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Abstract 

Six collected phenidates, i.e. 4-methylmethylphenidate, 3,4-dichloromethylphenidate, 

ethylphenidate, 3,4-dichloroethylphenidate, ethylnaphthidate and N-benzyl-ethylphenidate  

were fully characterized by means of X-ray, NMR, GC-MS, ESI-MS
2
, ATR-FT-IR and GC 

solid-state IR analysis. Crystallography revealed the exclusive presence of the  

threo-configuration. Steric crowding induced by N-benzyl substitution at the piperidine 

moiety prompted an adoption of an unexpected axial positioning of substituents on the 

piperidine moiety in the crystal state as opposed to the exclusive equatorial positioning 

encountered in N-unsubstituted phenidate analogs. Gas phase computations of the relative 

lowest energy conformers confirm that the axial positioning appears to be favored over the 

equatorial positioning, however in solution equatorial positioning is predominant according 

to NOE experiments. All samples, mainly originating from China, had a good to very good 

degree of purity indicative of their professional chemical synthesis. Routine analysis of these 

drugs by GC-MS revealed thermal decomposition of phenidate analogs in the injection port 

and/or on column to 2-aryl-ethyl-acetates and 2,3,4,5-tetrahydropyridines. The decomposition 

pathway was suggested to proceed via a 6-membered transition state which was supported by 

DFT-computations. Fragmentation pathways of decomposition products as well as the 

corresponding EI mass spectra are provided. The thermal instability might thus render 

smoking or “vaping” of these drugs a less effective route of administration. The analytical 

fingerprints of six structurally diverse phenidate analogs provide a helpful reference to 

forensic chemists in charge of identifying new psychoactive substances. 

 

Running title: Analytical characterization of six phenidate analogs 

Keywords: Phenidates; forensic; computation; smart drugs; chemical analysis; legal high; 

NPS 
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Introduction 

 

New psychoactive substances (NPS) are drugs that are chemically altered relatives of known 

controlled drugs. From a European perspective, the definition of NPS includes substances 

that are not listed in any of the schedules to the 1961 United Nations Single Convention on 

Narcotic Drugs as well as the 1971 United Nations Convention on Psychotropic Substances 

and which may pose a comparable threat to public health as the substances listed in these 

schedules.
[1,2]

 As many of these compounds are not yet listed, they are euphemistically 

advertised as “legal highs”, “bath salts” or “research chemicals” in many countries. 

Distribution and supply of NPS is mostly facilitated through online shops and high street 

retailers and their availability has increased drastically in recent years, with a sevenfold 

increase in reported seizures in the EU between 2008 and 2013. The European Monitoring 

Centre for Drugs and Drug Addiction (EMCDDA), through the EU Early Warning System, is 

currently monitoring more than 560 substances.
[3]

 In 2015 alone, the EU early warning 

system reported 98 new compounds with synthetic ring substituted cathinones, synthetic 

cannabinoids and phenylethylamines representing the major contributions.
[4,5]

 Seizures of the 

Central Customs Authority in Germany are in accordance with these numbers, with 

cathinones (42 %), cannabinoids (38 %) and phenethylamines (17 %) accounting for the 

majority of all NPS cases dealt with in the years 2012-2015. Strikingly, these data reflect the 

general trend in an ever faster developing drug market: While in 2012 a total of 13 different 

(at that time) legal NPS were registered in our laboratories, this number doubled to 26 in 

2015 and is likely to further increase in 2016 (Figure 1).  

As a relatively new class of phenethylamines, a number of phenidate derivatives are available 

on the NPS drug market. Phenidates are chemical analogs of methylphenidate (1) which is 

well known as the prescription drug Ritalin
®

. Methylphenidate is clinically used in the 
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treatment of attention deficit hyperactivity disorder (ADHD). It acts as a reuptake inhibitor at 

the dopamine transporter (DAT) (Ki = 640 nM for (-)-cocaine and 390 nM for  

D-threo-methylphenidate), and also acts as a blocker of norepinephrine uptake. However, 

unlike cocaine, nearly no activity at the serotonin transporter (SERT) was reported.
[6-8] 

Methylphenidate increases central nervous system activity and effects at lower doses include 

improved cognition, heightened alertness and reduced fatigue whereas higher doses can 

induce euphoria.
[9-12]

 On these grounds methylphenidate has been abused as a recreational 

drug since the 1960s and more recently as a “neuroenhancing” “smart drug”.
[12,13]

 Possible 

side effects related to methylphenidate overdoses include tachycardia, hallucinations and 

psychosis.
[11,13] 

Since methylphenidate is a widely regulated pharmaceutical, structurally 

diverse and often more potent
 
NPS of the phenidate class have entered the drug market.

[14,15] 

Molecular structures and the respective activities at the DAT have been reported for many of 

these compounds in the scientific literature, thus making the targeted synthesis of potent 

phenidate analogs for the drug market likely.
[16]

 Phenidates were also recently seized by 

German authorities, such as 4-methylmethylphenidate (2), 3,4-dichloromethylphenidate (3), 

ethylphenidate (4), 3,4-dichloroethylphenidate (5), and N-benzyl-ethylphenidate (7), while 

the related ethylnaphthidate (6) is sold online in the United Kingdom (Figure 2).
 
Little is 

known about the pharmacology and hazards of phenidate analogs despite their structural 

similarity.
[11,12,16-18] 

However, ethylphenidate (4) has been linked to a number of deaths
[19-23]

 

and concerns have been expressed about ethylphenidate injection in drug users.
[21,22]

 It has 

also been long recognized that ethylphenidate is formed in vivo following co-administration 

of methylphenidate with alcohol.
[25,26] 

The reaction of governments in the European Union to the challenge posed by NPS can be 

broadly differentiated into three legal response types. These may consist of a) the application 

of existing laws designed for consumer- or health-protection and pharmaceutical legislation; 
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b) amending of drug laws by e. g. introducing group definitions of controlled substances; c) 

innovative approaches that e. g. define a substance by its psychoactive effect rather than its 

chemical structure.
[27]

 Procedure a) can be difficult to implement and pharmaceutical 

legislation in e.g. Germany is not applicable to “substances that […] are only consumed to 

intoxicate while being detrimental to health” according to a recent ruling by the European 

Court of Justice (ECJ).
[28]

 Thus, Germany has recently introduced chemical group definitions 

b) like other countries in the EU. The corresponding new law defines new psychoactive 

substances as substances that are covered by the chemical compound groups defined in the 

annex to that law.
[29]

  

Authorities and forensic chemists need to reliably elucidate the type of NPS in question. 

While this is feasible by combining routine analytical methods provided that the NPS are 

listed in existing databases, difficulties arise when a NPS is not well documented or 

unknown. To assist efforts in the reliable structural elucidation of NPS, this study presents an 

extensive characterization of newly emerging phenidate analogs 2-7. 
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Experimental 

 

Chemicals 

Chemicals were purchased from Sigma-Aldrich (Steinheim, Germany) and used as purchased 

without further purification. CDCl3 and D2O were obtained from Sigma-Aldrich (Steinheim, 

Germany) and Deutero GmbH (Kastellaun, Germany). All solvents and reagents used were of 

analytical grade. Phenidates 2, 3, 4, 5 and 7 were parts of confiscations by German authorities 

whereas naphthidate 6 was obtained from a test purchase. 

Sample preparation 

For the analysis of the compounds 2 to 7 by gas chromatography mass spectrometry (GC-

MS) approximately 1 mg of the salts were dissolved in 1 mL ethanol. For the analysis of the 

compounds 2 to 7 by quadrupole time-of-flight electrospray ionization tandem mass 

spectrometry (QTOF-ESI-MS/MS) approximately 1 mg of the hydrochloride salts were 

dissolved in 1 mL ethanol. Furthermore, 40 µL of this solution were diluted with 1 mL of 

H2O/MeCN/FA (100:100:0.1, v/v) in a standard vial. For the analysis of the compounds 2 to 7 

by nuclear magnetic resonance spectroscopy (NMR) ca. 20 mg of the respective salts were 

dissolved in 0.6 mL CDCl3 (2, 4-7) or 0.75 ml CDCl3 + 40 µL MeOD (3). Infrared spectra 

(IR) of all compounds were recorded as their hydrochloride salts. For the analysis of the 

compounds 2 to 7 by infrared spectroscopy as their free bases, a small portion of the 

hydrochloride salts (ca. 10 mg) were dissolved in demineralized water and then alkalized 

with a few drops of aqueous sodium hydroxide solution. Diethyl ether was added to the 

aqueous solution. The organic phase was transferred directly to the ATR crystal yielding the 

free base after evaporation of diethyl ether. For analysis by X-ray diffraction, the crystals 

obtained from the confiscated samples (as their hydrochloride salts) had sufficient quality to 
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be directly subjected to X-ray crystallography in the cases of 2, 4 and 7. The compounds 3, 5 

and 6 had to be recrystallized from MeOH/EtOAc. 

Gas chromatography mass spectrometry (GC-MS) (routine method of analysis) 

Electron ionization (EI) mass spectra were obtained from a DSQ II quadrupole mass 

spectrometer (Thermo Scientific, Dreieich, Germany) coupled to a gas chromatograph (Focus 

GC, Thermo Scientific, Dreieich, Germany) with an auto sampler AS 3000 (Thermo 

Scientific, Dreieich, Germany). Samples (1 µL) were introduced via the gas chromatograph 

with split injection 1:100 using a fused silica capillary column Zebron 2B-5 (30 m × 0.25 

mm, film thickness 0.25 µm) (Phenomenex, Aschaffenburg, Germany). The temperature 

program started with an initial temperature of 50 °C, held for 2 min, followed by a ramp to 

240 °C with 16°C/min and held for 1 min. The final temperature was 300 °C using a 30 

°C/min temperature ramp and held for 5 min, thus resulting in a total run time of 22 min. The 

injector temperature was 260 °C. The transfer line temperature was maintained at 280 °C. 

The carrier gas (helium) was set at a constant flow rate of 1.8 mL/min. The electron 

ionization (EI) energy was 70 eV with an emission current of 100 µA. The scan time was 

0.36 s and the scan range was m/z 40-550. The ion source temperature was maintained at 250 

°C. 

 

GC-MS (modified protocol) 

Chromatograms and EI mass spectra were obtained with a GCMS-QP2010SE GC-MS 

(Shimadzu, Duisburg, Germany) with a GC 2010 plus auto sampler (Shimadzu, Duisburg, 

Germany). Samples (0.5 µL) were introduced via the gas chromatograph with split injection 

1:100. For separation, a fused silica capillary column Optima-1 MS Accent (30 m × 0.25 mm, 

film thickness 0.25 µm) (Macherey-Nagel, Düren, Germany) was employed. The temperature 

program started with an initial temperature of 50 °C, held for 2 min, followed by a ramp to 
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230 °C with 7 °C/min, and held for 2 min. The final temperature was 300 °C, reached with 35 

°C/min and held for 5 min, thus resulting in a total run time of 36 min. The injector 

temperature was 260 °C. The transfer line temperature was maintained at 280 °C. The carrier 

gas was helium in constant flow mode at a flow rate of 1.8 mL/min. The electron ionization 

(EI) energy was 70 eV with an emission current of 100 µA. The scan time was 0.36 s and the 

scan range was m/z 40-550. The ion source temperature was maintained at 250 °C. 

 

Quadrupole time-of-flight electrospray ionization tandem mass spectrometry (QTOF-ESI-

MS/MS) 

The employed mass spectrometer was a Bruker micrOTOF-Q III (Bruker, Bremen, Germany) 

coupled with an electrospray ionization source operated in positive ion mode. Sodium 

formate was used as calibration standard and Bruker DataAnalysis 4.2 SR1 Workstation 

Software was used for data analysis. Samples were introduced via continuous direct infusion 

with a syringe-pump set to 180 µL/h and a drying gas flow of 4 L N2/min. Drying gas 

temperature was set to 180 °C, nebulizer pressure to 0.3 bar and capillary voltage to 2500 V. 

Flow injection analysis (FIA) was employed to optimize the collision energy (CE) for each 

multiple reaction monitoring (MRM) transition.  

 

Nuclear magnetic resonance spectroscopy (NMR) 

NMR spectra for compounds 2-6 were recorded using a Bruker UltraShield (7.05 Tesla, 300 

MHz) Fourier 300 spectrometer (Bruker, Coventry, UK) equipped with a dual 
1
H/

13
C probe 

(5 mm) with 2H lock and fitted with a z gradient coil at 298 K. The NMR spectrum for 

compound 7 was recorded at the NMR spectrometry facility of the Institute for Organic 

Chemistry of the University of Cologne. The one- and two-dimensional NMR measurements 

(
1
H-NMR, 

13
C-DEPT, 

1
H/

1
H-COSY, 

1
H/

13
C-HSQC, 

1
H/

13
C-HMBC and 

1
H/

1
H-NOESY) 
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were performed with a Bruker Avance II+ 600 NMR spectrometer (resonance frequency for 

1
H 600.20 MHz) with a H,P,X TBI z-Grad probe at 298 K and internal chemical shift 

references were based on residual solvent peaks. Suggested assignments were aided by 1-D 

and 2-D experiments and internal chemical shift references were based on residual solvent 

peaks.  

 

Infrared spectroscopy (IR) 

The spectrometer used was a Bruker Alpha FT-IR (Bruker, Ettlingen, Germany) equipped 

with a diamond platinum ATR crystal. The wavelength resolution was set to 4 cm
-1

. IR 

spectra were collected in a range of 400–4000 cm
-1

 with 20 scans per spectrum.  

X-ray diffraction 

The diffractometer employed was a Bruker D8 Venture with Kappa-goniometer and a Cu-

Microfocus X-ray source (Bruker, Karlsruhe, Germany). Crystallographic data have been 

deposited with the Cambridge Crystallographic Data center. These data can be obtained 

online free of charge from the Cambridge Crystallographic Data Centre (CCDC).
[30]

 CCDC 

1520751 (2), CCDC 1520753 (3), CCDC 1520750 (4), CCDC 1520752 (5), CCDC 1520755 

(6) and CCDC 1520749 (7) contain the supplementary crystallographic data for this 

compound. 

 

Computational details 

All theoretical calculations were performed with the program package TURBOMOLE-7.0.2 

and density functional theory (DFT).
[31]

 The employed density functional was the GGA 

BP86-functional developed by Becke and Perdew, combined with the contracted def2-SVP or 

def2-TZVP basis sets by Ahlrich et al.
[32,33]

 as specified. On transition states, subsequent 

single point calculations employing the B3LYP-functional were conducted.
[34]

 For some 
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calculations the dispersion correction DFT-D3(BJ) was used as specified.
[35,36]

 The multipole 

accelerated resolution of identity approximation for two electron integral evaluation was 

used. All stationary points were fully optimized and confirmed by separate analytical 

frequency calculations. Transition structures were optimized with quasi-Newton–Raphson 

methods by using the Powell update algorithm for hessian matrix approximation (subsequent 

analytical frequency calculation). Absolute energies were zero-point corrected with the 

vibrational information received from harmonic analytical frequency calculations. 

Coordinates of transition structures and stationary points can be found within the Supporting 

Information. 

 

Results and discussion 

X-ray diffraction 

 

Crystal structure analysis revealed that all six phenidate analogs were hydrochloride salts. 

Crystal structures of 2 and 3 have been previously published by Deutsch et al. and are in 

agreement with our own measurements.
[37]

 The crystal structures of the phenidate analogs, 

depicted as the (R,R)-enantiomers, are shown in Figure 3, although all measured crystals 

consisted of racemic material as evident from their point groups. The defining dihedral angles 

and distances for all compounds are summarized in Table 1. For all measured samples the  

(±)-threo-configuration of the phenidate analogs was confirmed. All (±)-threo-phenidate 

analogs without substituents on nitrogen have closely related conformations with the 

piperidine ring in the chair conformation and the ring-substituent in equatorial position. The 

conformation of the carbonyl oxygen O1 is similar for compounds 3-6 with close proximity 

between O1 and the ammonium group (N1-O1: 3.21 – 3.46 Å), constituting to a weak 

intramolecular hydrogen bond. However, in 4-methyl-methylphenidate 2 and N-benzyl-
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ethylphenidate 7 the ester-group is rotated by approximately 180°, with the oxygen O2 closer 

to the ammonium hydrogen. Since there are no further intermolecular strong or medium 

hydrogen bonds involving O1 in the crystal structure of 2 or 7, loss of the intramolecular 

hydrogen bond between O1 and N1 is compensated by a shorter N1-O2 (3.02 - 3.14 Å) 

hydrogen bond. Furthermore for all compounds 2-7 the terminal ethyl(methyl) group as seen 

along the O2-C1 axis eclipses the carbonyl oxygens in anti-conformation as expected. 

In contrast to the crystal structures of 2-6, N-benzyl-ethylphenidate 7 exhibits a markedly 

different conformation. Most strikingly, substituents on the piperidine ring are in axial 

positions. Furthermore, the ethyl-moiety as seen along the O2-CH2 axis is in a gauche-

conformation. Both, axial position of substituents and the gauche conformation are 

potentially sterically more demanding and thus energetically disfavored. A conformational 

analysis was conducted by density functional theory (DFT) computations employing the 

program package Turbomole 7.0.2. It was determined whether the unusual conformation of 7 

in the crystalline state might also represent the energetically most favored candidate. 

According to computational analysis, the axial positioning of substituents found in the crystal 

structure is the least favored one in the gas phase (ax-7-1 Erel = 2.1 kcal mol
-1

, cf. Supporting 

Information Figure S 66) of all computed structures. This can indeed be attributed to steric 

repulsion between the N-benzylic group and the ester moiety as well as the disfavored ethyl 

group gauche-conformation of the latter. However, a related axial positioning ax-7-2 with an 

anti-conformation of the ethyl-moiety and a rotated ester moiety (C1-C2 axis) decreases 

steric repulsion and represents the lowest energy conformation. The lowest energy 

conformation with substituents in equatorial positions is thermodynamically slightly less 

favorable (Erel = 0.7 kcal mol
-1

), possibly because of steric repulsion between the N-benzylic 

moiety and the ester moiety. Moreover, intermolecular hydrogen bonding might also 

contribute to stabilizing the observed axial conformation among long-range forces in the 
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crystal although this has not been accounted for by the simplified computational model. 

Similar to the crystal structures of 3, 4, 5 and 6, the carbonyl oxygen is rotated to closer 

proximity to the ammonium group in ax-7-2, constituting a weak hydrogen bond. The 

relatively small energetic difference between the axial and equatorial conformation in 7 (in 

gas phase) and its high steric bulk might help to explain the divergent pharmacological 

profile of some N-benzyl-substituted phenidates that have been shown to display SERT 

binding ([
3
H]CIT) comparable to (-)-cocaine.

[38] 

 

NMR  

 

To the best of our knowledge NMR data of the phenidate analogs investigated in this 

publication have only been published for phenidates 3 and 4.
[39,40] 

For all compounds the 

following spectra were recorded: 
1
H-NMR, 

13
C-DEPT, 

1
H/

1
H-COSY, 

1
H/

13
C-HSQC, 

1
H/

13
C-

HMBC. For the only N-benzyl-substituted ethylphenidate 7 an additional 
1
H/

1
H-NOESY 

correlation spectrum was recorded. All compounds were soluble in CDCl3 as their salts 

except for 3,4-dichloromethylphenidate 3 which was soluble (20-30 mg in 0.75 mL 

deuterated solvent) only after addition of 40 µL MeOD. Generally, from 
1
H NMR a relatively 

high purity of all investigated compounds was evident, with only minor traces of impurities 

indicating a high degree of professionalism in the manufacture of these drugs. The 
13

C and 
1
H 

NMR assignments of all compounds are summarized in Table 2, the corresponding spectra 

can be found in the Supporting Information (Figures S1-13). The 
1
H NMR spectrum of 3,4-

dichlorethylphenidate 5 with assignments is depicted in Figure 4.  

For all compounds, the signals for NH-protons were in the region of 8.38-10.36 ppm, except 

for N-benzyl-ethylphenidate 7 where the NH-proton was shifted further downfield to 12.48 

ppm. Resonance of the α-proton H-2 occurred as a doublet at 4.26-4.38 ppm for compounds 2 
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to 6 with similar coupling constants [
3
JH2-H3 ≈ 10 Hz] where they could be determined. For 

compound 7 resonance of H-2 was shifted downfield to 5.02 ppm with a lower coupling 

constant [
3
JH2-H3 = 8.3 Hz]. Moreover, shifts for the CH-proton H-2’ alpha to nitrogen were 

typically recorded at 3.65-3.97 ppm. The diastereotopic protons H-6’’α/H-6’’β were 

significantly separated for 2-6 and recorded around 3.53-3.87 ppm and 2.86-3.04 ppm, 

respectively (for compounds 2, 4, 5 and 6 H-2’’ and H-6’’α overlapped in CDCl3). For 2 and 

3, the singlet of the O-CH3 group H-1’’’ was shifted to 3.74 and 3.79 ppm. Spectra were 

more complex for the ethyl-esters 4-7 with the diastereotopic O-CH2-CH3 protons coupling to 

give a doublet of a quartet at around 4.20-4.34 ppm, which overlapped for all compounds but 

7. Furthermore, for the ethyl-esters 4-7, the terminal CH3-group H-2’’’ (4-6) / H-2’’’’ (7) 

gave a typical pseudo triplet at 1.13-1.23 ppm for all compounds.  

N-Benzyl-ethylphenidate 7 was investigated further by means of a 
1
H/

1
H-NOESY 

experiment. The axial position of substituents on the piperidine ring observed by X-ray 

crystallographic analysis was of particular interest. A strong nuclear Overhauser effect (NOE) 

could be observed between the N-benzylic proton H-7’’’α and the Cα-proton H-2 (cf. Figure S 

13, Supporting Information). This was an indication for a preferred equatorial position of 

substituents in solution as these protons would be spaced far apart if substituents were on 

axial positions of the piperidine ring and thus would not give rise to a NOE contact. 

Furthermore, if an axial position of substituents was predominant, a NOE between the NH 

proton and piperidine-proton H-2’’ should have been observable, which was not the case.  
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GC-MS 

 

While all compounds had only minor impurities according to NMR-analysis, the GC data 

obtained with routine drug analysis were not consistent. The chromatograms of  

4-methylmethylphenidate 2, ethylphenidate 4 and N-benzyl-ethylphenidate 7 showed only 

one major compound peak with minor broadening (2: 12.21 min; 4: 11.89 min: 7: 15.79 min) 

as expected. In contrast, the chromatograms of 3,4-dichloromethylphenidate 3,  

3,4-dichloroethylphenidate 5 and ethylnaphthidate 6 showed a strongly broadened major peak  

(3: 12.82 min; 5: 13.15 min: 6: 14.62 min) followed by a minor peak (3: 13.89 min; 5: 14.14 

min; 6: 14.96 min) representing the analyte (exemplified with compounds 4 and 6, Figure 5). 

The strong peak broadening for ethylnaphthidate 6 (as for compounds 3 and 5) can be 

attributed to thermal decomposition in the injection port and/or on column via pyrolysis. A  

6-membered transition state is proposed for this pyrolysis leading to 2,3,4,5-

tetrahydropyridines and 2-aryl-acetates as decomposition products (Figure 6).  

This suggestion was consistent with the analysis of the corresponding EI mass spectra. For 

ethylphenidate 4, the EI mass spectrum of the major peak (Figure 5 A2, RT: 11.88 min) did 

not exhibit a signal for the molecular ion and was instead dominated by the base peak at m/z 

84. The m/z 84 fragment corresponds to the near quantitative formation of a 2,3,4,5-

tetrahydropyridine-1-ium-ion following α-cleavage of the σ-C-C bond adjacent to the 

piperidine ring in the molecular radical cation (Figure 7, top). Thus, this fragmentation 

pathway suggested the presence of intact 4 following GC-MS analysis. 

With ethylnaphthidate 6, no such signal was detected at m/z 84 (Figure 5, B2, RT: 14.63 min) 

but instead, ions at m/z 214, m/z 83 and m/z 141 were detected. This suggested the formation 

of the molecular radical cations of 2-naphthyl-ethylacetate as well as of  

2,3,4,5-tetrahydropyridine and the presence of a cationic fragmentation product of 2-



 

 
This article is protected by copyright. All rights reserved. 

naphthyl-ethylacetate, respectively. The compounds resulted from pyrolysis of the molecule 

under GC-conditions. However, for ethylnaphthidate 6 also the fragment at m/z 84 

representing the analyte could be detected in the EI mass spectrum of the following minor 

peak at 14.96 min alongside the thermal decomposition products. Pyrolysis on column was 

also observed for 3,4-dichloromethylphenidate 3 and 3,4-dichloroethylphenidate 5. This was 

consistent with reports related to thermal composition of methylphenidate 1 and compound 

3.
[41,42] 

While the 2-aryl-acetates and 2,3,4,5-tetrahydropyridine detected in the mass spectra 

of phenidate analogs could also be the products of a McLafferty rearrangement, the peak 

broadening in the obtained chromatograms seemed to make this unlikely. Peak broadening 

occurred predominantly for compounds 3, 5 and 6 with higher molecular weight and 

subsequently higher retention times. These compounds would have been expected to elute at 

higher final temperatures when using the standard GC-MS protocol. The exception to this 

was  

N-benzyl-ethylphenidate 7 which, despite having the highest molecular weight of the 

investigated compounds, only displayed minor peak broadening. This was possibly due to the 

benzylic “protection group” at the nitrogen atom (cf. Supporting Information, Figure S 29).  

This was further supported by computational analysis of the thermal decomposition pathways 

of a simplified model system where two stepwise and two 6-membered concerted reaction 

pathways were taken into account. The 6-membered transition states reflected the lowest 

relative energy. Of these, the transition state TS-1 leading to 2,3,4,5-tetrahydropyridine is 

significantly lower in energy than TS-2 leading to 1,2,3,4-tetrahydropyridine (42.4 kcal mol
-1

 

and 52.0 kcal mol
-1

 respectively, Figure 8). The thermochemistry of the reactions was 

computed assuming the conversion of the enol-ester to its ester tautomer (dashed line, Figure 

8). Both reactions are endothermic, but, again, the formation of 2,3,4,5-tetrahydropyridine is 

slightly less so than 1,2,3,4-tetrahydropyridine (ΔH = 16.4 kcal mol
-1

 and ΔH = 17.7 kcal 
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mol
-1

, respectively). This is in good agreement with the observed higher stability of the 

relatively bulky N-benzyl-ethylphenidate 7: Since no hydrogen atom is available at the 

nitrogen atom, the decomposition must follow the pathway leading to the 1,2,3,4-

tetrahydropyridine product with higher activation barriers and a more stable educt.  

To account for these findings, a milder non-standard GC-MS-method was tested for the 

analysis of 3,4-dichloroethylphenidate 5. With the standard temperature program the ethyl 2-

(3,4-dichlorophenyl)acetate decomposition product was detected nearly exclusively when 

injecting the HCl salt of 5 (cf. Supporting Information, Figure S 25). With a modified oven-

program and a long ramp to 230 °C a relative increase in the amount of  

3,4-dichloroethylphenidate 5 could be observed when injecting the HCl salt. Assuming that 

the HCl salt evaporated at higher temperatures from the GC liner, the free base of 5 was also 

subjected to the modified GC-protocol which led to an increase in relative peak area for intact 

5 along with strong fronting containing the decomposition products. Thus, decomposition of 

compounds was highly dependent on temperature conditions and the form of the injected 

substance (salt or base). In GC-CI-MS runs (reagent gas: methane) with 5 only the 2-(3,4-

dichloro-phenyl)ethylacetate decomposition product was detected as the protonated molecule 

[M + H]
+
 in addition to the typical methane addition products [M + 29, M + 41]

+
. A similar 

behavior was observed for the phenidate analogs 3, 6 and 7. Furthermore, mass spectra of the 

intact compounds could also be acquired by direct insertion probe mass spectrometry (CI-MS 

and DIP-MS for 3, 5, 6 and 7, cf. Supporting Information, Figures S 32-39). 

The observed temperature-sensitivity of phenidate analogs might be relevant to forms of 

consumption of these drugs. For many drugs, vaporizing or smoking is a common route of 

administration that leads to a very fast onset but shorter duration of effects, thus greatly 

increasing the addictive potential of these drugs.
[43]

 There seems to be a debate among 
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consumers on internet forums whether phenidates are amenable to vaporization, with some 

claiming strong effects and others observing none. One such report claims:  

“I am aware that most of them are somewhat smokable, such as MPA [methylphenidate], but 

when I tried vaporizing EPH [ethylphenidate] off of foil it just smelt strongly, and I received 

no discernible effects from the vapour.”
[44] 

This statement corresponds well with the fact that ethyl phenylacetate, originating from 

thermal decomposition of ethylphenidate, is a known food additive and flavoring agent used 

in perfumery. Thus, temperature-sensitivity of phenidate-derivatives might have implications 

for particular routes of administration (e.g. smoking or vaporization) in recreational contexts. 

However, a recent investigation into the experiences reported by ethylphenidate users 

indicated that the most common route of administration was nasal insufflation whereas 

vaporization, oral and rectal administrations were less common.
[44]

  

 

ESI-MS/MS 

 

The fragments observed in ESI-MS
2
 for ethylphenidate were in agreement with literature 

data.
[46]

 Generally, for the phenidate analogs investigated, three distinct product ions with 

vastly different intensities were observed. The pathways A-C are proposed for the collision- 

induced dissociation of phenidate derivatives following ESI (exemplified with 

ethylphenidate, Figure 10, Table 3, for all spectra see Supporting Information, Figures S 40-

45). Pathway A involves the loss of ethylene (-28 Da) from the protonated molecule via a 

concerted  

6-membered rearrangement. The resulting product ion at m/z 220 exhibited a very low 

intensity and could only be observed for ethylester derivatives as only these compounds can 

rearrange via a 6-membered transition state.  
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Pathway B comprises an intramolecular protonation of the ester moiety followed by 

subsequent loss of ethanol (-46 Da) and carbon monoxide (-28 Da) yielding an arylium ion 

m/z 174. This signal displayed a lower intensity for compounds 2 and 3 which can be 

explained by the lower Lewis basicity of the respective methyl esters. Finally, pathway C 

involves a loss of ethyl phenylacetate through rearrangement of the molecule through a 

mechanism similar to the thermal decompositon of phenidates. This would be expected given 

the facile rearrangement of the non-protonated phenidates upon heating. However a 

computation of a protonated model systems reveals a barrier that is slightly higher than that 

for the unprotonated system (TS-3 = 57.1 kcal mol
-1

) and is therefore in agreement with the 

experiment. The slightly higher barrier also explains the only minor decomposition of 

phenidate analogs in ESI (drying gas temperature: 180 °C). 

 

IR 

 

IR spectra of all six phenidates 2-7 were obtained for the hydrochloride salts and the neat free 

base form and are supplied as Supporting Information (Figure S 47-57) with an enlarged 

fingerprint region and annotation for facile identification. In addition, spectra of the free 

bases obtained from GC-solid state IR analysis of compounds 3, 4, 5 and 7 are also provided 

(Figure S 58-65). All spectra were dominated by the C=O absorptions in a narrow range of 

1716-1742 for the salts and 1723-1732 cm
-1

 for the free bases, respectively. A summary of 

the most distinct bands is given in Table 4, which can be used for structure confirmation.  
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Conclusion 

 

The Internet and dark web have been strong drivers for the distribution of psychoactive 

substances in the last decade, with NPS being marketed at an ever increasing pace. Herein, 

the structural and spectral properties of six phenidate analogs were determined by employing 

a combination of X-ray crystallography, NMR spectroscopy, GC-MS, QTOF-MS/MS, IR 

spectroscopy and DFT computations. These analytical data can be used for future structural 

elucidation of novel phenidate analogs and provide support to analytical data interpretation. 

Thermal decomposition of phenidate analogs under GC-MS standard conditions served as a 

reminder of the challenges encountered within the field of forensic chemistry. The observed 

thermal decomposition might also be a phenomenon linked to vaporizing as a form of drug 

administration (consumption) which might yield similar degradation products.  
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Table 1: Dihedral angles and geometric distances in crystal structures 2-7 and computed minimum energy 

geometry for 7. 

 

  2 3 4 5
[a]

 6 7
[b]

 

C2’-C1’-C2-C3 (°) 72 72 64 44, 58 82 69 [59] 

N1-C3-C2-C1 (°) -56 -73 -65 -64, -70 -73 -64 [-59] 

C3-C2-C1-O1 (°) 143 -39 -32 -43, -34 -36 164 [147] 

N1-O1 (Å) 3.78 3.46 3.21 3.34, 3.34 3.38 4.08 [3.94] 

N1-O2 (Å) 3.14 3.90 3.90 3.74, 3.87 3.84 3.02 [3.20] 

 

[a] Two symmetrically independent molecules in crystal structure. [b] Computed values in parantheses, BP86-

D3(BJ)/def2-TZVP in gas phase (ax-7-1). 
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Table 2: NMR assignments of compounds 2 to 7 as their salts, α and β denominate diastereotopic protons with 

α being the one shifted further downfield 

 

4-Methylmethylphenidate 2 HCl (300 MHz, CDCl3, 298 K) 

 
No. 

13
C [δ / ppm] 

1
H [δ / ppm] 

1 

2 

1’ 

2’, 6’ 

3’, 5’ 

4’ 

7’ 

1’’ 

 

2’’ 

3’’ 

 

4’’ 

 

5’’ 

 

6’’ 

 

1’’’ 

172.18 

53.71 

131.13 

128.29 

129.98 

138.34 

21.20 

- 

 

59.09 

25.96 

 

22.65 

 

22.03 

 

45.66 

 

53.42 

- 

4.26 (d, J = 10.3 Hz, 1H) 

- 

7.20 – 7.08 (m, 4H)
a 

7.20 – 7.08 (m, 4H)
a
 

- 

2.31 (s, 3H) 

10.24 ((d), J = 10.6 Hz, NH, 1H) 

8.93 ((d), J = 11.9 Hz, NH’, 1H) 

3.72 – 3.58 (m, 2H)
b
 

1.73 – 1.58 (m, H-3’’α, 1H) 

1.43 – 1.23 (m, H-3’’β, 2H)
c
 

1.87 – 1.74 (m, H-4’’α, 2H)
d
 

1.43 – 1.23 (m, H-4’’β, 2H)
c
 

2.15 – 1.96 (m, H-5’’α, 1H) 

1.87 – 1.74 (m, H-5’’β, 2H)
d
 

3.72 – 3.58 (m, H-6’’α, 2H)
b
 

2.90 (m, H-6’’β, 1H) 

3.79 (s, 3H) 
aProtons H-2’/6’ and H-3’/4 H’ overlap 
bProtons H-2’’ and H-6’’α overlap 
cProtons H-3’’β and H-4’’β overlap 
dProtons H-4’’α and H-5’’β overlap 

3,4-Dichloromethylphenidate 3 HCl (300 MHz, 298 K, CDCl3 + MeOD)  

No. 
13

C [δ / ppm] 
1
H [δ / ppm] 

1 

2 

1’ 

2’ 

3’ 

4’ 

5’ 

6’ 

1’’ 

2’’ 

3’’ 

 

4’’ 

171.66 

52.79 

133.04 

130.37 

133.54 

134.01 

131.31 

128.09 

- 

58.50 

25.89 

 

22.48 

- 

4.30 (d, J = 10.1 Hz, 1H) 

- 

7.37 (d, J = 2.1 Hz, 1H) 

- 

- 

7.42 (d, J = 8.3 Hz, 1H) 

7.12 (dd, J = 8.3, 2.2 Hz, 1H) 
a
 

3.66 – 3.48 (m, 2H)
b
 

1.72 – 1.59 (m, H-3’’α, 1H) 

1.46 – 1.27 (m, H-3’’β, 2H)
c
 

1.85 – 1.80 (m, H-4’’α, 2H)
d
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5’’ 

 

6’’ 

 

1’’’ 

 

21.86 

 

45.77 

 

53.52 

1.46 – 1.27 (m, H-4’’β, 2H)
c
 

2.07 – 1.89 (m, H-5’’α, 1H) 

1.85 – 1.80 (m, H-5’’β, 2H)
d 

3.66 – 3.48 (m, H-6’’α, 2H)
b
 

2.89 ((td), J = 12.8, 3.3 Hz, 1H) 

3.74 (s, 3H) 
aNH/NH’ not observed 
bProtons H-2’’ and H-6’’α overlap 
cProtons H-3’’β and H-4’’β overlap 
dProtons H-4’’α and H-5’’β overlap 
Ethylphenidate 4 HCl (300 MHz, 298 K, CDCl3) 

 
No. 

13
C [δ / ppm] 

1
H [δ / ppm] 

1 

2 

1’ 

2’, 6’ 

3’, 5’ 

4’ 

1’’ 

 

2’’ 

3’’ 

 

4’’ 

 

5’’ 

 

6’’ 

 

1’’’ 

 

2’’’ 

 

171.76 

54.11 

134.32 

128.55 

129.29 

128.43 

- 

 

59.10 

25.94 

 

22.64 

 

21.99 

 

45.74 

 

62.51 

 

13.97 

 

- 

4.34 – 4.10 (m, 3H)
b
 

- 

7.37 – 7.14 (m, 5H)
a 

7.37 – 7.14 (m, 5H)
a 

7.37 – 7.14 (m, 5H)
a 

10.36 (s, NH, 1H) 

8.68 (s, NH’, 1H) 

3.68 – 3.56 (m, 2H)
c
 

1.77 – 1.61 (m, H-3’’α, 3H)
d
 

1.35 – 1.26 (m, H-3’’β, 2H)
e
 

1.77 – 1.61 (m, H-4’’α, 3H)
d
 

1.35 – 1.26 (m, H-3’’β, 2H)
e
 

2.05 – 1.96 (m, 1H, H-5’’α) 

1.77 – 1.61 (m, H-5’’β, 3H)
d
 

3.68 – 3.56 (m, H-6’’α, 2H)
c
 

2.86 (t, J = 12.8 Hz, 1 H) 

4.34 – 4.10 (m, H-1’’’α, 3H)
b
 

4.34 – 4.10 (m, H-1’’’β, 3H)
b
 

1.13 ((t), J = 7.1 Hz, 3H) 

 
aProtons H-2’, H-3’, H-4’, H-5’ and H-6’ overlap 
bProtons H-2, H-1’’’α and H-1’’’β overlap 
cProtons H-2’’ and H-6’’α overlap 
dProtons H-3’’α, H-4’’α and H-5’’β overlap 
fProtons H-3’’β and H-4’’β overlap 
3,4-Dichloroethylphenidate 5 (300 MHz, 298 K, CDCl3) 

 
No. 

13
C [δ / ppm] 

1
H [δ / ppm] 

1 

2 

1’ 

2’ 

3’ 

4’ 

170.63 

53.26 

132.92 

130.51 

133.47 

134.30 

- 

4.38 – 4.20 (m, 3H)
b
 

- 

7.45 – 7.38 (m, 2H)
a
 

- 

- 
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5’ 

6’ 

1’’ 

 

2’’ 

3’’ 

 

4’’ 

 

5’’ 

 

6’’ 

 

1’’’ 

2’’’ 

 

131.23 

128.03 

- 

 

58.66 

25.98 

 

22.59 

 

21.97 

 

45.73 

 

62.89 

13.97 

 

7.45 – 7.38 (m, 2H)
a
 

7.15 (dd, 8.3, 2.1 Hz, 1H) 

10.19 (m, NH, 1H) 

9.07 (m, NH’, 1H) 

3.72 – 3.60 (m, 2H)
c
 

1.75 – 1.62 (m, H-3’’α, 1H)
 

1.50 – 1.30 (m, H-3’’β, 2H)
d
 

1.84 – 1.78 (m, H-4’’α, 2H)
e
 

 

2.05 – 1.96 (m, H-5’’α, 1H) 

1.84 – 1.78 (m, H-5’’β, 2H)
e
 

3.72 – 3.60 (m, H-6’’α, 2H)
c
 

2.90 ((q), J = 11.8 Hz, 1H) 

4.38 – 4.20 (m, H-2’’’α/β, 3H)
b
 

1.21 ((t), J = 7.1 Hz, 3H) 

 
aProtons H-2’ and H-5’ overlap 
bProtons H-2 and H-2’’’α/β overlap 
cProtons H-2’’ and H-6’’α overlap 
dProtons H-3’’β and H-4’’β overlap 
dProtons H-4’’α and H-5’’β overlap 
Ethylnaphthidate 6 CH3SO3H (300 MHz, 298 K, CDCl3) 

 
No. 

13
C [δ / ppm] 

1
H [δ / ppm] 

1 

2 

1’ 

2’ 

3’ 

4’ 

4a’ 

5’ 

6’ 

7’ 

8’ 

8a’ 

1’’ 

 

2’’ 

3’’ 

 

4’’ 

 

5’’ 

 

6’’ 

 

1’’’ 

2’’’ 

171.93 

53.85 

128.37 

131.69 

125.67 

128.11 

133.03 

129.11 

126.58 

126.67 

127.78 

133.51 

- 

 

58.79 

26.17 

 

22.54 

 

22.13 

 

46.28 

 

62.13 

13.94 

- 

4.38 (d, J = 9.9 Hz, 1 H) 

7.90 – 7.69 (m, 4H)
a
 

- 

7.37 (dd, J = 8.6, 1.8 Hz, 1H) 

7.90 – 7.69 (m, 4H)
a
 

- 

7.90 – 7.69 (m, 4H)
a
 

7.57 – 7.42 (m, 2H)
b
 

7.57 – 7.42 (m, 2H)
b
 

7.90 – 7.69 (m, 4H)
a
 

- 

9.01 (m, NH, 1H) 

8.38 (m, NH’, 1H) 

3.87 – 3.62 (m, 2H)
d
 

1.71 – 1.58 (m, H-3’’α, 1H) 

1.48 – 1.24 (m, H-3’’β, 2H)
e
 

2.00 – 1.71 (m, H-4’’α, 3H)
f 

1.48 – 1.24 (m, H-4’’β, 2H)
e
 

2.00 – 1.71 (m, H-5’’α, 3H)
f
 

2.00 – 1.71 (m, H-5’’β, 3H)
f
 

3.87 – 3.62 (m, H-6’’α, 2H)
d
 

3.04 ((q), J = 12.0, 11.6 Hz, H-6’’β, 1H) 

4.23 (m, 2H)
c
 

1.15 ((t), J = 7.1 Hz, 3H) 
aProtons H-1’,  H-4’, H-5’ and H-8’ overlap 
bProtons H-6’ and H-7’ overlap 
cProtons H-1’’’α and H-1’’’β overlap 
dProtons H-2’’ and H-6’’ α overlap 
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eProtons H-3’’β and H-4’’β overlap 
fProtons H-4’’α, H-5’’α and H-5’’β overlap 
N-Benzyl-ethylphenidate 7 HCl (600 MHz, 298 K, CDCl3) 

 
No. 

13
C [δ / ppm] 

1
H [δ / ppm] 

1 

2 

1’ 

2’, 6’ 

3’, 5’ 

4’ 

1’’ 

2’’ 

3’’ 

 

4’’ 

 

5’’ 

 

6’’ 

 

1’’’ 

2’’’, 6’’’ 

3’’’, 5’’’ 

4’’’ 

7’’’ 

 

1’’’’ 

2’’’’ 

170.63 

52.21 

134.62 

129.18 

129.27 

128.35 

- 

67.01 

27.50 

 

22.83 

 

22.41 

 

52.48 

 

129.34
e
 

131.57 

129.49 

130.01 

57.49 

 

62.24 

13.85 

- 

5.02 (d, J = 8.3 Hz, 1H) 

- 

7.39 – 7.30 (m, 3H)
a
 

7.53 – 7.39 (m, 5 H)
b
 

7.39 – 7.30 (m, 3H)
a
 

12.48 (s, NH, 1H) 

3.97 (ddt, J = 12.6, 8.3, 4.0 Hz, 1H) 

2.14 – 1.93 (m, H-3’’α, 2H)
c
 

1.25 – 1.18 (m, H-3’’β, 1H) 

1.86 – 1.61 (m, H-4’’α, 2H)
d
 

1.43 – 1.27 (m, H-4’’β,1H) 

2.14 – 1.93 (m, H-5’’α, 2H)
c
 

1.86 – 1.61 (m, H-5’’β, 2H)
d
 

3.30 – 3.14 (m, H-6’’α, 1H) 

2.51 (tdd, J = 12.4, 9.3, 3.0 Hz, H-6’’β, 1H) 

- 

7.87 – 7.78 (m, 2H) 

7.53 – 7.39 (m, 5 H)
b
 

7.53 – 7.39 (m, 5 H)
b
 

4.72 (dd, J = 12.2, 3.6 Hz, H-7’’’α, 1H) 

3.68 (dd, J = 12.3, 8.7 Hz, H-7’’’β, 1H) 

4.31 – 4.06 (m, H-1’’’’α/β, 2H) 

1.14 ((t), J = 7.1 Hz, 3H) 
aProtons H-2’/6’ and H-4’ overlap 
bProtons H-3’/5’, H-3’’’/5’’’ and H-4’’’ overlap 
cProtons H-3’’α and H-5’’α overlap 
dProtons H-4’’α and H-5’’β overlap 
eAssigned through correlation, very weak 
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Table 3: Molecular ions (MS-TOF) and product ions (MS/MS-TOF) with formulas for compounds 2-7 from 

pathways A-C, D denotes significant other fragments. Deviations are given in parentheses.  

 

Compound 
[M+H] (Δ 

ppm) 

[A+H] (Δ 

ppm) 
[B+H] (Δ ppm) 

[C+H] (Δ 

ppm) 
D (Δ ppm) 

2 
248.1646 (-2.5) 

C15H22NO2 
- 

188.1436 (-1.0) 

C13H18N 

84.081 (6.0) 

C5H10N 
- 

3 
302.0716 (-2.1) 

C14H18Cl2NO2 
- 

242.0498 (-0.3) 

C12H14Cl2N 

84.0811 (-3.4) 

C5H10N 
- 

4 
248.1655 (-3.8) 

C15H22NO2 

220.1336 (2.0) 

C13H18NO2 

174.1277 (-1.2) 

C12H16N 

84.0813 (6.7) 

C5H10N 
- 

5 
316.0869 (-1.1) 

C15H20Cl2NO2 

288.0550 (1.3) 

C13H16Cl2NO2 

242.0499 (0.0) 

C12H14Cl2N 

84.0810 (2.6) 

C5H10N 
- 

6 
298.1807 (-1.8) 

C19H24NO2 

270.1493 (-1.5) 

C17H20NO2 

224.1442 (-3.7) 

C16H18N 

84.0807 (0.9) 

C5H10N 

141.0704 (-3.5) 

C11H9 

7 
338.2109 (1.5) 

C22H28NO2 

310.1807 (3.4) 

C20H24NO2 

174.1277 (-7.2) 

C12H16N 

174.1277 (-7.2) 

C12H16N 

246.1493 (-1.7) 

C15H20NO2 
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Table 4: Experimental wavenumbers (cm
-1

) for phenidate analogs 2-7.
[a] 

 

  2 3 4 5 6 7 

v C=O
[b]

  1730 (s) 1732 (s) 1724 (s) 1727 (s) 1723 (s) 1732 (s) 

v N-H (valence) 

v Cal-H (valence) 

v C=O (valence) 

v C-O-R (valence) 

 

Fingerprint 

 

3507 (w) 

2858 (w) 

1716 (m) 

1187 (s) 

1024 (s) 

  760 (s) 

  483 (s) 

n. o. 

2710 (m) 

  1735 (s) 

1137 (s) 

932 (m) 

673 (m) 

441 (s) 

n. o. 

2854 (m) 

1721 (m) 

1173 (s) 

1024 (s) 

744 (s) 

704 (s) 

n. o. 

2707 (s) 

1729 (s) 

1208 (m) 

1178 (s) 

1026 (s) 

449 (m) 

n. o. 

2653 (m) 

1723 (w) 

1272 (w) 

749 (m) 

604 (w) 

507 (m) 

n. o. 

2634 (w) 

1742 (m) 

1230 (s) 

733 (s) 

608 (s) 

507 (s) 

 

 [a] (w) = weak, (m) = medium, (s) = strong, n. o. = not observed. [b] Free base. 
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Figure 1: Distribution of NPS cases by substance-class (legal and illegal combined) and total amount of 

identified substances not listed under the German Narcotics Act in the years 2012-2015 at the Centre of 

Education and Science of the Central Customs Authority Cologne  
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Figure 2: Analyzed NPS derived from threo-methylphenidate, alterations at the aryl-moiety (red), the ester 

group (blue) and substitution at nitrogen (green) with their DAT IC50 values. Numbers in parentheses 

correspond to the values for the known parent methyl-ester compounds.
[15,25] 
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Figure 3: X-ray crystal structures of phenidate analogs (±)-threo-2-7 HCl with thermal ellipsoids at the 50% 

probability level, depicted in (R,R)-configuration with their common abbreviations in parentheses. Hydrogen 

atoms have been omitted for clarity.  
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Figure 4: 
1
H-NMR of 3,4-dichloroethylphenidate 5 with assignments (300 MHz, 298 K, CDCl3), α and β 

denominate diastereotopic protons where α was the one shifted further downfield.  
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Figure 5: GC-chromatograms of ethylphenidate 4 (A) and ethylnaphthidate 6 (B) (top). Compound 4 showed 

little signs of thermal decomposition under standard GC-conditions, while 6 decomposed to 2-naphthyl-

ethylacetate and 2,3,4,5-tetrahydropyridine. EI-MS spectra (bottom) of ethylphenidate 4 (A2) at 11.88 min and 

the thermal decomposition products of ethylnaphthidate 6 (B2) at 14.63 min (major peak in GC). 

 

  

A B 

A2 B2 
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Figure 6: Proposed pyrolysis of ethylnaphthidate 6 in the injection port and/or on column under standard GC-

conditions. Analogous thermal decomposition predominantly occurs with compounds 3 and 5.  
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Figure 7: Main fragments observed in the EI-mass spectra of the major peaks in GC of compounds 2-7. 

Compounds 3, 5 and 6 thermally decompose on GC to their corresponding 2-aryl-acetates. 
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Figure 8: Computation of the thermal decomposition of phenidate analogs on a simplified model system by 

density functional theory (DFT) with the respective transition states leading to 2,3,4,5-tetrahydropyridine and 

1,2,3,4-tetrahydropyridine (BP-86/def2-SVP//B3LYP-D3(BJ)/def2-TZVP+ZPE). 
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Figure 9: Product ion spectrum of ethylphenidate 4 (CE = 26.0 eV), the signal for the fragmentation pathway A 

(Figure 10) has a very low intensity. 
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Figure 10: Proposed fragmentation pathways A-C of ethylphenidate 4 under ESI-MS/MS conditions. Product 

ion formation was similar for all derivatives 2-7 depending on their molecular structure but pathway A cannot 

occur for methylphenidates 2 and 3. 
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