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SUMMARY

We present novel numerical methods for Polyline-to-Point-Cloud Registration and their application to
patient-specific modeling of deployed coronary artery stents from image data. Patient-specific coronary
stent reconstruction is an important challenge in computational hemodynamics and relevant to the design
and improvement of the prostheses. It is an invaluable tool in large-scale clinical trials that computationally
investigate the effect of new generations of stents on hemodynamics and eventually tissue remodeling. Given
a point cloud of strut positions, which can be extracted from images, our stent reconstruction method aims
at finding a geometrical transformation that aligns a model of the undeployed stent to the point cloud.
Mathematically, we describe the undeployed stent as a polyline, which is a piecewise linear object defined
by its vertices and edges. We formulate the nonlinear registration as an optimization problem whose objective
function consists of a similarity measure, quantifying the distance between the polyline and the point cloud,
and a regularization functional, penalizing undesired transformations. Using projections of points onto the
polyline structure, we derive novel distance measures. Our formulation supports most commonly used
transformation models including very flexible nonlinear deformations. We also propose two regularization
approaches ensuring the smoothness of the estimated nonlinear transformation. We demonstrate the potential
of our methods using an academic 2D example and a real-life 3D bioabsorbable stent reconstruction
problem. Our results show that the registration problem can be solved to sufficient accuracy within seconds
using only a few number of Gauss-Newton iterations.
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1. INTRODUCTION

In this paper, we present novel numerical methods for the registration of polylines and point clouds
algorithms and their use to generate patient-specific models of coronary artery stents. To this end, we
design novel distance and regularization functions to be used in the flexible registration framework
FAIR [1]. Our method computes a geometrical transformation that aligns a polyline, i.e., a piecewise
linear object, to a point cloud.

One of the driving motivations of this work is to improve patient-specific computational modeling
of stented coronary arteries. Despite an active debate about the choice of the most appropriate
therapy, Percutaneous Coronary Interventions (PCI) have become increasingly popular due to
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limited invasiveness. PCI implies the deployment of a prosthesis (called stent) [2], generally made
of biocompatible materials with a metallic core, to open a coronary artery with severe occlusions.
Next generation stents feature new bioabsorbable materials (generally absorbed within three years)
and are targeted for acute pathologies in young patients [3]. The different mechanical properties
of those materials require thicker struts to handle the pressure during and after the deployment.
Thicker struts may interfere with the blood flow and eventually trigger biological processes and
tissue remodeling with negative outcomes for the patient (reocclusion) [4, 5, 6, 7]. This is why an
accurate assessment of the effect of the struts on the hemodynamics in patient-specific scenarios
is of utmost importance. To this end the reconstruction of geometries for extensive fluid dynamics
simulations based on clinical data and images is needed [8, 9, 10, 11, 12, 13, 14, 15]. An excellent
overview of computational modeling of stented arteries, and comparison of imaging modalities used
in this application is given in [16].

Computational Fluid Dynamics (CFD) is the tool of choice for this kind of investigations [17, 18,
19, 20, 21, 22], as it allows personalized quantitative analysis with a modest invasiveness for the
patient. In particular, we target a fine analysis of the Wall Shear Stress (WSS - i.e. the tangential
component of the normal stress) induced by the blood flow on the struts and the tissue [14]. The
reliability of the results strongly depends on a precise patient-specific reconstruction of the stent
and the lumen after deployment. Developing efficient (i.e., automatic or semi-automatic) methods
for stent reconstruction is critical, for example, when processing a statistically significant number
of patient datasets in large-scale clinical studies aiming at quantifying the effectiveness of the
therapy [14, 23]. The accuracy and the efficiency of the reconstruction are challenged by the
complexity of the sequence of steps and the large variability of cases in diverse patient-specific
settings. We give a short description of the procedure currently developed in the Emory University
Hospital in Sect. 6.1.

To properly reduce patient variability and to improve the automation procedure, it is critical to
guide the reconstruction with prior information available from the design of the stent. In fact, there
are some practical limitations on patient-specific data. For instance, OCT images cannot resolve the
entire vascular section (see Fig. 6) due to the shadow of the catheter. Therefore, a circular (section-
dependent) sector is missing in each image. To compensate the missing data, the information
provided by the design of the stent provide a ground truth to guide the patient-specific reconstruction
in an accurate and highly automated way. This requires to identify a map between the undeployed
and the deployed geometries so that the missing information in the latter can be recovered by the
mapping of the former one.

This map can be calculated by a virtual deployment, i.e. a simulated operation mimicking the act
of deployment. This can be done by a series of Boolean operations [24] or by mechanical simulation
of the expansion [25, 26, 27]. While these approaches have great potential, the lack of knowledge
of the mechanical properties of the wall to be used in the virtual deployment may be critical.

In this work, we privilege a more data-driven approach, related to registration procedures.
According to a similar guideline, in [28] the OCT-based stent-reconstruction is guided by an
educated combination of a priori information on the stent design. In fact, the undeployed stent
is registered to the point cloud of strut locations using a non-rigid point-to-point registration
procedure [29]. The procedure is tested on one case of a metallic stent in a porcine artery.

The key contributions of the present paper are to represent the stent efficiently as a polyline
(defined in [30] as piecewise linear objects consisting of vertices and edges) and develop new
numerical methods for registering polylines to point clouds. In the context of stent reconstruction,
we assume that the elements of the point cloud (e.g., strut positions detected in OCT images)
represent post-deployment points of the polyline (e.g., model of the undeployed stent), but the
correspondence is unknown. Our goal is to establish the map by geometrically deforming the
polyline object such that its distance to the point cloud is minimized. We exploit the polyline
structure to compute the correspondence between the polyline and a given point, by projection
onto the edges of the polyline. This assignment is (almost everywhere) differentiable with respect to
the deformation and derivatives are easy to compute, thus, enabling fast optimization. Registration
is known to be a challenging and ill-posed inverse problem and tailored approaches have been
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POLYLINE-TO-POINT-CLOUD REGISTRATION FOR STENT RECONSTRUCTION 3

developed for registering images [31, 32, 33, 1, 34], curves [35, 36] surfaces [37, 38, 39], point
sets [40, 41], or polyline objects [30].

We present two novel regularization approaches tailored to the nonlinear polyline-to-point-
cloud registration problem. As in most applications of registration, regularization is of paramount
importance to address the ill-posedness and under-determinedness of the problem; see also [42] for a
discussion on ill-posedness of the related image registration problem. Our first approach discretizes
the transformation directly on the vertices of the polyline object. In this way, very complex
deformations can be achieved, but tailored regularization is required. We propose two regularizers
that enforce smoothness and favor length-preserving transformations in order to improve robustness
against noise and enforce plausible solutions. This formulation often leads to fewer degrees of
freedom that need to be optimized. We demonstrate that combining these two ideas allows highly
accurate nonlinear registration in the presence of noisy data. Our second approach collocates the
transformation on a regular grid and deform the stent indirectly by interpolation. Regularity of
the transformation can be enforced by choosing a relatively coarse grid. Additionally, we propose
using state-of-the-art regularization techniques, for example, based on nonlinear elasticity [43, 34]
to guarantee invertibility of the computed transformation.

The paper is organized as follows. In Section 2 we mathematically define the polyline object
as an undirected graph, introduce transformations, distance measures, and derive the optimization
problem. Section 3 presents to novel regularization techniques for nonlinear polyline registration.
The potential of our method is demonstrated with numerical examples in Section 5. A brief summary
of our pipeline used to reconstruct 3D stents for CFD analysis and the contribution of the proposed
method in this context are provided in Section 6. Finally, an extensive discussion of the main features
and limitations of our methodology with comparison with the existing literature is given in Section 7,
together with some conclusive statements.

2. MATHEMATICAL FORMULATION

In this section, we provide a general mathematical formulation of the polyline registration problem.
We define polylines, their transformations, the distance of a point to the polyline, the optimization
problem, its solution through the Gauss-Newton method, and compute the derivative of the distance
with respect to the transformation applied to the polyline object. We finally discuss heuristic
methods for outlier rejection.

2.1. Polylines and Point Clouds

Following [30] we define a polyline as an object that consists of a number line segments, described
by vertices and edges. Let d denote the spatial dimension (here d ∈ {2, 3}) and let nv be th number
of vertices of the polyline object. Then we rearrange the vertices v1, v2, . . . , vnv

∈ Rd into a vector
of length d · nv, by listing in order the elements in each of the d components,

v = (v
(1)
1 , v

(1)
2 , . . . , v(1)

nv
, . . . , v

(d)
1 , v

(d)
2 , . . . , v(d)

nv
) ∈ Rd·nv ,

where v(i) denotes the ith component of a vector. Denoting the number of edges of the polyline by
ne, the edge connectivity can be represented by the matrix

E = (e1, e2, . . . , ene) ∈ N2×ne ,

where ei ∈ N2 contains the indices of the two vertices defining the ith line segment, for i =
1, . . . , ne. Since all edges are bidirectional, we represent a polyline object as an undirected graph
G = (v,E).

Our goal is to geometrically transform the polyline G, in order to minimize its distance to the
given point cloud

p = (p
(1)
1 , p

(1)
2 , . . . , p(1)

np
, . . . , p

(d)
1 , p

(d)
2 , . . . , p(d)

np
) ∈ Rd·np .
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2.2. Transformed Polylines

For a given transformation y : Rd ×Rd we define the deformed polyline object by

y(G) = G((y(v1), y(v2), . . . , y(vnv
)),E). (1)

In other words, the polyline is transformed by shifting its vertices and keeping the edge connectivity
fixed. Therefore, we collocate y on the vertices, and denote the discrete transformation by

y = (y(v1)(1), y(v2)(1), . . . , y(vnv
)(1), . . . , y(v1)(d), y(v2)(d), . . . , y(vnv

)(d)) ∈ Rd·nv .

In the notion of [1] this transformation model can be categorized as non-parametric in the sense that
the dimension of the discrete transformation depends on the number of vertices.

On the other hand, parametric transformations are characterized by a parameter w whose size is
independent of the number of vertices. We denote this dependency by y(w). Classical examples for
parametric transformations are rigid transformations, which consists of rotation and translation,
or affine transformations, which consists of shearing and scaling; see [1, Ch.4]. Parametric
transformations can also model nonlinear deformations, for example, using Thin Plate Splines
(TPS) [44] or a piecewise linear transformation model discretized on a regular grid surrounding
the polyline. The latter, rather novel, concept will be discussed in more detail in Sec. 3.2.

2.3. Distance Measures

In order to measure the distance between the point cloud p and the transformed polyline y(G), we
need to find the closest point on y(G), denoted by p̂i, for each point pi where i = 1, 2, . . . , np. Note
that the corresponding point does not necessarily need to be a vertex but in general is located on an
edge of G. The projection of the ith point, pi, onto the jth edge of the transformed polyline is given
by

qij(y) = yE1,j + tij(y)(yE2,j − yE1,j ),

where the Barycentric coordinate of the ith point with respect to the jth edge, tij , is computed by

tij(y) = min(1,max(0, cij(y))) with cij(y) =
(yE2,j − yE1,j )>(pi − yE1,j )

‖yE2,j
− yE1,j

‖2 . (2)

For each pi, we denote the corresponding point by

qi(y) := qik(y), where k ∈ argminj∈{1,2,...,ne}‖pi − qij(y)‖. (3)

Note that, depending on the topology of the polyline object, the optimization problem (3) does not
necessarily have a unique solution. In principle, finding the corresponding point to all np points in
the point cloud requires performing np · ne projections and choosing one with minimal distance.
In practice, significant computational savings can be realized, for example, by first finding a small
number of closest vertices to pi and then testing only edges starting or ending in these vertices.

There are several options for measuring the distance between the point cloud and the polyline. As
a simple but effective option, we consider the sum-of-squared-difference (SSD) function

DSSD(y,p) =
1

2
‖q(y)− p‖2, (4)

where q(y) is a vector containing the projections of the points in p computed as in (3). To improve
robustness against outliers, we also consider the (smoothed) Euclidean distance

DEuclid(y,p) = e>

√√√√
d∑

k=1

(Qk(q(y)− p))
2

+ β. (5)

Here, Qk ∈ Rnp×d·np extracts the entries associated with the kth coordinate, e ∈ Rnp is a vector
of all ones, squaring and square root are applied component-wise, and β > 0 is a conditioning
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POLYLINE-TO-POINT-CLOUD REGISTRATION FOR STENT RECONSTRUCTION 5

parameter that controls the smoothness of the distance function. Note that for β = 0 the standard
Euclidean distance, which is non-differentiable at the origin, is obtained.

Both distance measures are, in general, non-convex with respect to the transformed polyline and
thus local minima can be observed. For example, the distance measure may have several local
minima when rotating the polyline around its main axis; see Figure 7.

2.4. Numerical Optimization

Given a polyline G and a point cloud p we estimate a transformation y establishing correspondence
by solving the optimization problem

min
w

D(y(w),p) + αS(w), (6)

whereD is a distance measure (e.g.,DSSD orDEuclid), S is a regularizer (or smoother), and α > 0 is
a parameter balancing between minimizing the distance and the smoothness of the transformation.
Choosing the regularization parameter for nonlinear inverse problem such as the one at hand is a
challenging topic. In the absence of a ground truth solution, we use the L-curve method described
in [45] as an appropriate heuristic. For generality, we describe the parametric transformation model
here. The non-parametric case can be obtained by setting y(w) = w.

We use the implementation of the Gauss-Newton method and the default parameters for stopping
provided in FAIR; see also [1]. To this end, we compute the gradient and approximated Hessian of
the objective function in (6). Derivatives of the regularization will be discussed in Section 3.1. For
the distance measures introduced above we apply chain rule to obtain

dwD(y(w),p) = dqD(q,p) dyq(y(w)) dwy(w),

where the second term, i.e., derivative of the corresponding point, is obtained in Section 2.5 and
the derivative of the third term depends on the transformation model and is, for the most common
choices, computed in [1]. The derivative of the first term for DSSD in (4) is

dqD
SSD(q(y(w)),p) = q(y(w))− p.

The Hessian of the objective function is computed only approximately to ensure positive semi-
definiteness and for SSD reads

dwwD(y(w),p) ≈ HSSD(y(w),p) = (dwy(w))> (dyq(y(w)))> dyq(y(w)) dwy(w).

Derivatives for DEuclid are slightly more complicated but can be computed similarly; see, for
example, using [46, p.84f].

In each iteration of Gauss-Newton a linear system involving the gradient and the approximated
Hessian needs to be solved to find a search direction. The size of the system depends on the number
of parameters, i.e., number of transformation parameters or the number of vertices for the parametric
or non-parametric transformation model, respectively. In the experiments considered in this work the
size of the system is relatively small and we use Cholesky factorization. For large-scale problems,
iterative methods such as Preconditioned Conjugate Gradient (PCG) schemes can be used; see [47].
Having obtained a search direction, a backtracked Armijo linesearch is performed [48].

2.5. Derivatives of Correspondence

An advantage of exploiting the polyline structure over common point-to-point distances is that
the projection onto line segments is differentiable unless tij ∈ {0, 1}. Thus, qi(y) can (almost
everywhere) be differentiated with respect to the transformed vertices. For ease of presentation,
we consider the non-parametric transformation model in which each vertex is transformed directly.
Derivatives for the parametric case can be computed easily using the chain rule.

For ease of presentation, we introduce the matrices Pj ,P
1
j ,P

2
j ∈ Rd×d·nv that extract the jth

edge and its associated vertices

Pjy = (P2
j −P1

j )y, where Pk
jy = yEk,j

, for k = 1, 2. (7)
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Using the projection matrices, the projection of the ith point onto the jth edge can be written as

p̂j(y) = P1
jy + tij(v)Pjy.

The derivative of the projection with respect to the positions of the vertices can be computed by
applying product rule

∇yp̂i(y) = P1
j + tij(y) Pj + Pjy dytij(y)>.

If tij(y) ∈ {0, 1} the Barycentric coordinate is non-differentiable due to the min and max operations
in (2) and we set dytij(y) = 0. Otherwise we apply the quotient rule, and obtain

dytij(y) =
‖Pjy‖2(P>j pj −PjP

1
jy −P1>

j Pjy)− 2y>P>j (pi −P1
jy)P>j Pjy

‖(P2
j −P1

j )y‖4 .

2.6. Outlier Rejection

The accuracy of the registration depends on correct identification of the corresponding point. In (3)
the closest point is determined. However, these two points might not correspond in the presence
of severe nonlinear motion, measurement noise, or outliers and wrong assignments may globally
reduce registration accuracy. Therefore, we classify a pair of points as outlier if the distance between
the points is significantly greater than the distance between the other pairs and exclude this pair when
computing the distance measure. We follow [49] and eliminate the term associated with pi and qi if

D(qi, pi) > cσ, (8)

where σ > 0 denotes the standard deviation of the residuals, and c > 0 a coefficient that is chosen
empirically.

3. REGULARIZING NONLINEAR DEFORMATIONS

As noted earlier, minimizing the distance term in (6) alone generally is an underdetermined and,
thus, ill-posed problem. To illustrate this, assume the non-parametric transformation model and
consider a vertex such that no point in the point cloud is projected onto one of its adjacent edges.
Then, a small displacement of this vertex into any direction would not affect the value of the distance
measure. Thus, there are infinitely many solutions. This problem is common in registration and
typically addressed using regularization. In this section, we present two approaches to regularization
of nonlinear deformations of polylines. First, we propose a smoothness and length regularizer for
non-parametric registration of polylines. Second, we describe a piece-wise linear transformation
model that allows using established regularizers from image registration [1], for example, recently
proposed techniques based on nonlinear elasticity [43].

3.1. Regularizing Nonparametric Transformations

Nonparametric transformations discretize the transformation y on the vertices of the polyline. Thus,
the displacement applied to two different vertices is independent of one another; see (1). This yields
a nv · d dimensional optimization problem in (6). It is possible to construct a case in which the
distance is invariant to the position of a certain vertex. To overcome the resulting ill-posednesss, we
introduce two different forms of regularization.

First we define a finite difference matrix D ∈ Rd·ne×d·nv for vertex functions such that

Dy =
(
y

(1)
E1,1
− y(1)

E2,1
, y

(1)
E1,2
− y(1)

E2,2
, . . . , y

(1)
E1,ne

− y(1)
E2,ne

, . . . ,

y
(d)
E1,1
− y(d)

E2,1
, y

(d)
E1,2
− y(d)

E2,2
, . . . , y

(d)
E1,ne

− y(d)
E2,ne

)
.
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POLYLINE-TO-POINT-CLOUD REGISTRATION FOR STENT RECONSTRUCTION 7

To enforce smoothness, we consider diffusion regularizer

Sdiff(y) =
1

2
‖D(y − v)‖2.

The gradient and Hessian of the regularizer are

dyS
diff(y) = D>D(y − v) and dyyS

diff = D>D.

The name of the regularizer is also motivated by the interpretation of its Hessian as the (vector
valued) graph Laplacian of G [50].

To allow for large nonlinear transformations, we consider the non-quadratic length regularizer

Slength(y) =
1

2
‖rlength(y)‖2, where rlength(y) = I

Dy2

Dv2
− 1.

Here the square root and division are computed component-wise, and I ∈ Rne×d·ne extract entries
belonging to the same point and sum them up, such that

IDy =
(
(y

(1)
E1,1
− y(1)

E2,1
) + · · ·+ (y

(d)
E1,1
− y(d)

E2,1
), . . . , (y

(1)
E1,ne

− y(1)
E2,ne

) + · · ·+ (y
(d)
E1,ne

− y(d)
E2,ne

)
)
.

For this regularizer the gradient and approximated Hessian are

dyS
length(y) = rlength(y)>dyr

length(y) and dyyS
length ≈ dyrlength(y)>dyr

length(y),

where the gradient of the residual is given by

dyr
length(y) = 2

I

Dv2
diag(Dv)D,

where diag(Dv) is a diagonal matrix with entries in Dv on its main diagonal. This regularizer
penalizes changes in edge length due to the transformation and is, thus, invariant against rigid
transformations. Thus, large translations and rotations are attainable.

Combining both regularizers above, we obtain a regularizer for non-parametric deformations of
the polyline object

Snp(y) = α
(
λSdiff(y) + µSlength(y)

)
. (9)

The proposed regularizers both enforce smoothness of the transformation and are key to drive the
registration in regions with sparse or noisy data. However, it is important to note that they do not
ensure invertibility of the transformation. In practice, edges of the polyline might cross each other
after applying the transformation and judicious choice of the regularization parameter is required.

3.2. Hyperelastic Polyline-to-Point-Cloud Registration

We now describe our novel approach that allows large deformations with guaranteed invertibility.
It uses a piecewise linear transformation model and the numerical implementation of a hyperelastic
regularization energy suggested in [43, 34].

The key idea is to surround the polyline object by a rectangular grid of the domain Ω ⊂ Rd

on which the transformation parameters, denoted by w, are collocated as described in [43, 34].
In short, each grid cell is divided into four triangles (for d = 2) or 24 tetrahedra (d = 3) and the
transformation is discretized using piecewise linear and globally continuous finite elements. On this
class of functions, we can compute the exact value of the hyperelastic regularizer

Shyper(y) =

∫

Ω

α1

2
‖y(x)− x‖2 + ψ(cof∇y) + ϕ(det∇y)dx,

where the penalty functions ψ and ϕ are convex and chosen as, for example, in [43]. The volume
penalty, ϕ, ensures invertibility of the optimal transformation as it satisfies ϕ(1) = 0, ϕ(z) =∞ for
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Figure 1. Hyperelastic registration of a 2D polyline (red) to a point cloud (black squares). The polyline is
surrounded by a regular mesh (blue) that is subsequently deformed to minimize the distance between the
polyline and the point cloud. The triangular finite element mesh is not displayed for the sake of readiness of

the picture.

3.2. Hyperelastic Polyline-to-Point-Cloud Registration

We now describe a novel approach that allows large deformations with guaranteed invertibility. It
uses a piecewise linear transformation model and the numerical implementation of a hyperelastic
regularization energy suggested in [38? ].

The key idea is to surround the polyline object by a rectangular grid of the domain ⌦ ⇢ Rd

on which the transformation parameters, denoted by w, are collocated as described in [38? ]. In
short, each grid cell is divided into four triangles (for d = 2) or 24 tetrahedra (d = 3) and the
transformation is discretized using piecewise linear and globally continuous finite elements. On
this class of functions, we can compute the exact value of the hyperelastic regularizer

Shyper(y) =

Z

⌦

↵1

2
ky(x) � xk2 +  (cofry) + '(detry)dx,

where the penalty functions  and ' are convex and chosen as, for example, in [38]. The volume
penalty, ', ensures invertibility of the optimal transformation as it satisfies '(1) = 0, '(z) = 1 for
z  0, and '(z) ! 1 for z ! 0+ and z ! 1. This choice ensures that the transformation keeps
invertible and orientation preserving; see [38? ] for details.

Transforming the polyline requires interpolation from the nodes of the finite element (triangular)
mesh to the vertices of the polyline, written compactly as

y(w) = A(v)w,

where A is an (vector field) interpolation matrix, that depends only on the position of the vertices
before transformation and can be built once. Overall, the optimization problem becomes

min
w

D(G(A(v)w),p) + ↵Shyper(w). (10)

An example for hyperelastic polyline registration is given in Figure 1.
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surrounded by a regular mesh (blue) that is subsequently deformed to minimize the distance between the
polyline and the point cloud. The triangular finite element mesh is not displayed for the sake of readiness of

the picture.

z ≤ 0, and ϕ(z)→∞ for z → 0+ and z →∞. This choice ensures that the transformation keeps
invertible and orientation preserving; see [43, 34] for details.

Transforming the polyline requires interpolation from the nodes of the finite element (triangular)
mesh to the vertices of the polyline, written compactly as

y(w) = A(v)w,

where A is an (vector field) interpolation matrix, that depends only on the position of the vertices
before transformation and can be built once. Overall, the optimization problem becomes

min
w

D(G(A(v)w),p) + αShyper(w). (10)

An example for hyperelastic polyline registration is given in Figure 1.

4. PROCESSING PIPELINE AND IMPLEMENTATION

In this section we provide implementation details for the polyline-to-point-cloud registration and
provide some details about its implementation.

4.1. Registration Pipeline

To register a polyline to a given point cloud, we follow a registration pipeline consisting of the
following four steps.

1. Rigid registration: To account for translations and rotations between both data sets we perform
a registration using the rigid transformation model described in [1]. To reduce the risk of
being trapped in a local minimum, after an initial registration, we estimate the main axis
of the polyline object and rotate it accordingly. From each starting point constructed in this
fashion, we perform up to 10 additional Gauss-Newton iterations. Finally, the solution with
the smallest distance is selected.

2. Affine registration: To account for scaling and shearing, additional degrees of freedom
are added to the transformation model by considering affine linear transformations. The
optimization is initialized using the coefficients of the previous step. Finally, the coordinates

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2016)
Prepared using cnmauth.cls DOI: 10.1002/cnm

This article is protected by copyright. All rights reserved.



POLYLINE-TO-POINT-CLOUD REGISTRATION FOR STENT RECONSTRUCTION 9

of the polyline object are updated by applying the affine transformation. In our experience,
performing a rigid registration before affinely registering the data is beneficial to obtain
reliable correspondences.

3. Hyperelastic registration: The affinely registered polyline is surrounded by a regular
rectangular grid on which a hyperelastic transformation is discretized using piecewise
linear, globally continuous finite elements. The polyline is transformed by evaluating the
transformation on its edges. We typically use a relative coarse mesh to add additional
regularization. Based on our experience this step can be skipped in the absence of large
nonlinearities in the transformation, e.g., compression and expansion.

4. Non-parametric polyline registration: To finalize small-scale local transformations that have
not been addressed in the previous steps. The strength of deformation in this step is controlled
by the parameters in the regularizer, addressed in (9).

4.2. Implementation

We perform the experiments using MATLAB R2016a, with a 2.7GHz dual-core Intel Core i5. Our
framework is implemented as an extension of the image registration framework FAIR [1]. FAIR
is primarily designed for registration of images, however, it provides valuable tools that can be
used for other types of data, e.g., transformation models, optimization routines, and hyperelastic
regularization. Our approach is implemented as an add-on to FAIR that uses these existing methods
where possible. Since FAIR has no built in support for polylines and point clouds, we implement
specifically the distance functions described in Section 2.3, regularization methods described in
Section 3.1, and their derivatives.

5. NUMERICAL EXPERIMENTS

We outline the potential of our method in several numerical experiments. In Section 5.1 we provide
an illustrative example to show the differenced of polyline registration to more general point cloud
registration approaches. In Section 5.2 we demonstrate the robustness of the proposed registration
pipeline with respect to noise and outliers using a 2D synthetic phantom that resembles the stent
structure. In Section 5.3 we illustrate the non-convexity of the problem and the effectiveness of the
L-curve method for selecting a regularization parameter using a realistic 3D software phantom. In
the subsequent Section, we present results for bioabsorbable stent reconstruction for two patients in
Section 6.

5.1. Illustrating the Difference to Point-to-Point Registration

We illustrate the difference of Polyline-to-Point-Cloud and Point-to-Point registration using a
synthetic 2D data set. The data set, illustrated in Figure 2, consists of a parallelogram and an affinely
transformed version and is designed to clearly show differences polyline and more general point
cloud registration approaches. Here, we use the Coherent Point Drift (CPD) algorithm [29], which
addresses registration of two point sets as a probability density estimation problem.

A significant difference between both approaches is the representation of the template object.
Our approach describes the template parallelogram as a polyline with four vertices and edges
(i.e., nv = ne = 4) and the reference object using randomly chosen points on the edges. Here, we
randomly choose 10 points per edge yielding np = 40 points. In the CPD approach, the template
object needs to be represented using a point cloud. We test two different representations. First, we
represent the parallelogram by its four corners. Second, we add the midpoints of the edges. The
choice of the number of points used to represent the template data stems from a trade-off between
accuracy and efficiency.
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Figure 2. Comparison of Polyline and Point Cloud Registration approaches using a synthetic 2D data set
consisting of a parallelogram (black) and its affinely transformed version (red). Left column: polyline
setup (top) and registration results (bottom) where template (red) is represented using the four edges of
the rectangle. Center column: CPD setup (top) and registration results (bottom) using only four corners
to represent template object. Right column: CPD setup (top) and registration results (bottom) after adding

midpoints. In the CPD results we use dashed lines to help visualize the polyline structure of the object.

We compare the proposed polyline registration and CPD using an affine transformation model; see
Figure 2 for results. As to be expected the accuracy of the CPD algorithm depends crucially on the
number of points used to represent the template object. We observe a larger mismatch between the
transformed template and the reference parallelogram when representing the template object using
its four corners and a smaller misfit when adding the midpoints. Preferable results are obtained by
the proposed method as skeletal structure of the data is represented more efficiently.

Clearly the differences between both approaches will be reduced when adding more points to the
representation of the template object in CPD or other point cloud registration approaches, however,
this goes hand in hand with increased computational costs.

5.2. 2D Stent-resembling Polyline

We validate our approach for a 2D dataset consisting of a polyline and a point cloud generated after
applying a known nonlinear deformation. This example is designed to mimic the stent reconstruction
problem in 3D addressed in Section 6. To generate the data set, we first define a polyline with
vertices and edges (here, nv = 46, ne = 50) and collocate a nonlinear parametric transformation
on a rectangular grid surrounding the polyline. We use cubic B-splines to parameterize the
transformation and adjust the weights such that the deformation introduces translation, compression
and distortion, which are expected for the real data showing a stent implanted into patient’s coronary
artery; see Figure 3. We then interpolate the transformation on the vertices of the polyline to get a
deformed polyline and sample points along its edges (here np = 200). To account for inaccuracies
of the point classification, we add independent and identically distributed Gaussian white noise.

Results of the four-step pipeline described in Section 4.1 are visualized in Figure 3. For this data
set, the hyperelastic registration step is performed using a rectangular grid consisting of 10 ⇥ 4
cells that surrounds the affinely pre-registered stent. The number of cells is chosen rather small to
achieve additional regularization. We choose empirically ↵ = 0.8 in (10), and in (8) let c ! 1 for
rigid, affine, and hyperelastic registrations, to ensure overall alignment of the polyline with the data.
Finally, we perform a non-parametric registration with 92 (2 ⇥ nv) degrees of freedom. We reject
outliers with c = 2, and to regularize the problem, we let ↵ = 0.5, � = 0.8, µ = 2 in (9). As shown in
the bottom row of Figure 3 the Gauss-Newton method converges within a few number of iterations.
Computation time is respectively 0.43, 0.50, 0.54, and 0.32 seconds for rigid, affine, hyperelastic,
and non-parametric registrations.

We also compare the robustness of the distance measures, DSSD and DEuclid, and different sets of
regularization parameters to outliers. Fixing the previous dataset (where np = 200), we add a set of
outliers drawn from a uniform distribution with x values taken from [�2.5, 2.5], and y values from
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We compare the proposed polyline registration and CPD using an affine transformation model; see
Figure 2 for results. As to be expected the accuracy of the CPD algorithm depends crucially on the
number of points used to represent the template object. We observe a larger mismatch between the
transformed template and the reference parallelogram when representing the template object using
its four corners and a smaller misfit when adding the midpoints. Preferable results are obtained by
the proposed method as skeletal structure of the data is represented more efficiently.

Clearly the differences between both approaches will be reduced when adding more points to the
representation of the template object in CPD or other point cloud registration approaches, however,
this goes hand in hand with increased computational costs.

5.2. 2D Stent-resembling Polyline

We validate our approach for a 2D dataset consisting of a polyline and a point cloud generated after
applying a known nonlinear deformation. This example is designed to mimic the stent reconstruction
problem in 3D addressed in Section 6. To generate the data set, we first define a polyline with
vertices and edges (here, nv = 46, ne = 50) and collocate a nonlinear parametric transformation
on a rectangular grid surrounding the polyline. We use cubic B-splines to parameterize the
transformation and adjust the weights such that the deformation introduces translation, compression
and distortion, which are expected for the real data showing a stent implanted into patient’s coronary
artery; see Figure 3. We then interpolate the transformation on the vertices of the polyline to get a
deformed polyline and sample points along its edges (here np = 200). To account for inaccuracies
of the point classification, we add independent and identically distributed Gaussian white noise.

Results of the four-step pipeline described in Section 4.1 are visualized in Figure 3. For this data
set, the hyperelastic registration step is performed using a rectangular grid consisting of 10× 4
cells that surrounds the affinely pre-registered stent. The number of cells is chosen rather small to
achieve additional regularization. We choose empirically α = 0.8 in (10), and in (8) let c→∞ for
rigid, affine, and hyperelastic registrations, to ensure overall alignment of the polyline with the data.
Finally, we perform a non-parametric registration with 92 (2× nv) degrees of freedom. We reject
outliers with c = 2, and to regularize the problem, we let α = 0.5, λ = 0.8, µ = 2 in (9). As shown in
the bottom row of Figure 3 the Gauss-Newton method converges within a few number of iterations.
Computation time is respectively 0.43, 0.50, 0.54, and 0.32 seconds for rigid, affine, hyperelastic,
and non-parametric registrations.

We also compare the robustness of the distance measures,DSSD andDEuclid, and different sets of
regularization parameters to outliers. Fixing the previous dataset (where np = 200), we add a set of
outliers drawn from a uniform distribution with x values taken from [−2.5, 2.5], and y values from
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Figure 3. Results of four-step pipeline for a synthetic 2D example with ground truth. Here the dataset is
obtained from nonlinear deformation of the polyline with white noise, where np = 200. Top row shows
registration results at all intermediate steps. The SSD function is used as distance measure to drive the
registration and the error of the computed solution with respect to the ground truth is reported. Bottom row
shows the convergence of the method in terms of the objective function value (left) and norm of the gradient

(right), respectively.

[�1, 11]. The number of outliers is increased from 0 and 100 in increments of 10 and registration
is performed for each experiment in both distance terms. For the smoothed Euclidean distance we
use � = 10�2. We experimentally tune the regularization parameter ↵ in (9), and to simplify the
search, we fix the ratio between the diffusion and the length term as � = 0.8, µ = 2 and perform the
registration for ↵ taken from 21 logarithmically-spaced points between 10�2 and 101. After each
registration we compute the error between the estimated transformation and the ground truth, which
is known in this case. We repeat each experiment a hundred times and observe the relationship
between optimal ↵ values for different numbers of outliers, as well as their corresponding error
to the ground truth. As expected and shown in Figure 4, the smoothed Euclidean distance is more
robust against outliers and yields better reconstructions as the number of outliers increases.

5.3. 3D Phantom Registration

In this example, we illustrate the non-convexity of the optimization problem and the effectiveness of
our strategy for choosing the regularization parameter using a synthetic 3D stent phantom. The data
set is derived from a realistic stent geometry and contains the different components of the stents (see
the next Section). Here we consider a polyline with five rings, and to simulate the patient-specific
data, we apply a 3D linear spline transformation that introduces compression and distortion of the
stent. A point cloud is obtained by sampling the deformed model and adding Gaussian white noise.

The initial and deformed polyline and the generated test data are shown in Figure 5. Here the
dataset consists of np = 864 point and the polyline representing a five ring stent consists of nv = 276
vertices and ne = 288 edges. Results of the three-step pipeline using rigid, affine, non-parametric
registration, described in Section 4.1 can be found in Figure 5. We use DEuclid as a distance measure
due to its robustness where the conditioning parameter, �, is empirically set as 0.5. We report errors
of the transformed template with respect to the ground truth, i.e., the deformed polyline.
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[−1, 11]. The number of outliers is increased from 0 and 100 in increments of 10 and registration
is performed for each experiment in both distance terms. For the smoothed Euclidean distance we
use β = 10−2. We experimentally tune the regularization parameter α in (9), and to simplify the
search, we fix the ratio between the diffusion and the length term as λ = 0.8, µ = 2 and perform the
registration for α taken from 21 logarithmically-spaced points between 10−2 and 101. After each
registration we compute the error between the estimated transformation and the ground truth, which
is known in this case. We repeat each experiment a hundred times and observe the relationship
between optimal α values for different numbers of outliers, as well as their corresponding error
to the ground truth. As expected and shown in Figure 4, the smoothed Euclidean distance is more
robust against outliers and yields better reconstructions as the number of outliers increases.

5.3. 3D Phantom Registration

In this example, we illustrate the non-convexity of the optimization problem and the effectiveness of
our strategy for choosing the regularization parameter using a synthetic 3D stent phantom. The data
set is derived from a realistic stent geometry and contains the different components of the stents (see
the next Section). Here we consider a polyline with five rings, and to simulate the patient-specific
data, we apply a 3D linear spline transformation that introduces compression and distortion of the
stent. A point cloud is obtained by sampling the deformed model and adding Gaussian white noise.

The initial and deformed polyline and the generated test data are shown in Figure 5. Here the
dataset consists of np = 864 point and the polyline representing a five ring stent consists of nv = 276
vertices and ne = 288 edges. Results of the three-step pipeline using rigid, affine, non-parametric
registration, described in Section 4.1 can be found in Figure 5. We useDEuclid as a distance measure
due to its robustness where the conditioning parameter, β, is empirically set as 0.5. We report errors
of the transformed template with respect to the ground truth, i.e., the deformed polyline.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2016)
Prepared using cnmauth.cls DOI: 10.1002/cnm

This article is protected by copyright. All rights reserved.



12 C. Y. LIN ET AL.

0 20 40 60 80 100
0.01
0.03
0.08
0.22
0.63
1.78
5.01

number of outliers

↵
va

lu
e

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

number of outliers

er
ro

r
w

it
h

op
ti
m

al
↵

DSSD

DEuclid with � =0.01

Figure 5: Optimal ↵ value and corresponding error to the ground truth in the 2D example, when
di↵erent number of outliers are tested. Results using SSD and smoothed Euclidean with � = 10�2

as distance measures are shown. The experiment is run a hundred times, with ↵ is taken from a
sample of 21 logarithmically-spaced values from 10�2 to 10 (plotted here in log scale), and outliers
from 10 equally-spaced points in the interval [0, 100]. The distribution of ↵ and error are illustrated
here with a box plot, data shown are within 2.7 standard deviation. To observe the trend, the mean
value in each case are connected. On the left, optimal ↵ is in general greater for smooth Euclidean;
on the right, error increases as the number of outliers increases, and smooth Euclidean distance is
observed with smaller errors in cases with more outliers (here greater than 30).

5 Summary and Conclusion

In this paper, we present new methods for nonlinear registration of a polyline and a point cloud also
considered in [3]. One key idea is to exploit the polyline structure to compute the correspondence
between the polyline and a given point by projection onto the edges of the polyline. This assign-
ment is (almost everywhere) di↵erentiable with respect to the deformation and derivatives are easy
to compute, thus enabling fast optimization. In contrast to the point-to-point registration in [12],
no extra function evaluation or nearest-neighbor searches are necessary for computing the deriva-
tives. The di↵erentiability is also key advantage over commonly used point-to-point registration
algorithms based on ICP.

We formulate the registration problem as an unconstrained optimization problem that supports
the most commonly used distance measures and transformation models. We provide two methods
for regularizing nonlinear deformations. Maximal flexibility is obtained using a non-parametric
transformation model, which directly transforms the vertices of the polyline. In this case, we derive
a regularizer ensuring smoothness and penalizing length-changes caused by the transformation. It is
important to note, that in this approach invertibility of the transformation is not guaranteed. Thus,
edges of the polyline might intersect. To avoid this, we also suggest a more restrictive method for
nonlinear registration that is based on the nonlinear elastic regularizer described in [7]. In addition
to ensuring invertibility, this approach also allows to limit the flexibility of the transformation by,
for example, discretizing the transformation on a relatively coarse mesh.

We use a Gauss-Newton scheme with Armijo line search to solve the registration problem.
Optimization-based methods have also been shown to be highly e↵ective for point-to-point regis-
tration in [8]. The computationally most costly step in the optimization is computing the search
direction, which requires solving a linear system involving a positive definite approximation of the

12

Figure 4. Optimal α value and corresponding error to the ground truth in the 2D example, when different
number of outliers are tested. Results using SSD and smoothed Euclidean with β = 10−2 as distance
measures are shown. The experiment is run a hundred times, with α is taken from a sample of 21
logarithmically-spaced values from 10−2 to 10 (plotted here in log scale), and outliers from 10 equally-
spaced points in the interval [0, 100]. The distribution of α and error are illustrated here with a box plot, data
shown are within 2.7 standard deviation. To observe the trend, the mean value in each case are connected. On
the left, optimal α is in general greater for smooth Euclidean; on the right, error increases as the number of
outliers increases, and smooth Euclidean distance is observed with smaller errors in cases with more outliers

(here greater than 30).

To illustrate the non-convexity of the objective function we rotate the template object around its
main axis and show the misfit in the second row of Figure 5. To increase the chances of computing
the global minimizer, we initialize the affine registration with 6 different starting guesses associated
with different rotation angles. Finally, we choose the result that minimizes the objective function
to initialize the non-parametric registration. To increase robustness against false correspondences,
here we reject data by letting c = 2.8 in (8).

We use the L-Curve criterion [45] to determine an appropriate value of α in (9). The criterion
does not make use of the ground truth transformation and can thus be used in real applications
albeit there is no theoretical guarantee that an optimal value is found. We also stress that automatic
choice of optimal regularization parameters, especially for nonlinear inverse problems, is an open
research problem. To simplify the search for the regularization parameters needed in non-parametric
registration, we keep the weights of the individual terms fixed at λ = 2 and µ = 1.2. We sample
101 logarithmically-spaced points between 102 and 10−5, perform non-parametric registration, and
compute the distance between the dataset and the transformed polyline, as well as the value of the
regularizer, Snp; results are shown in the second row of Figure 5. Finally, following the L-curve
methodology we select a corner by visual inspection, which in this case yields the regularization
parameter α = 0.0603. The computational time per value of α is between 0.4 and 1 second and does
not depend strongly on the actual value; see bottom rightmost plot in Figure 5.

Following the above steps, we obtain the transformed template polyline whose distance to the
ground truth is 0.693, with the largest term in the sum being 0.244. This is relatively small in the
scale of our simulated polyline, which spans across a 3D rectangle of size 4× 10× 2.

6. 3D BIOABSORBABLE STENT RECONSTRUCTION

We provide a brief description of our stent reconstruction pipeline and its use in CFD analysis in
Section 6.1. We then discuss the incorporation of the proposed registration methods into the pipeline
and show registration results for two patients in Section 6.2.

6.1. The Basic Geometrical Reconstruction Procedure

Our specific interest in hemodynamics of bioabsorbable stents comes from their abnormal thickness,
designed to handle pressure and stress during and after the deployment. As opposed to metallic
stents, which due to their small size have minor impact on the blood flow, bioabsorbable stents
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Figure 5. Registration results for 3D software phantom. Top row (left to right): 3D deformed polyline
with five rings (black), sampled data with white noise (black dots), three-step reconstructed results (grey)
imposed on data. The errors are computed using DSSD, with respect to the ground truth. Bottom row: Non-
convexity of DEuclid demonstrated by rotating the 3D data around its main axis. Computing the distance
for each rotation results in (at least) two local minima (visualized as red dots) (left). L-curve plot using
101 logarithmically spaced values of α between 102 and 10−5 and showing the selected value α = 0.0603
marked by a red square (center). Runtime per iteration of non-parametric registration for different values of

α. The optimal value α = 0.0603 by the L-curve is marked by a red square.

may negatively affect outcomes since the local hemodynamics may be adversely affected leading to
remodeling and reocclusion. CFD may provide a quantitative assessment of these speculations.

To enable extensive CFD simulations over a large number of patients in the framework of
Computer Aided Clinical Trials (CACT) we have set up a procedure to (semi-)automatically
reconstruct the vascular geometry of a specific coronary artery after deployment of a bioabsorbable
stent. The current procedure (without registration of the undeployed prosthesis presented in this
paper) was validated with a virtual phantom and illustrated extensively in [15]. For the sake of
completeness and better understanding of the impact of the present contribution, we recall its basic
steps.

1. Strut detection in OCT images (see Fig. 6): The large struts are prone to an easy detection for
rectangular regions in the OCT images. Most of the struts are identified automatically, even
if a manual check is required for possible corrections. Note that the shadow of the catheter in
the OCT images prohibits identifying the position of all the struts.

2. Point cloud computation: the 3D coordinates of the center of mass of each strut are stored as
a point cloud.

3. Categorization: The stent in its undeployed configuration features two elementary
components, the rings, i.e. the circular structures with a wavy profile; the vertical connectors
or beam, connecting pairs of rings. To proceed with the geometrical reconstruction, we
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Figure 6. Left: Example of an OCT image of a slice of a coronary artery with a bioabsorbable stent. White
dots denote the struts of the stent. Middle: Geometry of the undeployed stent. Right: Overlapping of a 3D

volumetric reconstruction on the real OCT image.

classify the points of the cloud as part of the different components. This step is currently
done manually, through a graphical user interface specifically developed for this purpose.

4. Piecewise skeletonization: after the categorization, the points of each component (ring or
beam) are used for spline interpolation yielding a wireframe representation of the patient-
specific stent.

5. Volumetric reconstruction: from the skeleton we obtain a 3D volume by expanding
the rectangular shape around the interpolating lines according to an intrinsic frame of
reference. Special procedures are undertaken for managing the intersection between different
components - see Figure 6.

6. Bending: as OCT images are obtained from inside the vessel, accurate information about the
centerline in space is missing. Thus, registration of OCT with images from other modalities
able of detecting the real 3D profile of the coronary, like bi-planar angiography, is required.
This is done by the commercial package Meddis (see www.medis.nl). Once the real 3D
centerline of the coronary is obtained, a map from the rectilinear to the curved centerline is
applied to the stent so to have the real 3D volumetric reconstruction on the bent artery.

7. Stented lumen reconstruction: after a standard reconstruction of the lumen (with no
struts) with the Vascular Modeling ToolKit (see www.vmtk.org), we extract the
stented lumen volume by boolean subtraction of the stent to the lumen. This step is
performed by commercial packages like Rhinoceros (www.rhino3d.com) and NetFabb
(www.netfabb.com). The stented lumen - generally after several manual repairing operation -
is ready for meshing and eventually hosting CFD simulations.

Finally, CFD simulations and postprocessing (in particular, the computation of the Wall Shear
Stress) can be undertaken according to standard procedures largely validated in the literature (see
e.g. [51]).

The registration procedure presented in this paper occurs precisely between the point cloud after
Step 2 and the skeleton of the undeployed stent extracted from the original design - Fig. 6 - as
the collection of the centers of mass of rings and beams. It is sought to replace steps 3-4, as it
automatizes the categorization procedure, and it includes information unaccessible from the patient-
specific data that guides the skeletonization (i.e., filling the gap induced by the catheter shadow).
We examplarily demonstrate the registration in the next subsection using two patient data sets of a
larger data set (a total of 16 patients have been simulated so far on post-op morphologies).

Remark: Our registration procedure is not limited to reconstructing bioabsorbable stents. For
example, in the case of metallic prostheses that feature smaller struts only the first two steps of the
pipeline need to be changed (most importantly strut detection). For metallic stents the accuracy of
the strut detection of Step 1 may be reduced and thus our registration procedure may provide less
reliable results. However, we are positive that with appropriate strut-detection techniques can be
used for metallic stents with minor adjustments.
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classify the points of the cloud as part of the different components. This step is currently
done manually, through a graphical user interface specifically developed for this purpose.

4. Piecewise skeletonization: after the categorization, the points of each component (ring or
beam) are used for spline interpolation yielding a wireframe representation of the patient-
specific stent.

5. Volumetric reconstruction: from the skeleton we obtain a 3D volume by expanding
the rectangular shape around the interpolating lines according to an intrinsic frame of
reference. Special procedures are undertaken for managing the intersection between different
components - see Figure 6.

6. Bending: as OCT images are obtained from inside the vessel, accurate information about the
centerline in space is missing. Thus, registration of OCT with images from other modalities
able of detecting the real 3D profile of the coronary, like bi-planar angiography, is required.
This is done by the commercial package Meddis (see www.medis.nl). Once the real 3D
centerline of the coronary is obtained, a map from the rectilinear to the curved centerline is
applied to the stent so to have the real 3D volumetric reconstruction on the bent artery.

7. Stented lumen reconstruction: after a standard reconstruction of the lumen (with no
struts) with the Vascular Modeling ToolKit (see www.vmtk.org), we extract the
stented lumen volume by boolean subtraction of the stent to the lumen. This step is
performed by commercial packages like Rhinoceros (www.rhino3d.com) and NetFabb
(www.netfabb.com). The stented lumen - generally after several manual repairing operation -
is ready for meshing and eventually hosting CFD simulations.

Finally, CFD simulations and postprocessing (in particular, the computation of the Wall Shear
Stress) can be undertaken according to standard procedures largely validated in the literature (see
e.g. [51]).

The registration procedure presented in this paper occurs precisely between the point cloud after
Step 2 and the skeleton of the undeployed stent extracted from the original design - Fig. 6 - as
the collection of the centers of mass of rings and beams. It is sought to replace steps 3-4, as it
automatizes the categorization procedure, and it includes information unaccessible from the patient-
specific data that guides the skeletonization (i.e., filling the gap induced by the catheter shadow).
We examplarily demonstrate the registration in the next subsection using two patient data sets of a
larger data set (a total of 16 patients have been simulated so far on post-op morphologies).

Remark: Our registration procedure is not limited to reconstructing bioabsorbable stents. For
example, in the case of metallic prostheses that feature smaller struts only the first two steps of the
pipeline need to be changed (most importantly strut detection). For metallic stents the accuracy of
the strut detection of Step 1 may be reduced and thus our registration procedure may provide less
reliable results. However, we are positive that with appropriate strut-detection techniques can be
used for metallic stents with minor adjustments.

6.2. Registration of the Bioabsorbable Stent

To increase the robustness of the approach in the presence of highly nonlinear transformations, we
divide the data sets into a small number of longitudinal sections that are processed independently
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and finally combined. The first data set corresponds to a 17-ring stent, which we divide into four
sections, and the second data sets corresponds to a 23-ring, which we divide into five sections.

The point cloud and the pre-operative stent model for the top five rings of the first data set are
shown in Figure 7. The polyline object in this example consists of nv = 276 vertices and ne = 288
edges and the point cloud consists of np = 421 points. As in the phantom case, we follow a
registration pipeline using rigid, affine, and non-parametric transformations, shown in Figure 7. For
distance measure, we choose the robust DEuclid, and let β = 0.5 as before. After rigid registration,
we rotate along the main axis of the polyline six times, as initial guesses for affine registration. This
is to issue the non-convexity of the objective function (see Figure 7), as discussed in Section 5.3.
We reject data by again letting c = 2.8 in (8), to achieve robustness.

To determine the regularization parameters in (9), we use the L-curve Criterion for the first section
of each patient data set. We fix λ = 2, µ = 1.2, perform the non-parametric registration using 151
logarithmically-spaced values of α between 106 and 10−10, and identify a corner in the L-curve by
visual inspection. This gives the value α = 1.359 used to obtain the solution for this section (see
Figure 7) and the parts of the data.

The non-parametric registration requires to solve for a vector v of length 3× nv = 828. To
accelerate the search for the closest edge we compute the closest vertex using a Delaunay
triangulation (here 1555 tetrahedra) and then select the projection onto one of the 2 to 3 adjacent
edges as the corresponding point. While this does not necessarily give the closest point on the
polyline, the approximation speeds up computation considerably. The registration process takes 40
iterations in total, with respectively 2.04, 1.89, 1.35 seconds for rigid, affine, and non-parametric
transformations.

Applying the same steps to the remaining sections of the data set reduces the smoothed Euclidean
distance from approximately 3.67× 104 to DEuclid ≈ 9.68; see also Figure 8. The overall runtime
for the registration process is 24.38 seconds.

We apply the same pipeline to the second dataset consisting of 23 rings where the L-curve
criterion gives the regularization parameter α = 0.955; see right plot in Figure 8. Using this value
the overall distance is reduced from DEuclid ≈ 2.31× 104 to DEuclid ≈ 10.97. The total runtime in
this case is approximately 34.15 seconds.

7. DISCUSSION

One key idea of our new numerical methods for nonlinear polyline-to-point-cloud registration is
to exploit the polyline structure to compute the correspondence between the line and a given
point by projection onto the edges of the polyline. We show that this assignment is (almost
everywhere) differentiable with respect to the deformation and derivatives are easy and efficient
to compute, thus enabling fast optimization. In contrast to similar point-to-point registration such
as [40] we compute derivatives analytically and thereby avoid unnecessary function evaluations and
nearest-neighbor searches. These searches are a computationally challenging part in many point-
cloud registration approaches and our method can be extended to benefit from accelerated search
strategies, for example, using kd-trees [52]. The differentiability and the potential of efficiently
describing data with skeleton structure are key advantages over commonly used point-to-point
registration algorithms based on ICP.

We formulate the registration as an unconstrained optimization problem that supports the
most commonly used distance measures and transformation models. We provide two methods
for regularizing nonlinear deformations. Maximal flexibility is obtained using a non-parametric
transformation model, which directly transforms the vertices of the polyline. In this case, we derive
a regularizer ensuring smoothness and penalizing length-changes caused by the transformation. It
is important to note, that in this approach invertibility of the transformation is not guaranteed. In
other words, transformations that cause edges of the polyline to intersect give a finite value of the
regularizer and thus might be attained. To avoid this, we also suggest a more restrictive method for
nonlinear registration that is based on the nonlinear elastic regularizer described in [43]. In addition
to ensuring invertibility, this approach also allows to limit the flexibility of the transformation by,
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Figure 6. Results after three registrations are followed. The dataset correspond to a patient-specific cardiac
stent section, where np = 421; no ground truth is known in this case. Note that sampling of rotation angles

is performed before affine registration.
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Figure 7. Left: Non-convexity of DSSD demonstrated by rotating the 3D data around its main axis.
Computing the distance for each rotation results in (at least) two local minima (visualized as red dots).
Right: L-curve for 3D experiment. The value of DSSD is plotted against the value of Snp for the minimizer
computed for 101 logarithmically spaced values of ↵ between 102 and 10�5. The value of ↵ used in our

experiment is 1.537 and marked using a red square.

5. SUMMARY AND CONCLUSION

In this paper, we present new numerical methods for nonlinear polyline-to-point-cloud registration.
One key idea is to exploit the polyline structure to compute the correspondence between the polyline
and a given point by projection onto the edges of the polyline. We show that this assignment is
(almost everywhere) differentiable with respect to the deformation and derivatives are easy and
efficient to compute, thus enabling fast optimization. In contrast to similar point-to-point registration
such as [35] we compute derivatives analytically and thereby avoid extra function evaluations and
nearest-neighbor searches. The differentiability is also key advantage over commonly used point-
to-point registration algorithms based on ICP.

We formulate the registration problem as an unconstrained optimization problem that supports
the most commonly used distance measures and transformation models. We provide two methods
for regularizing nonlinear deformations. Maximal flexibility is obtained using a non-parametric
transformation model, which directly transforms the vertices of the polyline. In this case, we derive
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Figure 7. 3D Registration result for a section of a bioabsorbable Stent extracted from patient data. First row
shows the intermediate and final results for the three-step registration pipeline. Second row shows the non-
convexity of DEuclid and the L-curve for 151 logarithmically spaced values of α between 106 and 10−10.

The value of α = 1.359 is marked by a red square.

for example, discretizing the transformation on a relatively coarse mesh and appropriate choice of
regularization parameters.

We use a Gauss-Newton scheme with Armijo line search to approximately solve the registration
problem. Optimization-based methods have also been shown to be highly effective for point-to-
point registration in [53]. In addition to the correspondence searches, another computationally costly
step in the optimization is computing the search direction, which requires solving a linear system
involving a positive definite approximation of the Hessian. In the experiments considered here, the
size of the linear system is rather small and Cholesky factorization is used. To enable efficient non-
parametric registration of polylines with a larger number of vertices, iterative linear solvers can be
used.

Clearly, our formulation requires that one object is given as a polyline. While this is a limitation
in some applications, our work can also be applied for registration of vascular objects; see, for
example, [54, 55]. One advantage of integrating polyline registration into an image registration
framework such as FAIR is the potential of combining image, polyline, and point cloud data.
This will be a major item of future work. Our methods support polylines of arbitrary topology,
a wide range of transformation models (such as rigid, affine and nonlinear transformations), most
commonly used distance measures, as well as physically motivated regularization. Here we use
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patient-specific reconstruction results

Figure 8. Final results for OCT-based reconstruction of bioabsorbable coronary artery stents for two patients
with 17 rings (left) and 23 rings (right).

the FAIR package as a computational tool and integrate our methods into this general purpose
registration framework; see [1].

Our methods bear similarities with methods for registration of point clouds. For example, nonrigid
registration of point clouds has been explored in [44] using thin-plate spline (TPS). Probabilistic
methods have also been introduced; e.g., the Coherent Point Drift (CPD) algorithm [29] addresses
point matching with a Gaussian mixture model. Nonrigid registration of surfaces is discussed,e.g.,
in [39] as an extension of the Iterative Closest Point (ICP) algorithm, using affine transformations
with locally affine regularization. The ICP algorithm and many of its variants follow a pipeline of
correspondence search and transformation update using a closed-form minimization [37, 30, 36,
56, 39, 57]. Note that that the correspondence search is computationally expensive, since in a naive
implementation it requires finding the nearest neighbor in the reference object for each point of the
template object. While this process can be significantly accelerated, for example, using tree-based
data structures [52] the complexity in general grows with the number of elements in both point
clouds and, thus, representing the undeployed stent as a polyline increases the efficiency and also
leads – as we will show – to an (almost everywhere) differentiable problem.

In practice, our resulting registration problems are solved within seconds requiring only a
few iterations of a Gauss-Newton method, thus limiting further the number of (expensive)
correspondence searches. In this sense, our method is similar to the Levenberg-Marquardt method
proposed in [40], but with two major distinctions. First, we compute the derivative of the point-
to-point correspondence analytically instead of approximating it using finite differences. This
avoids additional correspondence searches and the choice of a step parameter for the finite
difference scheme. Second, we use physically inspired regularization, which by design leads
to a positive definite approximate Hessians. It has been shown in [40] that optimization-based
algorithms are more flexible and competitive to special-purpose methods such as ICP that rely on
closed form solutions. In addition, instead of iterating between neighbor search and computing
the transformation, a general purpose optimization scheme allows us to jointly compute the
correspondence estimation and the transformation.

We present four numerical experiments to demonstrate the potential of our methods.
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the FAIR package as a computational tool and integrate our methods into this general purpose
registration framework; see [1].

Our methods bear similarities with methods for registration of point clouds. For example, nonrigid
registration of point clouds has been explored in [44] using thin-plate spline (TPS). Probabilistic
methods have also been introduced; e.g., the Coherent Point Drift (CPD) algorithm [29] addresses
point matching with a Gaussian mixture model. Nonrigid registration of surfaces is discussed,e.g.,
in [39] as an extension of the Iterative Closest Point (ICP) algorithm, using affine transformations
with locally affine regularization. The ICP algorithm and many of its variants follow a pipeline of
correspondence search and transformation update using a closed-form minimization [37, 30, 36,
56, 39, 57]. Note that that the correspondence search is computationally expensive, since in a naive
implementation it requires finding the nearest neighbor in the reference object for each point of the
template object. While this process can be significantly accelerated, for example, using tree-based
data structures [52] the complexity in general grows with the number of elements in both point
clouds and, thus, representing the undeployed stent as a polyline increases the efficiency and also
leads – as we will show – to an (almost everywhere) differentiable problem.

In practice, our resulting registration problems are solved within seconds requiring only a
few iterations of a Gauss-Newton method, thus limiting further the number of (expensive)
correspondence searches. In this sense, our method is similar to the Levenberg-Marquardt method
proposed in [40], but with two major distinctions. First, we compute the derivative of the point-
to-point correspondence analytically instead of approximating it using finite differences. This
avoids additional correspondence searches and the choice of a step parameter for the finite
difference scheme. Second, we use physically inspired regularization, which by design leads
to a positive definite approximate Hessians. It has been shown in [40] that optimization-based
algorithms are more flexible and competitive to special-purpose methods such as ICP that rely on
closed form solutions. In addition, instead of iterating between neighbor search and computing
the transformation, a general purpose optimization scheme allows us to jointly compute the
correspondence estimation and the transformation.

We present four numerical experiments to demonstrate the potential of our methods.
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First, we use a simple 2D example to illustrate the differences of our method to general point
cloud registration approaches. In particular, a polyline object utilizes knowledge of the structure of
a given point cloud, and shows significant advantages in terms of registration accuracy.

Second, we consider a 2D academic test problem with available ground truth transformation
to study the robustness of our method to outliers. We find that the smoothed Euclidean distance
measure outperforms the sum-of-squared-difference function in the presence of a large number of
outliers.

Using a 3D software phantom resembling the structure of a cardiovascular stent we show the non-
convexity of the problem and validate our L-curve based strategy for choosing the regularization
parameter; see also [45].

Finally, we use our methods for reconstructing bioabsorbable stents from OCT-data for two
patients. To enable patient-specific analysis, we aim at aligning a polyline representing a pre-
operative cardiovascular stent to a point cloud representing locations of the stent after surgery. In
our experiments we found that dividing the data sets into smaller sections considerably reduces the
risk of being trapped in a local minimum when large and nonlinear transformations are present. This
requires some user intervention and deriving a fully automatic process is an important item of future
work.

In all experiments, good registration results are obtained in only a few number of Gauss-Newton
iterations and, thus, requiring only a small number of nearest-neighbor searches.

7.1. Conclusions and Perspectives

The real-life example illustrates the potential of our method to further automize patient-specific
stent reconstruction from post-surgery images. Our techniques will positively impact the current
methodology described in [15] - where no registration procedure is currently performed - in two
ways. First, interpolation procedures for the rings and beams of the stents have been observed to
be error prone at the junctions among them. Currently, the junctions are managed by an empirical
intersection of the different parts and require manual intervention. The procedure illustrated here
introduces prior knowledge about the location of the intersections and is thus expected to improve
the regularity and reliability of the reconstruction. Second, the procedure in [15] is intended to be
used in clinical trials involving a large number of patients [58, 59, 14, 60]. Thus, automation is of
great relevance. The approach in [15] requires a manual identification of the different components
(rings and beams) that drives the interpolation and intersection procedures. As it is easy and
convenient to label the different components on the undeployed configurations (which has to be
done only once per stent model), the registration approach presented here naturally perform the
labeling as a by-product of the mapping of labeled (undeployed) lines. In this way, we can eliminate
the need for manual identification of rings and beams in each patient dataset. This will reduce the
computational costs, as no manual procedure is required, with a significant impact on the usability
of the geometrical reconstruction in clinical trials.
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Der Schaaf RJ, Haude M, Wasungu L, et al.. A bioresorbable everolimus-eluting scaffold
versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo
native coronary artery lesions (absorb ii): an interim 1-year analysis of clinical and procedural
secondary outcomes from a randomised controlled trial. The Lancet 2015; 385(9962):43–54.

[4] Wentzel JJ, Krams R, Schuurbiers JC, Oomen JA, Kloet J, van der Giessen WJ, Serruys
PW, Slager CJ. Relationship between neointimal thickness and shear stress after wallstent
implantation in human coronary arteries. Circulation 2001; 103(13):1740–1745.

[5] Gijsen FJ, Oortman RM, Wentzel JJ, Schuurbiers JC, Tanabe K, Degertekin M, Ligthart JM,
Thury A, de Feyter PJ, Serruys PW, et al.. Usefulness of shear stress pattern in predicting
neointima distribution in sirolimus-eluting stents in coronary arteries. The American journal
of cardiology 2003; 92(11):1325–1328.

[6] Sanmartı́n M, Goicolea J, Garcı́a C, Garcı́a J, Crespo A, Rodrı́guez J, Goicolea JM. Influence
of shear stress on in-stent restenosis: in vivo study using 3D reconstruction and computational
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