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Abstract
Radiofrequency catheter ablation (RFCA) is an effective treatment for cardiac arrhythmias.

Although generally safe, it is not completely exempt from the risk of complications. The great
flexibility of computational models can be a major asset in optimizing interventional strategies,
if they can produce sufficiently precise estimations of the generated lesion for a given ablation
protocol. This requires an accurate description of the catheter tip and the cardiac tissue. In
particular, the deformation of the tissue under the catheter pressure during the ablation is an
important aspect that is overlooked in the existing literature, that resorts to a sharp insertion of
the catheter into an undeformed geometry. As the lesion size depends on the power dissipated
in the tissue, and the latter depends on the percentage of the electrode surface in contact
with the tissue itself, the sharp insertion geometry has the tendency to overestimate the lesion
obtained, especially when a larger force is applied to the catheter. In this paper we introduce
a full 3D computational model that takes into account the tissue elasticity, and is able to
capture the tissue deformation and realistic power dissipation in the tissue. Numerical results
in FEniCS-HPC are provided to validate the model against experimental data, and to compare
the lesions obtained with the new model and with the classical ones featuring a sharp electrode
insertion in the tissue.

Keywords: radiofrequency ablation; open-irrigated catheter; elastic tissue deformation; finite
elements

1 Introduction
Radiofrequency catheter ablation (RFCA) is a minimally invasive therapy widely used for the
treatment of various types of cardiac arrhythmias [1, 2]. Typically, for endocardial radiofrequency
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ablations (RFA), a catheter is advanced into the cardiac chamber from the groin of the patient
through a blood vessel. Radiofrequency (RF) current at 500 kHz is delivered to the arrhythmogenic
tissue via the electrodes on the catheter, producing resistive electrical heating in the neighborhood
of the electrode. Conduction then propagates the heating through the rest of the tissue. At a
target temperature, usually of 50 ◦C, irreversible damage is inflicted to the tissue and a lesion is
formed [1].

RFA is considered an effective and safe treatment for cardiac arrhythmias, however a number
of life threatening complications may occur. Excessive heating of the blood near the electrode
reaching around 80 ◦C leads to the denaturation of the blood proteins and the formation of a
coagulum at the tip of the catheter [1, 3]. In addition, extreme heating of the tissue at 100 ◦C
leads to steam formation and audible steam pops occur [4, 5, 6], which could result in myocardial
tear or tamponade [1].

Several computational models have been developed to describe the biophysics of the cardiac
RFA treatment process. Some use an axisymmetric approach and develop 2-D geometries, on
which they employ Penne’s bioheat equation with convective boundary conditions for the cooling
effect of the blood flow, coupled with a quasi-static electrical potential equation [7, 8, 9, 10]. To
model the effect of the coolant liquid of open irrigated catheters, these models typically fix the
temperature of the tip electrode [11, 12].

Three dimensional cardiac RFA models that use the same mathematical equations as the 2-D
axisymmetric models are also available [13, 14, 15]. For open irrigated catheters, some models
include the interaction of the saline inflow with a layer of saline in epicardial modelling [16] or with
the surrounding blood in endocardial RFA [17]. Typically, a sharp insertion of the catheter in the
tissue is considered, disregarding its elastic deformation. However the need for the incorporation of
mechanical deformation in RFA modelling was hinted in a previous work [15]. Indeed, the amount
of power delivered to the tissue depends on the surface of contact between the electrode and the
tissue itself [18]. Sharp insertion produces larger surfaces of contact, and is likely to overestimate
the actual effect of the RFA treatment. The first RFA model that includes elastic deformation of
the tissue uses profiles that are extracted from X-ray scanning before the ablation process [19].
No other work was found in our literature review that includes the tissue deformation due to the
contact with the catheter.

We propose a computational model that includes both physical and mechanical properties of
the tissue. We consider in this work a 6-holes open electrode with a hemispherical tip, placed
vertically on the cardiac tissue. We model the elastic deformation of the tissue in contact with
the tip by solving the axisymmetric Boussinesq problem for a spherical punch. We use a modified
version of Penne’s bioheat equation to model the thermal effect of RFA and a quasi-static elec-
trical potential equation. Constant-power ablation is obtained by augmenting the system with a
power constraint equation. The model also features the incompressible Navier-Stokes equations to
describe the flow of blood and the saline flow from the open-irrigated electrode. We validate our
proposed computational model against a set of suitably defined in-vitro experiments performed
at J.M. Guerra’s lab at the Hospital de la Santa Creu i San Pau in Barcelona. We investigate
the effect of tissue elasticity in the computational RFA models by comparing the computational
lesion dimensions of the deformed tissue case against the undeformed one that is typically used in
state-of-the-art models.

The paper unfolds as follows. Section 2 describes our mathematical model, and in Section 3
we describe its calibration. In Section 4 we validate the proposed model against a set of in-
vitro experiments: we describe the experimental setup and discuss the results of the proposed
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computational model. We also compare the results of our model with the ones obtained with a
geometry featuring a sharp insertion of the electrode. Finally, in Section 5 we discuss our findings
and the limitations of the proposed model and suggest some ways to overcome them.

2 Computational model
Our mathematical model consists of a system of partial differential equations that describe the
evolution of the temperature, the flow of blood and the cooling saline solution, as well as the elec-
trical field generated by the RFA procedure. In this section, we expand on its main characteristics:
the geometry, the governing equations, and the method to assess the computational lesion.

2.1 Geometry
The computational domain that we consider in this paper is based on an in-vitro experimental
setup, which is similar to the one presented by Guerra et al. [20]. We construct a box of dimensions
80 mm× 80 mm× 80 mm that consists of the blood chamber 80 mm× 80 mm× 40 mm, the cardiac
tissue 80 mm× 80 mm× 20 mm, and a board 80 mm× 80 mm× 20 mm underneath the tissue. The
board separates the tissue from the dispersive electrode, that is located at the bottom of the
computational domain. This is an important aspect, matching the settings in the experiments
used for validation, where the tissue is not in direct contact with the dispersive electrode, but
is actually placed on a physical board of methacrylate. Moreover, in clinical RFA, the dispersive
electrode is placed on a patch on the back (or thigh) of the patient. Having the dispersive electrode
in direct contact with the tissue would lead to an excessive simplification of the model. Also, the
presence of the board allows us to match the impedance of the RFA system (provided by the
machine) without modifying the electrical conductivity of the tissue.

We place a catheter perpendicular to the tissue at the center of the box inside the blood
chamber, causing a deformation that depends on the catheter-tissue contact force (see Section 2.5).
Figure 1 (left) shows the described computational geometry. We consider a 6-holes open-irrigated
electrode of diameter 2.33 mm and length 3.5 mm with a hemispherical tip. The electrode contains
a thermistor of diameter 1.54 mm and length 3 mm. The holes, of diameter 0.5 mm, are connected
to an inner channel of diameter 0.73 mm inside the thermistor, which is connected to the catheter
body and allows the saline to flow in the blood chamber. Figure 1 (right) shows the geometry of
the open-irrigated electrode.

The computational domain consists of five different subdomains: the blood chamber (Ωblood),
the cardiac tissue (Ωtissue), the external factors board (Ωboard), the electrode (Ωel) and the ther-
mistor (Ωtherm). In what follows, we will simply denote

Ω := Ωblood ∪ Ωtissue ∪ Ωboard ∪ Ωel ∪ Ωtherm.

The catheter body and the inner tubes at the open-irrigated electrode are considered thermally
and electrically insulated, and therefore insulation boundary conditions are applied. Additional
details on the thermal and electrical boundary conditions are provided in Sections 2.3 and 2.4.

2.2 Blood and saline flow
The open-irrigated electrode allows the cooling saline to flow out through the holes at its tip, and
mix with the blood. The comparable densities between saline and blood justifies the assumption
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Figure 1: Left: The full computational geometry. Right: Detailed view of the catheter tip and its
components. Top left to bottom right: the assembled catheter tip, the saline pipes, the thermistor,
and the electrode.

of a perfect mix in the blood chamber. The flow dynamics is thus governed by the incompressible
Navier-Stokes equations:

∂u

∂t
+ u · ∇u− divσ(u, p) = 0

divu = 0
(1)

where u is the flow velocity, p is the pressure scaled by the density ρ and σ(u, p) = 2µρ−1∇u+∇uT

2 −
pI is the stress tensor, µ being the dynamic viscosity of the blood.

We impose zero pressure and stress as an outflow boundary condition on the right side of the
domain {x = 0.08}. A constant inflow boundary condition is imposed on the left side of the domain
{x = 0},

u = uin = (ub, 0, 0),

and on the electrode holes for the flow of the coolant liquid,

u = usne,

where ub and us are the magnitudes of the velocity of the blood and the coolant liquid respectively,
while ne is the unit normal vector of the electrode pointing towards the blood chamber. All the
remaining boundaries, including the internal one separating the blood chamber from the tissue,
are equipped with no-slip boundary conditions. See Figure 3 for a representation of all boundary
conditions.
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2.3 Electrical field
The electrical field is generated by the electrode at the tip of the catheter. At a frequency of
500 kHz, and over the distance of interest, the biological medium can be considered totally resistive
and the electrical problem can be set in quasi-static form:

div (σ(T )∇Φ) = 0, (2)

where Φ is the electrical potential. We consider the electrical conductivity σ = σ(T ) (not to be
confused with the stress tensor σ(u, p) introduced in (1)) to be constant in all regions but in the
tissue, where we consider a linear dependency on the temperature (see Section 3.1).

For a constant-power ablation mode, equation (2) is augmented with a constant-power con-
straint [21] ∫

Ω

σ(T )∇Φ · ∇Φ dx = P, (3)

where Ω is the computational domain and P is the constant power imposed.
We set an initial potential of 0 V everywhere. We impose a zero potential condition on the

bottom of the domain to model the dispersive electrode, while on the remaining external surfaces
and the catheter boundary we assign an insulation condition (−σ∇Φ · n = 0).

2.4 Tissue heating
The application of an electrical potential at the tip electrode of the catheter produces resistive
heating at the cardiac tissue and the surrounding blood. A modification of Penne’s bioheat equation
models both the heating by the direct application of RF current and the conductive heating [17]
and reads

∂(ρh)

∂t
− div (k(T )∇T ) = q − ρc(T )u · ∇T +Qm −Qp, (4)

where ρ is the density, h is the specific enthalpy, c(T ) is the specific heat, k(T ) is the thermal
conductivity of the medium, q = σ(T )|∇Φ|2 is the distributed heat source from the electrical field,
Qm is the metabolic heat generation and Qp is the heat loss due to the blood perfusion. For
endocardiac RFA, the last two terms in this equation can be omitted for short ablation times
[14, 17, 22].

In biological tissues, the specific enthalpy h and the temperature T are related as follows:

∂(ρh)

∂t
= ψ(T )

∂T

∂t
,

where ψ(T ) = ρc(T ). Finally, we assume the thermal conductivity k(T ) and the specific heat c(T )
to be piecewise constant, with different values in different regions of the domain, except in the
tissue, where we consider a linear dependence on the temperature (see Section 3.1).

The final form of the bioheat equation is then

ρc(T )

(
∂T

∂t
+ u · ∇T

)
− div (k(T )∇T ) = σ(T )|∇Φ|2. (5)
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2.5 Elasticity
During the ablation procedure, the electrode at the tip of the catheter applies a contact force to
the cardiac tissue, resulting in its deformation. For a catheter with a hemispherical tip such as the
one we consider in this paper (see Figure 1), the problem is equivalent to a spherical indenter on
an elastic half-space in contact mechanics. There are many different approaches for this contact
mechanics problem, including Hertzian theory for shallow indentations [23, 24], a modified Hertzian
solution [25] and the axisymmetric Boussinesq problem [26]. We use the axisymmetric Boussinesq
problem approach as it provides a general framework for different profiles, which will allow us to
consider also different catheter tips in the future. In this work we consider a spherical indenter
profile.

Following [26], due to the radial symmetry of the contact problem, consider the two dimensional
problem on the vertical z-axis and the horizontal r-axis, which represents the distance from the
center of the sphere. The deformed elastic tissue follows the spherical indenter from the center
of the sphere, where the maximum vertical displacement ωmax occurs, up to the contact radius
a. After the contact point, the elastic tissue deformation is smoothly decreasing as the distance r
increases. Figure 2 shows the deformation of the tissue, as described.

Figure 2: A cross-section of the electrode-tissue contact.

Thus, for the case r ≤ a, the elastic tissue follows the sphere, i.e.

r2 + [z + (R− ωmax)]2 = R2,

where R is the radius of the sphere. The positive solution of this system for z gives the displacement
of the interface ω(r) as a function of the distance r,

ω(r) = ωmax − f(r/a), (6)

where f(t) = R −
√
R2 − a2t2. The function f is the profile of the spherical indenter that is used

in the rest of the computations.
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The maximum depth is given by the formula

ωmax =
a

2
log

(
R+ a

R− a

)
, (7)

and the total force is
F =

G

1− ν

(
(a2 +R2) log

(
R+ a

R− a

)
− 2aR

)
, (8)

where ν is the Poisson’s ratio and
G =

E

2(1 + ν)

is the shear modulus of the tissue, E being the Young’s modulus of elasticity.
For r > a, the deformation can be calculated by evaluating the integral

ω(r) =

∫ 1

0

χ(t)

(r/a)2 − t2
dt, (9)

where
χ(t) =

2ωmax

π
− at

π
log

(
R+ at

R− at

)
.

Thus, given the contact force F , the contact radius a can be calculated by Equation (8) using
optimization techniques. The remaining quantities can be calculated using the corresponding
formulas above. The displacement of the interface ω(r) is calculated using numerical integration
techniques for r > a.

2.6 Model summary
We consider a 3D computational geometry, as described in Section 2.1, and we compute the vertical
displacement of the surface of the tissue for a given catheter contact force (see Section 2.5).

We summarize the mathematical model in the following system of coupled PDEs:

∂u

∂t
+ u · ∇u− divσ(u, p) = 0 in Ωblood × (0, T ), (10a)

divu = 0 in Ωblood × (0, T ), (10b)

ρc(T )

(
∂T

∂t
+ u · ∇T

)
− div (k(T )∇T ) = σ(T )|∇Φ|2 in Ω× (0, T ), (10c)

div (σ(T )∇Φ) = 0 in Ω× (0, T ). (10d)

The above equations are equipped with a number of different boundary conditions, applied to the
various parts of our computational geometry. Figure 3 collects the boundary conditions of (10a)-
(10d): unless stated otherwise, we impose zero velocity (u = 0), zero current flux (σ∇Φ · n = 0)
and body temperature (T = Tb = 37 ◦C) on all the surfaces of the boundary. We impose zero
velocity on the tissue surface, which is part of the boundary of Ωblood. The values of the saline
inlet us are given by the RF protocol under consideration. The homogeneous Dirichlet boundary
condition for the potential Φ = 0 on the bottom surface models the dispersive electrode, while the
Dirichlet condition Φ = V0 on the upper boundary of the electrode is discussed in the upcoming
Sections 3.1.2 and 3.1.3. We set the initial conditions to p = 0, u = 0, Φ = 0 and T = Tb in the
whole domain.
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Figure 3: Boundary conditions that differ from zero velocity (u = 0), zero current flux (σ∇Φ·n = 0)
and body temperature (T = Tb).

2.7 Lesion assessment
The prediction of the lesion size is important to ensure the effectiveness of RF treatment. During
the ablation process, RF current flows through the myocardium and, via Joule heating, a rise in the
tissue temperature is produced in a small area around the electrode tip. The tissue is irreversibly
damaged and a thermal lesion is formed when the temperature rises above 50 ◦C [1]. In light of
the above consideration, we assume that a lesion is fully formed at the isotherm contour of 50 ◦C.
In order to assess the lesion characteristics, typical quantities of interest are its depth (D), width
(W), depth at which the maximal width occurs (DW), as well as its volume (V). Also, the area
of the lesion on the tissue surface (S) is important to study the possible formation of thrombi.
The characteristic dimensions we consider in this paper to validate the computational model are
described in Section 4.2, and collected in Figure 4 therein.

3 Calibration of the model

3.1 Model parameters
The parameters considered in this paper are drawn from the literature and are summarized in
Table 1. Specifically, the physical properties of the blood are obtained from the virtual population
database from the IT IS foundation [27]. The electrode and thermistor physical properties were
found in the literature [15, 17]. We assume the electrical conductivity of the external factors board
σb to be constant and we tune it to match the initial impedance of the experimental setup, as
detailed in Section 3.1.2. We choose the remaining parameters for the board to be the same as the
initial tissue state; they appear to have no impact on the results of our numerical simulations.

Considering that in our in-vitro experiments RFA was performed on a porcine myocardium, we

8



Parameter Blood Tissue Electrode Thermistor Board
ρ (kg m−3) 1050 1076 21500 32 1076
c (J kg−1 K−1) 3617 c0 = 3017 132 835 3017
k (W m−1 K−1) 0.52 k0 = 0.518 71 0.038 0.518
σ (S m−1) 0.748 σ0 = 0.54 4.6× 106 10−5 σb
µρ−1 (m2 s−1) 2.52× 10−6 - - - -
ν (-) - 0.499 - - -
E (kg m−1 s−2) - 75× 103 - - -

Table 1: The parameters we considered in our proposed computational model.

used the corresponding physical properties [28, 29, 30]. We use a linear temperature-dependence
of specific heat, thermal and electrical conductivities of the tissue according to the aforementioned
literature:

c(T ) = c0(1−0.0042(T−37)), k(T ) = k0(1−0.0005(T−37)), σ(T ) = σ0(1+0.015(T−37))

where c0, k0 and σ0 are the specific heat, the thermal and the electrical conductivities at body
temperature (see Table 1). Finally, since the experiments were performed in an in-vitro condition,
it is reasonable to assume that the cardiac tissue got stiffer during preparation. We thus used in
our simulations the Young’s modulus of the cardiac tissue at systole [47], which is within the range
of measurements in an in-vitro experimental setup found in [48].

3.1.1 Tissue power delivery calibration

In our model, we set the electrical conductivity of the board σb to match the power dissipated in
the tissue Ptissue, that we identify following the analysis of Wittkampf and Nakagawa in [18]: the
percentage of the total power P delivered to the tissue is given by the formula:

Ptissue =
Atissueσtissue

Abloodσblood +Atissueσtissue
P =: αP, (11)

where P is the total power set by the machine in the experiment and Ablood and Atissue is the
contact area of the electrode with the blood and the tissue respectively.

In our computational geometry (see Section 2.1) we chose a hemispherical catheter tip. Thus,
the surface area of the catheter in contact with the tissue Atissue can be calculated as follows

Atissue =


2πRh, if h ≤ R,
2πR2 + 2πR(h−R)− 6R2

h cos−1
(

1 + R−h
Rh

)
, if R < h ≤ R+Rh

2πR2 + 2πR(h−R)− 6R2
h

(
π
2 + cos−1

(
2 + R−h

Rh

))
, if R+Rh < h ≤ R+ 2Rh

2πR2 + 2πR(h−R)− 6πR2
h, if h ≥ R+ 2Rh,

where h = ωmax − ω(a) is the contact depth of the catheter with the tissue (see Section 2.5) and
Rh is the radius of the irrigation holes on the catheter (see Section 2.1). The blood surface area is
calculated using the formula

Ablood = 2πR2 + 2πR(he −R)− 6πR2
h −Atissue,
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where he is the length of the electrode.

3.1.2 External factors calibration

We included the external factors board in the model to represent the part of the experimental setup,
between the tissue and the dispersive electrode, that is not modelled. We tune the external-factors
board’s conductivity σb to match the actual power delivered to the tissue as described in Section 2.
This approach allows us to use as much of the information available from the RFA system as
possible, and provides us with great flexibility should different types of tissue be considered, in a
major improvement with respect to standard approaches on the topic (including earlier works by
some of the authors [17]) that tuned the tissue conductivity to match the overall system’s initial
impedance.

Given the total power of the ablation P and the initial impedance of the system R, (both
values available from the RFA system), the initial potential drop in the system is given by Ohm’s
law as V0 =

√
PR. We can assume that the electrode cable is not dissipating energy, thus we can

consider the potential drop to occur entirely between the cable-electrode junction and the dispersive
electrode. We thus impose a Dirichlet boundary condition on the upper boundary of the electrode
(see Figure 3), and we solve the potential equation in the whole domain Ω. The advantage of such
a framework is that the interfaces between different materials are actually internal discontinuity
surfaces of the domain: the equation itself takes care of the conductances drop across internal layers
as a consequence of the solution’s continuities [33]. In addition, modifications of the electrode
material would be immediate.

The calibration of the external factors board conductivity is an iterative pre-processing step.
Given an initial guess of σb, we solve equation (10d) with V0 =

√
PR as boundary condition, and

suitably update the value of σb, until the constraint∫
Ωtissue

σ0|∇Φ|2 dx = Ptissue (12)

is satisfied, Ptissue being the one in (11). In the code developed to obtain the results of Section 4,
we implement a root-finding algorithm via bisection search, that stops once the difference between
two subsequent iterations is smaller than 0.01 W. The calculated σb is kept constant throughout
the simulation.

3.1.3 Voltage calibration during the simulation

In Section 2.3 no boundary conditions were specified for the potential equation at the upper part of
the electrode, but we required the solution to satisfy a constraint on the total dissipated power (3).
However, due to the difference in size between our computational domain and the actual ablation
site, the total power dissipated in the computational setting is expected to be smaller than the one
provided by the machine. We assume the power dissipated outside our computational domain as
well as the one in Ω to be constant in time. During the simulation we update the potential V0 on
the upper interface of the electrode, so that the solution satisfies∫

Ω

σ|∇Φ|2 dx = P0. (13)
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In the above formula, P0 is the total power dissipated in our computational domain at the beginning
of the simulation with σb computed as described in the previous section. We assume a constant
voltage on the surface where we impose the boundary condition: the electrode is made of conductive
material and we know from standard theory of electromagnetism that electrons can move freely
on the surface of a conductor, tending to a configuration of equilibrium.

4 Numerical Results
For the simulations in this work, we built a 3D computational geometry for each given catheter
contact force, where the vertical displacement of the surface of the tissue is computed by means of
a Clenshaw-Curtis numerical integration method [34].

The resulting domain Ω is discretized by a tetrahedral unstructured mesh, with adaptive re-
finement in the neighborhood of the electrode. The mesh is built with Salome [35]. For all
the simulations presented in this work, the meshes feature approximately 5 000 000 elements with
minimum and maximum element sizes of the order of magnitude of 5× 10−5 m and 1× 10−3 m.
Following the instructions of the catheter producer, the saline inflow is set at us = 0.24 m/s, cor-
responding to an irrigation rate of 17 mL/min subdivided among the 6 irrigation holes. In the
model validation section, the blood inflow velocity is set to ub = 0.5 m/s to match our experimental
setup described in the upcoming Section 4.2. In the comparison between elastic deformation and
sharp insertion, two blood flow protocols are considered, as in the experiments by J. Guerra and
his collaborators [20]: a High-Flow protocol (HF) with ub = 0.5 m/s, and a Low-Flow protocol
(LF), with ub = 0.1 m/s.

4.1 Simulations protocol
Computational modelling of ablation as well as other medical procedures and diagnostics in cardio-
vascular science represent significant scientific challenges, such as robust turbulent fluid-structure
interaction (FSI) with contact and heating, control of the computational error in multiphysics
problems, and complex software implementation. For computational technology to be effective in
overcoming these challenges, it has to be efficient: enabling solution of advanced problems with
available resources, reliable: providing quantitative error control or the computational solution in
a chosen output, as well as a guarantee of correctness of software implementation, and accessible:
enabling scientists to access, use and extend the simulation technology as a tool in their daily work.

We address these problems in the setting of a general stabilized adaptive finite element method-
ology we denote Direct FEM Simulation (DFS) [36] realized in the automated massively parallel
FEniCS-HPC open source software framework [37, 38], taking the weak form of the partial differ-
ential equation (PDE) as input and automatically generating low-level source code for assembling
tensors and duality-based a posteriori error estimates and indicators for adaptive error control with
good scaling on supercomputers. In this framework, we developed an RFA module in FEniCS-HPC
explicitly for the present work to discretize and solve system (10a)-(10d).

Navier-Stokes equations The Navier-Stokes equations are solved via the DFS method pre-
sented in [36, 39, 40], consisting of a standard P1-P1 finite elements method with Galerkin Least-
Squares stabilization and optional goal-oriented adaptive mesh refinement. The Navier-Stokes
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system is discretized in time by a Crank-Nicholson scheme, and DFS solves the full nonlinear
problem via successive minimizations based on a fixed-point approach [36, 40].

Bioheat equation The Bioheat equation, on the other hand, is solved with P1 elements and
is advanced in time by a backward Euler scheme, where the coefficients are linearized around the
previous time step. Since for the set of parameters introduced in Section 3.1 the Bioheat equation is
advection-dominated in Ωblood, an SUPG (Streamline-Upwind Petrov-Galerkin) stabilization term
is added to the discrete equation[41].

Potential equation The potential equation is solved with P1 elements. The equation depends
implicitly on time through the conductivity. As the simulation proceeds, the rise in the tissue
temperature modifies its electrical conductivity, and the constraint on the total dissipated power
will eventually fail to be satisfied. We thus enforce constraint (13) at each time step when we solve
the potential equation as follows.

Let Φ1 be the solution of

div (σnew∇Φ1) = 0 in Ω

Φ1 = V old0 on ∂Ωupel

Φ1 = 0 on ∂Ωbottom

σnew∇Φ1 · n = 0 on ∂Ω\{∂Ωupel ∪ ∂Ωbottom}

(14)

where V old0 and σnew are the previous value of the potential on the upper part of the electrode and
the new value of the electrical conductivity, respectively. The power dissipated by Φ1 is

P1 =

∫
Ω

σnew|∇Φ1|2 dx.

If |P1 − P0| < 0.01 W, we choose Φnew = Φ1 as new solution.
On the other hand, if P1 does not fall within the tolerance, we proceed as follows. By lin-

earity, the function Φ2 = λΦ1 is the solution of problem (14) with Dirichlet boundary condition
Φ2 = λV old0 on ∂Ωupel (Dirichlet boundary conditions scale linearly and the Neumann one is itself
homogeneous). The power dissipated in the domain by Φ2 is

P2 =

∫
Ω

σnew|∇Φ2|2 dx =

∫
Ω

σnew|∇(λΦ1)|2 dx = λ2

∫
Ω

σnew|∇Φ1|2 dx = λ2P1.

By requesting Φ2 to satisfy constraint (13) (namely, imposing P2 = P0), we can solve for λ =√
P0/P1, and the new potential will be

Φnew =

√
P0

P1
Φ1, V new0 =

√
P0

P1
V old0 .

Time stepping A time step of ∆t = 0.01 s has been used for the bioheat equation and a smaller,
adaptively computed time step is used for the Navier-Stokes equations. As a consequence of the
different time steps employed, the two models are synchronized at the larger time step, where also
the potential equation is solved. Let tn = n∆t be the n-th time step of the bioheat equation, and
let (unh, p

n
h,Φ

n
h, T

n
h ) be the numerical solution at time tn. We can briefly summarize the procedure

to advance from tn to tn+1 as follows.
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1. Solve the Navier-Stokes equations in (tn, tn+1) with the adaptive time step and compute, in
particular, un+1

h .

2. Solve the potential equation for Φn+1
h with coefficient σ(Tnh )

3. Solve the bioheat equation for Tn+1
h using un+1

h in the transport term, Φn+1
h in the source

term, σ(Tnh ), c(Tnh ) and k(Tnh ) as coefficients.

We refer the reader to the supplementary material section for a more detailed description of
the numerical discretization. Finally, the lesion dimensions are calculated in a post-processing step
in Paraview [42] with self-developed Python-coded filters.

Remark. Since the stress tensor σ(u, p) is independent of the temperature, equations (10a) and
(10b) are in a one-way coupling with the rest of the system. Thus, already in our current situa-
tion, but even should the geometry change in time due to a variable pressure during the ablation
(as it is the case in clinical RFA procedures), it would still be possible to solve the Navier-Stokes
equation independently as a first step and then use the solution to solve equations (10d) and (10c),
potentially for a variety of different protocols. However, we chose to solve the Navier-Stokes equa-
tions alongside the potential and bioheat ones during each simulation in order to maintain a design
flexible enough to handle also more complex (i.e. fully coupled) situations, such as a stress tensor
of the tissue that varies with temperature.

4.2 In-vitro experimental setup
Two in-vitro sets of experiments using porcine myocardial tissue were performed in an experi-
mental setup similar to the one presented in [2]. The porcine myocardial tissue was placed on
a polymethyl methacrylate board in a bloodbath. An iron arm attached to the board kept the
catheter perpendicular to the tissue and maintained the contact force around the target 10 g, 20 g
and 40 g, as measured by the catheter system. A pump attached to the iron arm generated a
constant blood flow of 0.5 m/s. The indifferent electrode was placed at the bottom of the blood
bath. A heater preserved the blood temperature to 37 ◦C.

The 6-holes open-irrigated TactiCath Quartz catheter by St. Jude Medical Inc. was used in the
experiment. A constant power delivery ablation protocol of 20 W or 35 W was followed for all the
ablations and a saline flow rate of 17 mL/min was set.

After the radiofrequency delivery, the lesion dimensions were assessed by examining their cross-
section. The measured variables were the depth (D), the width (W) and the depth of the maximum
width (DW) as shown in Figure 4. In standard computational models that feature a sharp insertion
of the catheter in the tissue, the depth and depth of maximum width are measured from the
tissue surface. However, such measurement techniques have their limitations. First, existing
computational models do not take into account the irregular surface of the cardiac wall, and
neither do we at this stage. In addition, since lesions are assessed after physical manipulation, it
is difficult to identify the actual position of the pre-ablation tissue surface. By considering these
limitations, we opted to use measurements that allow us to validate our numerical results through
comparable variables (see Figure 4 and Figure 5, right).

A total of 31 ablations were performed for different target experimental setups, using three
control parameters: the contact force F , the applied power P and the time of ablation T . During
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Figure 4: Left: the experimental setup. Right: lesion measurements: depth (D), width (W) and
depth of maximum width (DW).

Target experimental setup (F , P , T )
(10∗g, 20W, 30s) (10∗g, 35W, 30s) (20∗g, 20W, 30s) (40∗g, 20W, 30s)

n 8 5 9 2
F̄exp (g) 11.2 [11.1 : 11.5] 11.9 [11.3 : 12.0] 19.9 [19.6 : 22.2] 41.0 [40.5 : 41.5]
D (mm) 2.3 [1.8 : 2.6] 4.4 [4.3 : 4.6] 3.1 [2.8 : 3.5] 3.3 [3.0 : 3.5]

min 1.4 4.2 2.2 3.0
max 3.1 4.6 4.6 3.5

W (mm) 6.5 [6.3 : 7.4] 12.7 [9.9 : 13.2] 8.9 [8.0 : 10.5] 7.2 [7.1 : 7.2]
min 5.5 8.4 7.0 7.1
max 7.9 14.1 11.7 7.2

DW (mm) 0.4 [0.4 : 0.7] 0.4 [−0.1 : 0.9] 0.5 [0.3 : 0.8] 0.7 [0.3 : 1.0]
min 0.3 −1.0 −0.6 0.3
max 0.8 1.0 1.4 1.0

R0 (Ω) 121 [116 : 134] 104 [102 : 138] 122 [114 : 124] 127 [117 : 136]

Table 2: Summary of lesion dimensions for every experimental setup. The starred values ∗ denote
the mean nominal forces and include a standard deviation of 1 g. The values in the table are either
absolute numbers or expressed in the format Q2 [Q1 : Q3], where Q2 is the median and Q1 and
Q3 are the first and the third quartiles.

the experiments we observed that the target contact force was not always achieved due to maneu-
vrability limitations and the effect of the blood inflow to the system. Thus, we allow a standard
deviation of 1 g as error of the mean experimental force Fexp around the nominal force F and we
remove the observations that deviate three standard deviations. Table 2 summarizes the lesion
dimensions and the initial impedance of the system R0. The mean experimental contact force F̄exp
is reported for the non-extreme cases. No complications (steam pops, char formation etc.) were
observed in our experiments.
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4.3 Model validation
We validate our model by comparing the computational lesion dimensions against the in-vitro
experimental results in Section 4.2. We run simulations with parameters corresponding to the first
3 settings of the experiments. We discarded the (40g, 20W, 30s) configuration because only two
experiments were available, and one of the two images obtained from the experiments was too
blurry to get solid measurements. As an example, in Figure 5 we show the 3D lesion computed in
the (20g, 20W, 30s) settings, and the corresponding lesion dimensions used for validation. Given
the uncertainty on the cross-section orientation (with respect to the blood flow direction) of the
experimental lesions, these dimensions are assessed on the plane featuring the maximum width of
the lesion.

Figure 5: Left: the 3D computed lesion in the (20g, 20W, 30s) settings. Right: lesion measurements
used for validation.

In Table 3 we collect the resulting lesion dimensions of our numerical simulations. We observe
that the depth D, the width W and the depth of the maximum width DW of the computational
lesion are within the range of the corresponding experimental values for the case of F = 20 g. In
the 10 g cases, the lesion width is underestimated by around 10% for both cases. Furthermore, the
depth of the maximum width is overestimated by nearly 50% for the case of P = 35 W.

Computational setup (F , P , T )
(10g, 20W, 30s) (10g, 35W, 30s) (20g, 20W, 30s)

D (mm) 2.58 4.25 3.69
min−max X X X

W (mm) 4.88 7.63 7.25
min−max −11.27% −9.17% X

DW (mm) 0.80 1.47 1.01
min−max X +47% X

Table 3: Comparison of the computational lesions against the range of the experimental data.

To dwell deeper into the width underestimation (a feature already observed in [17]), we compare
the computational lesion dimensions against the interquartile range Q1−Q3. The results are shown
in Table 4. By comparing Table 3 and Table 4, it can be seen that the depth of maximum lesion
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Computational setup (F , P , T )
(10g, 20W, 30s) (10g, 35W, 30s) (20g, 20W, 30s)

D (mm) 2.58 4.25 3.69
Q1 −Q3 X −1.16% +5.42%

W (mm) 4.88 7.63 7.25
Q1 −Q3 −22.53% −22.93% −9.37%

DW (mm) 0.80 1.47 1.01
Q1 −Q3 +14.28% +52.22% +26.25%

Table 4: Comparison of the computational lesions against the interquartile range Q1 −Q3 of the
experimental data.

width is consistently overestimated with respect to the experimental interquartile range, while
the lesion width is underestimated. The (10 g, 35 W, 30 s) setting shows a tiny deviation from the
experimental lesion depth, however the experimental results show a very narrow interquartile range
of 0.3 mm. For the other settings, the depth of the lesion lies in the upper part the interquartile
range or is overestimated by 5%. Nonetheless, the lesion width is always underestimated while the
depth of the maximum width is overestimated up to 52.22 %. This shows that the computational
lesion is more spherical than the experimental one. One possible explanation for this is that our
hypothesis of isotropic heat diffusion in the tissue is not good enough for the type of prediction
we are trying to make. After all, it is a known fact that cardiac tissue is not isotropic itself, being
made of layers of fibers that run parallel to the surface of the heart, and rotate clockwise by almost
120 degrees between the endocardium (where the electrode is in contact with the tissue), and the
epicardium [43, 44]. It is thus worth investigating further the anisotropy of the tissue’s thermal
[45] and electrical conductivities [49]. This aspect is currently under study.

4.4 Comparison of elastic and sharp insertions
One of the strengths (and novelties) of the proposed methodology resides in resorting to an elastic
model for the tissue, which allows us to treat in a systematic manner both the deformation of
the tissue and the power dissipated in it. The more accurate description of the tissue-electrode
contact surface provided by the elastic model reflects into a more precise evaluation of the power
dissipated into the tissue with respect to models featuring a sharp insertion of the catheter into an
undeformed tissue. The latter is the common configuration encountered in the available literature:
besides being pretty unphysical in itself, it relies on somewhat arbitrary levels of insertion in the
tissue, which are never clearly explained. In addition, a sharp insertion configuration features a
larger contact surface between the tissue and the electrode. Since the power delivered to the tissue
depends on the percentage of electrode surface in contact with the tissue, a sharp insertion is very
likely to overestimate the tissue temperature rise and, in consequence, the lesion size. To highlight
this aspect, we considered two different computational geometries: an elastic deformed tissue and
a sharp insertion one. In the two geometries, the catheter is placed at the same depth with respect
to the undeformed tissue state. Figure 6 shows the two different computational geometries for 10 g,
20 g and 40 g pressure.

We simulate an ablation protocol of 20 W for 30 s, where we use the tissue parameters of a
porcine myocardium and we consider, inspired from existing experimental studies [20], two different
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Figure 6: Elastic (top row) and sharp (bottom row) catheter insertion for 10g (left), 20g (middle),
and 40g (right) pressure.

simulation protocols with respect to the imposed blood flow velocity: a High-Flow protocol (HF),
with ub = 0.5 m/s, and a Low-Flow protocol (LF), with ub = 0.1 m/s. In Figure 7 we show the
impact of the two protocols on the streamlines of the saline coolant stemming from the irrigation
holes in the elastic 20 g pressure case.

Figure 7: High-Flow and Low-Flow protocols. Streamlines of the saline flow from the ir-
rigation holes for the High-Flow (left) and Low-Flow (right) protocols for a catheter pressure of
20 g.

In Tables 5 and 6 we report the percentage α of power delivered to the tissue as well as the
resulting computational lesion characteristics for the two insertion profiles in the high blood flow
and low blood flow protocols, respectively. The tissue power percentage is calculated as described
in Section 3.1.1. Due to the difference in the contact surface area of the electrode with the tissue,
the power delivered to the tissue in the sharp insertion case is more than twice the one of the

17



(20W, 30s) 10g 20g 40g
elastic sharp∗ elastic sharp∗ elastic sharp∗

α (%) 8.46 18.87 13.29 30.73 19.91 54.57
D (mm) 2.58 4.16 3.69 2.61 4.39 2.07
Wx (mm) 4.79 7.67 7.00 6.61 9.11 6.62
Wy (mm) 4.84 7.88 7.22 6.71 9.11 6.57
DWx (mm) 0.80 1.52 0.91 0.11 0.93 -1.12
DWy (mm) 0.80 1.32 1.01 0.21 0.93 -1.12
V (mm3) 38.28 162.6 123.55 88.33 260.15 92.44
S (mm2) 0 0 0 0 0 0.63
Tmax (◦C) 61.22 >100 76.95 >100 93.17 >100
Pop time (s) - 21.6 - 5.4 - 2.5

Table 5: High-Flow protocol. Lesion characteristics for sharp and elastic insertion. ∗ Simulation
stopped as a pop: lesion characteristics were assessed at pop time.

(20W, 30s) 10g 20g 40g
elastic sharp∗ elastic sharp∗ elastic sharp∗

α (%) 8.46 18.87 13.29 30.73 19.91 54.57
D (mm) 2.46 4.17 3.62 2.63 4.38 2.09
Wx (mm) 4.44 7.74 6.69 6.77 9.08 6.76
Wy (mm) 4.41 7.91 6.86 6.83 9.21 6.70
DWx (mm) 0.68 0.78 0.84 0.04 0.91 -1.50
DWy (mm) 1.03 1.33 1.04 -0.26 0.91 -1.20
V (mm3) 31.28 166.33 107.14 94.20 263.54 101.94
S (mm2) 0 0 0 0.07 0 11.84
Tmax (◦C) 60.43 >100 75.66 >100 92.64 >100
Pop time (s) - 21.7 - 5.3 - 2.4

Table 6: Low-Flow protocol. Lesion characteristics for sharp and elastic insertion. ∗ Simulation
stopped as a pop occurred: lesion characteristics were assessed at pop time.

elastic case. Moreover, as this ratio grows with the insertion depth (2.15, 2.33, and 2.41 times
for the 10 g, 20 g and 40 g cases, respectively), the tissue temperature rise is expected to be more
rapid and overestimated. The lesion depth is assessed as in the previous section. Concerning lesion
width and depth of maximal width, we split the measurement in two: one along the direction of the
blood flow (Wx at depth DWx), the other orthogonal to it (Wy at depth DWy). This choice allows
us to assess the difference in lesion anisotropy between the two cases. Finally, the lesion volume
and surface area are assessed computing the volume enclosed by the 50 ◦C isothermal surface in
the tissue, and the area intercepted on the tissue surface by the same isothermal surface.

From Tables 5 and 6 we can observe that the sharp insertion geometry produces consistently
larger maximum temperatures and steam pops, as expected from the bigger percentage of power
delivered to the tissue. In the case of elastic 10 g, the maximum tissue temperature is approximately
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60 ◦C for both protocols. On the contrary, a maximum temperature of 100 ◦C is reached for the
sharp cases after 21.6 s, hinting for the occurrence of steam pops. For both blood flow protocols,
the lesion size before popping is much larger than the one developed using an elastic deformation
of the tissue. In the 20 g and 40 g cases, the sharp insertion cases have a very rapid temperature
increase to 100 ◦C in only 5.4 s and 2.5 s respectively, hinting for the occurrence of steam pops.
However, a lesion is formed using the elastic tissue and the temperature is below 100 ◦C after the
completion of 30 s. This comes in good agreement with our in-vitro experimental results, where
no steam pops were observed in the 20 g and 40 g cases (see Section 4.2). In Figures 8 and 9 we
compare, for both High and Low-Flow protocols, the lesions obtained at the end of the simulation
(or at the time of popping). The clipping plane for both figures is the diagonal of the computational
domain. The temperature scale is the same for all plots to help visualization. The black spots in
the sharp insertion cases highlight the pop location.

Finally, we explore the impact of the high and low blood flow protocols on the elastic cases. It
appears that smaller lesions are created in the Low-Flow protocol for 10 g force, while for stronger
catheter contact forces such as 40 g the lesion size is similar for both protocols. This effect is a
consequence of a larger portion of the catheter being in direct contact with the tissue and the
fact that the lesion is formed deeper, thus temperature changes in blood-tissue interface have a
negligible effect in the lesion size. For further investigation, we consider the lesion width along
the x (along the blood flow) and y (perpendicular to the blood flow) directions to evaluate the
lesion morphological changes. The High-Flow protocol produces lesions which are more symmetric,
with the depth of the maximum width in the medial and lateral direction with respect to the flow
being the same. However, differences in the symmetry of the lesion occur for the Low-Flow case.
Figure 10 shows the temperature distribution for high and low blood flows for the elastic deformed
tissue case and 10 g contact force. Note that the saline cooling effect dominates in the Low-Flow
protocol, and leads to a different lesion morphology near the blood-tissue interface. In particular,
a small change appears in the width of the lesion in the medial direction with respect to the flow,
without affecting the symmetry of the lesion shape. A more evident change in the shape of the
lesion appears in the lateral section, where the lesion appears to be tilted opposite to the blood
flow due to the strong cooling effect of the irrigated saline. This effect becomes less evident for
higher contact force profiles, such as 20 g and 40 g, and the lesion symmetry is restored in both the
medial and lateral directions.

5 Discussion and future work
In this paper we propose a novel framework to model the radiofrequency catheter ablation process,
which aims at surpassing important limitations of state of the art models. First, our approach
does not only consider the biophysical, but also the mechanical properties of the cardiac tissue.
The model captures the elastic deformation that is produced on the tissue when the catheter
exerts a pressure on the cardiac wall. An accurate modelling of the catheter geometry allows
to account for a more realistic interaction between the coolant liquid springing from the open-
irrigated catheter and the blood flow. The addition of a board between the cardiac tissue and the
dispersive electrode has a double motivation. On the one hand, neither in in-vitro experiments
nor in clinical settings the dispersive electrode is placed in direct contact with the ablated tissue:
assuming a direct contact would therefore lead to an excessive simplification of the model. On the
other hand, the presence of the board allows us to use as much information as possible from the
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Figure 8: High-Flow protocol. Tissue heating with elastic (left column) and sharp (right column)
catheter insertions for different values of pressure. The 3D lesions are highlighted by the white
wireframes. The black spots in the right panels highlight the steam pop location. Top row: 10 g.
Middle row: 20 g. Bottom row: 40 g. The temperature scale is the same for all plots. Simulation
protocol: 20 W, 30 s.
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Figure 9: Low-Flow protocol. Tissue heating with elastic (left column) and sharp (right column)
catheter insertions for different values of pressure. The 3D lesions are highlighted by the white
wireframes. The black spots in the right panels highlight the steam pop location. Top row: 10 g.
Middle row: 20 g. Bottom row: 40 g. The temperature scale is the same for all plots. Simulation
protocol: 20 W, 30 s.
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Figure 10: High-Flow vs Low-Flow. The effect of the High-Flow (Top) and Low-Flow (Bottom)
protocol in the medial (Left) and lateral (Right) for the elastic catheter insertion case. The
computational lesion is displayed in black outline. Simulation protocol: 10 g, 20 W, 30 s.

RFA system: by properly tuning the board conductivity, we can match both the appropriate power
delivered to the tissue and the overall system impedance, without the need to modify the tissue
conductivity. Finally, the amount of power dissipated in the tissue is computed as a function of the
surface of contact between the electrode and the tissue itself. The computational model relies on
open-source software, from geometry construction to numerical simulations, and postprocessing.
In particular, Salome (http://www.salome-platform.org) was used for mesh generation, FEniCS-
HPC (http://www.fenics-hpc.org) for the numerical solution of the PDE system and Paraview
(http://www.paraview.org) for the postprocessing of the numerical results and the visualizations.

The computational model has been validated in comparison with two sets of in-vitro experi-
ments, featuring 3 different ablation protocols: (10 g, 20 W, 30 s), (10 g, 35 W, 30 s), (20 g, 20 W
and 30 s). The numerical lesions have been assessed against the experimental ones through some
characteristic dimensions such as lesion depth, width and depth of maximum width. The simulated
lesions are globally in good agreement with the experimental measurements. In particular, the le-
sion depth always lies within the range of the corresponding experimental results, but the lesion
width can be underestimated. A significant difference is observed in the 10 g ablation simulation,
where the lesion width is underestimated by around 10 %, and in the depth of the maximum width
for the 35 W case, which is overestimated by nearly 50%. A more careful comparison with the
interquartile Q1 −Q3 of the experimental results (see Table 4) shows that the depth of maximum
lesion width is overestimated while the lesion width is underestimated. The simulated lesion is
thus consistently more spherical than the experimental one, prompting for further investigation to
clarify this issue. This shortcoming can be a consequence of the isotropic heat diffusion coefficient
we used in this paper: given the lack of isotropy in the cardiac tissue itself, we are currently inves-
tigating possible anisotropies in the model parameters, in particular the thermal [45] and electrical
conductivities [49].

We then compared the effect of using an elastic deformation of the tissue under the catheter
pressure against profiles featuring a sharp insertion. Accounting for tissue elasticity provides a
realistic relation between the contact force and the indentation depth in the cardiac tissue. As a
consequence, the actual power dissipated in the tissue can be computed in a systematic manner,
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differently from other state-of-the-art models featuring sharp-insertion configurations, where it is
unclear how the same information is deduced. We compared the two insertion profiles by placing
the catheter at the same depth with respect to the undeformed tissue. The larger amount of tissue
surface in contact with the electrode in the sharp insertion case leads to a systematic overestimation
of the temperature rise in the tissue. To highlight this aspect we simulated an ablation of 20 W for
30 s on a porcine myocardium, with contact forces of 10 g, 20 g and 40 g, and two different blood
flow protocols. The sharp insertion cases consistently reach 100 ◦C in less than 30 s, which are
unphysical taken into account our in-vitro experimental results, where no steam pops occurred.
Furthermore, in the 40 g case, the saline irrigation holes are submerged in the cardiac tissue for
a sharp profile, contrary to what has been observed during our in-vitro experiments. A visual
inspection on the simulated lesions shows that the elastic deformation case produces lesions that
are closer in shape to the ones obtained in the experiments.

Finally, we compared the effect of the high and low blood flow protocols on the resulting lesions
in the elastic case. It appears that the Low-Flow protocol produces smaller lesions for contact forces
of 10 g and 20 g, while the lesion size in both protocols are comparable for a contact force of 40 g
in both protocols. In addition, we explored the morphological changes of the lesion between the
two types of blood flows. For a contact force of 10 g, the Low-Flow protocol affects the lesion
orientation, which becomes tilted opposite to the blood flow in the lateral direction due to the
cooling of the irrigated saline. This effect becomes less evident as the contact force increases, and
for 40 g contact force the lesion symmetric shape is practically restored.

As accurate predictions of the lesions generated by radiofrequency cardiac ablation are fun-
damental to devise possible new interventional strategies, the use of elastic deformation for the
tissue presented in this paper is a significant step towards a more realistic description. However, a
number of limitations are still present. First, we considered an isotropic and homogeneous cardiac
tissue, even though the myocardium structure is highly complex and its surface is not smooth [46].
In addition, the deformations are assumed to lie within the elastic bound of the tissue, however it
is evident in the experimental lesions that an elasto-plastic contact occurs. This might be a result
of the temperature change, which alters the mechanical properties of the tissue, an aspect worth
investigating. Finally, in this work we considered is constant Young’s modulus of elasticity, even
though a dependency on the heart cycle (systole or diastole) has been observed [31]. The effect of
the Young’s modulus of elasticity in the proposed RFA model is currently under investigation.
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