukherjee et al. [2009] applied the GMDR method, a score-based extension of the MDR
[Ritchie et al., 2001]. In MDR, multi-locus genotype combinations are classified as high-risk
or low-risk genotype combinations using a threshold on the ratios of cases to controls in
each combination. The best model is selected as the combination of marker with maximum
cross-validation consistency and minimum prediction error. GMDR generalizes this
framework, replacing the ratio of cases to controls by scores in each cell to discriminate
between high risk and low risk. The GMDR algorithm allows for increased flexibility to use
covariates, handling both dichotomous and continuous phenotypes, and a variety of
population-based study designs such as using unbalanced case control samples.

Restricted partitioning method (RPM)
Culverhouse et al. [2009] applied the RPM [Culverhouse et al., 2004], which reduces the
dimensionality of genotype comparisons by using a multiple comparisons ANOVA to
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evaluate whether the phenotypes associated with each (multilocus) genotype in a particular
model (e.g., a two-SNP model consisting of nine genotypes) come from the same
distribution. If the answer is no, the method proposes a partition of the genotypes. The test
statistic is the proportion of the trait variation explained by the partition. Statistical
significance is determined by permutation testing. The RPM was developed as a method for
analyzing data sets consisting of unrelated subjects, and hence can be considered only an
approximately correct screening tool when applied to pedigree data, such as the FHS.

Generalized, unbiased interaction detection and estimation (GUIDE)
Yao et al. [2009] utilized GUIDE [Loh, 2002], a tree building software package. GUIDE
develops classification trees using three steps: 1) perform a χ2 test to select the most
significant variable to split a node; 2) select the split threshold that minimizes the node
impurity measure; 3) recursively repeat Steps 1 and 2 until there are too few observations in
each node. After building a complete tree, three methods are used to decide how much of the
tree to retain: cross-validation pruning, test-sample pruning, and no pruning, where the
criterion for judging the correct amount of pruning is that which minimizes the unbiased
estimate of misclassification cost. GUIDE allows fast computation, provides a natural
extension to data sets with categorical variables, and direct detection of local two-variable
interactions. It has four useful properties: 1) negligible selection bias; 2) sensitivity to
curvature and local pairwise interactions between regressor variables; 3) inclusion of
categorical predictor variables; and 4) choice of three roles for each ordered predictor
variable: split selection only, regression modeling only, or both. GUIDE can process a large
number of SNPs in one run. However, it is still not feasible to run the entire Problem 2 FHS
data set at one time due to computation limitations (350k SNPs after filtering for lack of
Hardy-Weinberg equilibrium (p<0.001) and low minor allele frequency < 5%, which results
in a file over 10 GB in size).

Random forests (RF)
Liang et al. [2009] utilized the RF approach of Breiman [2001], which involves tree models
fit to bootstrapped samples of subjects and predictors. Each bootstrap tree provides a
classification, and these are aggregated as votes to form a final classification. RFs are less
likely to fit to noise than are simple trees.

K-Way interaction information (KWII)
Chanda et al. [2009] developed an entropy-based method for detecting epistasis called
KWII. KWII is defined as the amount of information (redundancy or synergy) present in the
set of variables that is not present in any subset of these variables. Formally, if S is a set of
variables that includes both predictors (including genes) as well as the response phenotype,
then KWII (S) = Σt⊆S (−1)|S|−|t| H(t), where H (t)=Σt∈u P(t = u) log2 [P(t = u)] is the Shannon
entropy information (which measures the amount of information in a system one is missing
if that variable is unknown or not used). Sets of predictors with larger KWII indicate
stronger interactions with the phenotype, and thus higher association. Given the strong LD
patterns in the genome, there can be multiple sets of SNPs that are formally disjoint, but
essentially contain the same information, which is characterized by a redundancy metric:
specifically, the redundancy between sets of predictors S1 and S2 is given by the maximized
average of pairwise LD (R2) between variables from S1 and S2 red (S1S2) = max(Σx∈S1y∈S2
r2 (x, y)/m). The KWII algorithm performs a stepwise search for the set of predictors that
when added to the existing set, S, produces the greatest KWII and is not redundant to S. The
computational burden on checking redundancy is sufficiently high that only a fixed number
of iterations can be performed, which yields a fixed number of single- and two-variable
combinations and their corresponding KWII values, which are input to a second evaluation
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stage. In this stage, a traditional logistic regression fully saturated GLM is performed, using
a binomial distribution and a logit link.

Genotype trait distortion (GTD)
The GTD method of Huang et al. [2009] is a variation on the backward haplotype
transmission association [Lo and Zheng, 2002] and backward genotype-trait association
methods of Zheng et al. [2006]. Given k SNP markers, there are 3k possible unphased
genotypes. The GTD statistic, V, is defined on the sum of squared difference between
genotypes’ relative frequency among the cases and controls and measures the joint effects of
these k SNPs on the disease status. Specifically V = Σg∈G (E[Y = 1|g]− E[Y = 0|g])2. Based
on V as the measure of joint effect for a set of SNPs, Huang et al. [2009] measures the
evidence of interaction by using the relative excess effect from a pair of SNPs over their
individual marginal effects. Significance of the interaction measure is assessed by
permutation testing.

RESULTS
In Figure 1, we show the epistasis detected by various methods for the GAW16 Problem 1
(RA data set), which was the data that was analyzed by most groups for epistasis. The most
striking observation is the lack of consistency of results. There are a few genes that show
consistent epistasis by multiple methods, such as TRAF1-C5 and PTPN22 (three methods:
MDR, RF, and OT); HLA-DRB1 and PTPN22 (two methods: OT and RF), HLA-DRB1 and
TRAF1-C5 (two methods: RF and OT); and HLA-B and HLA-C (two methods: GTD and
KWII). Some methods found many G×G interactions that few (if any) other methods found.
For instance, GMDR found 18 interactions, not one of which any other method found. GTD
found 17 interactions, only one of which one other method found. Some methods found only
a small number of interactions. For example, MDR identified two: HLA-C and PTPN22 as
well as PTPN22 and TRAF1-C5. Either some of these methods are homing in on
information not being used by other methods, or some are more powerful than others, or
some are more prone to fitting to noise than others. It is difficult to reach a definitive
conclusion because this is a real data example, and we therefore do not know the truth.
Hence, we do not know when to praise or scold a method for either finding or not finding
what it “should have.” But part of the difficulty in comparing methods may arise from the
relativity of epistasis to scale of penetrance.

DISCUSSION
The relativity of epistasis

Because epistasis is simply a departure from additivity in multi-locus penetrance, it has been
known for some time that such statistical interactions are scale dependent [Greenland et al.,
2008]. Recently, several authors [Cordell, 2002; Frankel and Schork, 1996; Greenland and
Rothman, 1998] have emphasized that the choice of how one models epistasis and in
particular, the scale upon which penetrance is measured, will greatly affect whether
additivity is maintained and therefore whether there “is” or “is not” epistasis. In particular,
by simply rescaling the problem we can “create” or “remove” epistasis. This is illustrated in
Figure 2, for two hypothetical two-locus examples. In Figures 2a and 2b, we show the
interaction between two genes G and F in which the probability of disease (penetrance) for
the baseline genotype group is P[disease|G=aa, F=bb]=0.001, and each A allele dose for
gene G increases the conditional probability risk by six-fold, while each B allele for gene F
increases the conditional probability risk by five-fold. In Figure 2a, both genes have no
dominance and no interaction when modeled on the multiplicative scale (i.e., all three F
genotype lines when plotted against the G genotype on the x-axis and the log probability of
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disease given genotype along the y-axis, are linear and parallel). This would utilize a log(P)
link function in the GLM, which corresponds to a multiplicative risk model. However, these
same data are shown in Figure 2b on the log(odds) scale as is relevant when analyzing by
logistic regression (using a logit link = log(P/(1−P)) in the GLM). Here, both genes show
strong dominance (non-linear response to the G genotype by the F genotype) as well as
strong G×G interaction (non-parallel lines). We have not changed the data, just the scale of
the y-axis, and we have created epistasis. By contrast, in Figures 2c and 2d, consider two
other genes J and K in which the baseline genotype group penetrance is P[disease | J=cc,
K=dd]=0.5, (which corresponds to odds(P)=1), and each C allele dose for gene J increases
the odds four-fold, while each D allele dose for gene K increases the odds two-fold. Both
genes show strong dominance as well as G×G interaction on the log(P) scale (Figure 2c),
which would be the conclusion according to a multiplicative model, but these same data
show no dominance and no interaction on the log(odds) scale for logistic regression (Figure
2d). By simply rescaling the y-axis, we have removed epistasis.

Hence, for most methods, the existence of epistasis and/or dominance is dependent upon the
scale of the response and therefore also on the choice of model or link function. It would
therefore not be surprising that some models might find strong epistasis, while others
applied to the same data might find little or no epistasis, just as we observed in GAW16. It is
important to realize that this is a deeper issue than just that the “power to detect epistasis”
differs by method. In Figures 2a and 2d, there is metaphysically no epistasis (not just close
to zero epistasis, which might possibly be detected by some more powerful methods). We
have found a scale in which it is impossible to detect epistasis, because by simply changing
scale, we have flipped from the alternative to the null hypothesis (where issues of power are
moot). Evidently, the term “epistasis” in the sense of Fisher is non-additivity, not some
objective biological condition that exists in and of itself, outside of the way in which we
model it. Rather, “epistasis” versus “additivity” are relative concepts for which we must
specify a particular penetrance scale, much like in physics where the ideas of “motion” and
“rest” only make sense with respect to a particular frame of reference.

The reality of epistasis
Just because the concept of epistasis requires a scale or frame of reference to makes sense, it
does not mean that it is an imaginary or unimportant phenomenon. No one would suggest
that the concept of motion is illusory just because it is relative, nor that all things are really
standing still. In fact, much of the success of classical Newtonian physics centers around
embracing the frame of reference concepts in order to form strong and accurate models of
bodies in motion. Indeed, the relativity of epistasis means that essentially, for any pair of
genes there is at most one frame of reference, one scale, upon which additivity holds, and
on all other scales there is non-additivity or epistasis, just as in our examples in Figure 2.
Moreover, it is not true that there is always some monotonic rescaling of the penetrance
function that will reduce epistasis to zero. Whenever different genotypes at one locus cause
the order of the penetrances by genotype at the other locus to reverse, there can be no
monotonic transformation that will “remove” epistasis, as illustrated in Figure 3. Here we
reproduce two real examples of epistasis from model organisms. Carlborg et al. [2004]
found this type of persistent epistasis in chicken growth (their Figure 3), and Leamy et al.
[2005] found it in mice for both molar size and shape (their Figure 2). This pattern of
epistasis will persist, regardless of how we monotonically transform the penetrance function,
and we can never find a scale on which the two genes act additively. Therefore, if anything,
it might be more rightly emphasized that every pair of genes will show some degree of
epistasis on almost every scale of reference (all but save at most one scale) and therefore, we
should be cautious about making untested assumptions that there is no epistasis on the
particular scale on which we model our data.
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Figure 1.
Gene×gene interactions found in RA GAW16 data set Problem 1 by various methods.
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Figure 2. Dependence of the existence of epistasis on scale of response and model choice (link
function)
In Figures 2a and 2b, we show the interaction between genes G and F in which the
probability of disease (penetrance) for the baseline genotype group is P[disease | G=aa,
F=bb]=0.001, and each A allele dose for gene G increases the risk by six-fold while each B
allele for gene F increases the risk by five-fold. In Figure 2a, both genes show no dominance
and no interaction on the multiplicative probability scale (all three genotype lines are linear
and parallel), which would be the conclusion from a log-linear model, whereas these same
data show strong dominance (non-linear response by genotype) as well as strong G×G
interaction (non-parallel lines) on the log-odds scale, which would be the conclusion from
logistic regression. By contrast, in Figures 2c and 2d, we show two other genes J and K in
which the baseline genotype group penetrance is P[disease | J=cc, K=dd] =0.5, (which
corresponds to odds(P)=1), and each C allele dose for gene J increases the odds four-fold,
while each D allele dose for gene K increases the odds two-fold. Here, both genes show
strong dominance as well as G×G interaction on the multiplicative probability scale (Figure
2c) which would be the conclusion from a log-linear model, but these same data show no
dominance and no interaction on the log(odds) scale for logistic regression (Figure 2d).
Hence, the existence or lack of epistasis and/or dominance is dependent upon the scale of
the response and therefore also on the choice of model (link function).
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Figure 3. Examples of epistasis which persist on every scale
Epistasis for mouse molar size (a), mouse molar shape (b) [reproduced from Leamy et al.,
2005], and for chicken body weight at 6 weeks of age (c) [reproduced from Carlborg et al.,
2004].
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Table I

Methods to detect and estimate G×G Interactions utilized in GAW16

Group 9 contribution Method Idea Method Ref

Statistical Most based upon GLM E[Y | X] = l −1 (D[X] β) where X are predictors; {Gi, Gj} ⊆ X
for gene variants Gi, Gj; [Gi || Gj || Gi×Gj] ⊆ D[X] (design matrix contains both main
effects as well as interactions between Gi and Gj) and l (.) is link function depending
upon the scale of Y (identity, logistic; proportional odds; multinomial, proportional
hazards, etc.)

Clarke et al. Case-only E[Gi|Gj] = l −1 (D[Gj] β) (test if Gj predicts Gi in cases)

An et al. Family mixed model E[Y | X, PEDID] = l −1 (D[X] β) + D[PEDID] γ)
where γ ~ N(0,Σ) (add random effect, γ, for pedigrees)

Kovac et al.
Jung et al.

Allelic score E[Y | X] = l −1 (D[X] β)
S(Aiu, Ajv) ⊆ D[Gi×Gj] for u, v =1, 2, where S(Aiu, Ajv)
= P[〈Aiu〉〈Ajv〉 | Gi=Ai1Ai2, Gj=Aj1Aj2] = P[〈Aiu〉 | Gi=
Ai1Ai2] P[〈Ajv〉 | Gj=Aj1Aj2], where 〈A〉 is the state
value of allele A (assuming independent loci i, j)

Liang et al. Omnibus test Form L(G) latent factors from linear combinations of G
loci, and test E[Y | L(G)] = l −1 (D[L(G)] β) with
Lm×Ln latent interactions; infer Gi×Gj interactions from
Lm×Ln interactions and latent path loadings

Chatterjee et al., 2006

Li et al. PCA Form PCA(G) PCs of G loci, and test E[Y | PCA(G)] =
l −1 (D[PCA(G)] β) with PCAm×PCAn interactions;
infer Gi×Gj interactions from PCAm×PCAn interactions
and factor loadings

Murcray et al., 2009

Manning et al. Interactions among
significant main effect genes

Test β[Gi×Gj] = 0 terms only for significant β[Gi] ≠ 0
or β[Gj]≠ 0 main effects

Manning et al. Interactions among pathway
genes

Test β[Gi×Gj] = 0 terms only when {Gi, Gj} ⊆
Pathway

Li et al. Two-step approach Test β[Gi ×Gj] = 0 terms only when GLM E[Gi | Gj] =
l−1 (Gj β) significant

Murcray et al., 2009

Malzahn et al. LNPT No GLM, longitudinal rank-sum test, no assumptions
about distribution F of quantitative trait, test contrast
between trait distributions Fkl of two-locus genotype
strata (k, l)

Brunner et al., 2001

Malzahn et al. Proportional hazards model Event time as age at first exam when quantitative
longitudinal trait crossed a predefined threshold,
multiplicative hazard ratio null H0:
HR(G1,G2)=HR(G1)HR(G2).

Therneau and Grambsch,
2000

Kovac et al. UNPHASED Combine genotypes into estimated haplotypes; H, to
test E[Y | X] = l −1 (D[X] β), where H ⊆ X

Dudbridge, 2008

Machine Learning High dimensional heuristic search algorithms to detect G×G interactions that mostly
rely upon split samples with cross validation to avoid fitting to noise. Some use the
basic GLM to evaluate particular interactions, but many of these detection methods
do not utilize a formal G×G model per se, and therefore do not provide an estimate of
effect size. The emphasis is on efficient search among a large number of possible
G×G interactions to determine which are signals and which are noise, rather than on
detailed modeling of any particular G×G interaction.

Liang et al. MDR ∀ pair of genes Gi, Gj, form binary I{gi×gj | gi ∈ Gi, gj
∈ Gj, O(Y, gi ×gj)>1} and fit GLM, where O(Y,
Gi×Gj)=E[Y=1 | Gi×Gj]/E[Y=0 | Gi×Gj]|

Ritchie et al., 2001

Mukherjee et al. GMDR ∀ pair of genes Gi, Gj, form binary I{gi×gj | gi ∈ Gi, gj
∈ Gj, S(Y, gi×gj)>T} and fit GLM, where S(Y, gi×gj) is
a score function measuring relationship between Y and
Gi×Gj and T is threshold
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Group 9 contribution Method Idea Method Ref

Culverhouse et al. RPM Pool {Gi, Gj} whenever |E[Y | Gi] E[Y | Gj]| < ε and fit
GLM

Culverhouse et al., 2004

Liang et al. RF Bootstrap samples of subjects and Gi values to fit
TREEs (recursively partition sample by binary splits
I[Gi≤c] to maximize Y purity)

Breiman, 2001

Yao et al. GUIDE TREE model which selects variables to split nodes via
chi-square test

Loh, 2002

Chanda et al. KWII Stepwise select gene G into S that gives largest
KWII(S) = Σt⊆S (1)|S|−|t| H(t) that is not redundant to S
or G [where H(t) = Σt∈u P(t=u) log2 (P(t=u)) is Shannon
entropy information]

Huang et al. GTD V= Σ g∈G (E[Y=1|g] − E[Y=0|g])2 to measure joint
effects of SNPs interaction of SNPs are measured by
excess effect of a pair over their marginal effects;
assess significance by permutation test

Lo and Zheng, 2002;
Zheng et al., 2006
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Table II

Common GLM Examples

P (Probability distribution) l (Link function) Corresponds to this type of model

Normal Identity: μ Linear regression

Binomial Logit: logit: log (π/(1 −π)) Logistic regression

Binomial Probit regression

Poisson Log: log(μ) Poisson regression

Poisson Log-hazard ratio: log(h(t)/h0(t)) Proportional hazards

Negative-binomial Log: log(μ) Negative-binomial regression

Gamma Reciprocal: 1/μ Gamma regression

Genet Epidemiol. Author manuscript; available in PMC 2013 June 25.


