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Abstract

We present a new method for post-selection inference for ℓ1 (lasso)-penalized likelihood models, 

including generalized regression models. Our approach generalizes the post-selection framework 

presented in Lee et al. (2013). The method provides p-values and confidence intervals that are 

asymptotically valid, conditional on the inherent selection done by the lasso. We present 

applications of this work to (regularized) logistic regression, Cox's proportional hazards model and 

the graphical lasso. We do not provide rigorous proofs here of the claimed results, but rather 

conceptual and theoretical sketches.

1 Introduction

Significant recent progress has been made in the problem of inference after selection for 

Gaussian regression models. In particular, Lee et al. (2013) derives closed form p-values and 

confidence intervals, after fitting the lasso with a fixed value of the regularization parameter, 

and Taylor et al. (2014) provides analogous results for forward stepwise regression and least 

angle regression (LAR). In this paper we derive a simple and natural way to extend these 

results to ℓ1-penalized likelihood models, including generalized regression models such as 

(regularized) logistic regression and Cox's proportional hazards model.

Formally, the results described here are contained in Tian and Taylor (2015) in which the 

authors consider the same problems but having added noise to the data before fitting the 

model and carrying out the selection. Besides expanding on the GLM case, considered only 

briefly in Tian and Taylor (2015), the novelty in this work is the second-stage estimator, 

which is asymptotically equivalent to the post-LASSO MLE, and overcomes some problems 

encountered with a second-order remainder. And unlike the proposals in Tian and Taylor 

(2015), the estimator proposed here does not require MCMC sampling and is computable in 

closed form. Our estimator comprises of a single step of Newton-Raphson (or equivalently, 

Fisher scoring) in the selected model after having fit the LASSO. This is discussed further in 

Section 3. We note that one-step estimators are commonly used in semi-parametric 

inference: see for example Bickel et al. (1993).

In this paper we do not provide rigorous proofs of the claimed results, but rather theoretical 

and conceptual sketches, together with numerical evidence. We are confident that rigorous 

proofs can be given (with appropriate assumptions) and plan to report these elsewhere. We 

also note the strong similarity between our one-step estimator and the “debiased lasso” 

construction of Zhang and Zhang (2014), Bühlmann (2013), van de Geer et al. (2013), and 

Javanmard and Montanari (2014). This connection is detailed in Remark A of this paper.
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Figure 1 shows an example, the South African heart disease data. This is a retrospective 

sample of 463 males in a heart-disease high-risk region of the Western Cape, South Africa. 

The outcome is binary— coronary heart disease— and there are 9 predictors. We applied 

lasso-penalized logistic regression, choosing the tuning parameter by cross-validation. The 

left panel shows the standard (naive) p-values and the post-selection p-values from our 

theory, for the predictors in the active set. Since the sample size is large compared to the 

number of predictors, the unadjusted and adjusted p-values are only substantially different 

for two of the predictors. On the right we have added 100 independent standard Gaussian 

predictors (labelled X1, X2 … X100) to examine the effects of selection. Now the naive p-

values are unrealistically small for the noise variables while the adjusted p-values are 

appropriately large. Although our focus is on selection via ℓ1-penalization, a similar 

approach can likely be applied to forward stepwise methods for likelihood models, and in 

principle, least angle regression (LAR).

An outline of this paper is as follows. Section 2 reviews post-selection inference for the lasso 

in the Gaussian regression model and introduces our proposal for more general (non-

Gaussian) generalized linear models. In Section 3 we give an equivalent form of the 

proposal, one that applies to general likelihood models, for example the graphical lasso. We 

give a rough argument for the asymptotic validity of the procedure. Section 4 reports a 

simulation study of the methods. In Section 5 we show an example of the proposal applied 

to Cox's model for survival data. The graphical lasso is studied in Section 6. We end with a 

discussion in Section 7.

2 Post-selection inference for generalized regression models

Suppose that we have data (xi, yi), i = 1, 2, … N consisting of features xi = (xi1, xi2, … xip) 

and outcomes yi, i = 1, 2, … N. Let X = {xij} be the N × p data matrix. We consider a 

generalized regression model with linear predictor η = α + xT β and log-likelihood ℓ(α, β). 

Our objective function has the form

J(α, β) = − ℓ(α, β) + λ ⋅ ∑
1

p
β j . (1)

Let α̂, β̂ be the minimizers of J(α, β). We wish to carry out selective inference for some 

functional γT β. For example, γ might be chosen so that γT β is the population partial 

regression coefficient for the jth predictor.

As a leading example, we consider the logistic regression model specified by

π = E(Y x); log π /(1 − π) = α + xTβ;

ℓ(α, β) = ∑ [yi log (πi) + (1 − yi) log (1 − πi)] .
(2)

Taylor and Tibshirani Page 2

Can J Stat. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Having fit this model using a fixed value of λ, we carry out post-selection inference, as in 

the heart disease example above.

The reader may well ask: “partial regression coefficient with respect to what?”, i.e. what 

other covariates are we going to control for? In this paper, we follow the selected model 

framework described in Fithian et al. (2014) so that having observed M, the sparsity pattern 

of β̂ as returned by the LASSO, we carry out selective inference for linear functionals of βM 

∈ ℝM under the assumption that the model (2) is correct with parameter β* satisfying β*−M 

= 0. That is, we carry out selective inference under the assumption that the LASSO has 

screened successfully, at least approximately.

There are various ways we might modify this model, though we only consider mainly the 

parametric case here. For instance, we might assume that y is conditionally independent of 

X−M given XM, but not assume the correctness of the logistic link function. In this case, the 

covariance matrix of our limiting Gaussian distribution (described below) is not correct, and 

the asymptotic theory in Section 3 should be modified by using a consistent estimator of the 

covariance matrix. Alternatively, we might wish to be robust to the possibility that X−M may 

have some effect on our sampling distribution, which would also change the limiting 

Gaussian distribution that we use for inference. For this reason, the results in Section 4.2 of 

Tian and Taylor (2015) use bootstrap or jackknife to estimate the appropriate covariance in 

the limiting Gaussian distribution. A short discussion of how this can be done is given in 

Section 3.4. While robustness to various mis-specifications are important issues, in this 

paper we focus mainly on the simpler case of providing inference for parameters of (2) 

under the assumption that the model chosen by the LASSO screens, i.e. has found a superset 

of the true variables.

2.1 Review of the Gaussian case

For background, we first review the Gaussian case y ∼ N(μ, I·σ2), developed in Lee et al. 

(2013). We denote the selected model by M with sign vector s. Assuming the columns of X 
are in general position, the KKT conditions Tibshirani2 (2013) state that {M̂, ŝ} = {M, sM} 

if and only if there exists β̂M ∈ ℝM and u−M ∈ ℝ−M satisfying

XM
T (XMβM − y) + λsM = 0

X−M
T (XMβM − y) + λu−M = 0

sign(βM) = sM

u−M ∞
≤ 1 .

(3)

This allows us to write the set of responses y that yield the same M and s in the polyhedral 

form

Ay ≤ b (3)
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where the matrix A and vector b depend on X and the selected model, but not on y. Let PM 

be the orthogonal projector onto the model subspace. Due to the special form of the LASSO 

optimization problem, it turns out that the rows of A (and b) can be partitioned so that we 

can rewrite the above as

A1βM(y) ≤ b1, A2(I − PM)y ≤ b2 (5)

where βM(y) = (XM
T XM)−1

XM
T y are the usual OLS estimators of βM and (I − PM)y are the 

usual OLS residuals.

This result can be used to make conditional inferences about any linear functional γT μ, 

which we assume satisfies PMγ = γ. This assumption is roughly equivalent to assuming that 

we are interested in a linear functional of PM μ. By conditioning on Pγ
⊥(y) we obtain the 

exact result based on truncated Gaussian distribution with truncation limits ν−, ν+:

F
γTμ, σ2 γ |2
ν−, ν+

(γTy) |{Ay ≤ b} U(0, 1) . (6)

Expressions for A, b and the limits ν−, ν+ are given in Lee et al. (2013) and are reproduced 

here in the Appendix. The relation (5) implies that the result (6) holds even if we condition 

only on (PM − Pγ)y, i.e. the variation of y within the model. This follows since the second 

condition in (5) is independent of the first condition, and is fixed after conditioning on Pγ
⊥(y). 

The difference between these two conditional distributions really depends on which model 

we are interested in. We refer to conditioning on Pγ
⊥(y) as inference in the saturated model, 

i.e. the collection of distributions

N(μ, σ2I): μ ∈ ℝn, σ2 > 0 . (7)

We refer to conditioning on (PM − Pγ)y as inference in the selected model. Formally 

speaking, we define the selected model as follows: given a subset of variables E, the selected 

model corresponding to E is the collection of distributions

N(XEβE, σ2I): βE ∈ ℝE, σ2 > 0 .

This distinction is elaborated on in Lee et al. (2013). In this work, we only consider 

inference under (7) where the subset of variables E are those chosen by the LASSO. In 

principle, however, a researcher can add or delete variables from this set at will if they make 
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their decisions based only on the set of variables chosen by the LASSO. This changes the 

distributions for inference, meaning that the analog of (6) may no longer be the correct tool 

for inference.

2.2 Extension to generalized regression models

In this section, we make a parallel between the Gaussian case and the generalized linear 

model setting. This parallel should be useful to statisticians familiar with the usual 

iteratively reweighted least squares (IRLS) algorithm to fit the unpenalized logistic 

regression model. While this parallel may be useful, the formal justification is given in 

Section 3. The method used to solve the optimization problem is unrelated to the results 

presented in Section 3.

A common strategy for minimizing (1) is to express the usual Newton-Raphson update as an 

IRLS step, and then replace the weighted least squares step by a penalized weighted least 

squares procedure. For simplicity, we assume α = 0 below, though our formal justification in 

Section 3 will allow for an intercept as well as other unpenalized features.

In detail, recalling that ℓ is the log-likelihood, we define

W = W(β) = − ∂2ℓ
∂ηηT

η = Xβ

and

z = z(β) = Xβ + W−1 ∂ℓ
∂η η = XB

.

Of course, in the Gaussian case, W = I and z = y.

In this notation, the Newton-Raphson step (in the unpenalized regression model) from a 

current value βc can be expressed as

minimizeβ
1
2(z(βc) − Xβ)TW(βc)(z(βc) − Xβ) . (8)

In the ℓ1 penalized version, each minimization has an ℓ1 penalty attached.

To minimize (1), IRLS proceeds as follows:

1. Initialize β̂= 0

2. Compute W(β̂) and z(β̂) based on the current value of β̂

3. Solve
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minimizeβ
1
2(z − Xβ)TW(z − Xβ) + λ ⋅ ∑ β j .

4. Repeat steps 2 and 3 until β̂ doesn't change more than some pre-specified 

threshold.

In logistic regression for example, the specific forms of the relevant quantities are

z = α + Xβ + (y − π) ⋅ diag[1/(π(1 − π))]
W = diag(πi(1 − πi))

(9)

Another example is Cox's proportional hazards for censored survival data. The partial 

likelihood estimates can again be found via an IRLS procedure. More generally, both of 

these examples are special cases of the one-step estimator described in Section 3 below. The 

details of the adjusted dependent variable z and weights w can be found, for example, in 

Hastie and Tibshirani (1990) (Chapter 8, pp. 213–214). We give examples of both of these 

applications later.

How do we carry out post-selection inference in this setting? Our proposal is to treat the 

final iterate as a weighted least squares regression, and hence use the approximation

z N(μ, W−1) . (10)

Using this idea, we simply apply the polyhedral lemma to the region {Az ≤ b} (see the 

Appendix). A potential problem with this proposal is that A and b depend on β̂ and hence on 

y. As a result, the region Az ≤ b does not exactly correspond to the values of the response 

vector y yielding the same active set and signs as our original fit. The other obvious problem 

is that of course z is not actually normally distributed. Despite these points, we provide 

evidence in Section 3 that this procedure yields asymptotically correct inferences.

2.3 Details of the procedure

Suppose that we have iterated the above procedure until we are at a fixed point. The “active” 

block of the stationarity conditions has the form

XM
T W(z − XMβM) = λsM (11)

where W = W(βM̂), z = z(β̂M). Solving for βM̂ yields

βM = (XM
T WXM)−1(XM

T Wz − λsM) .
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Thinking of z as analogous to y in the Gaussian case, this equality can be re-expressed as

βM = (XM
T WXM)−1XM

T Wz = βM + λ(XM
T WXM)−1sM . (12)

Note that βM̄ solves

XM
T W(z − XMβM) = 0 .

This last equation is almost the stationarity conditions of the unpenalized MLE for the 

logistic regression using only the features in M. The only difference is that above, the W and 

z are evaluated at β̂ instead of β̄M.

Ignoring this discrepancy for the moment, recall that the active block of the KKT conditions 

in the Gaussian case can be expressed in terms of the usual OLS estimators (5). This 

suggests the correct analog of the “active” constraints:

y: sign(βM(y) − λ(XM
T WXM)−1sM) = sM . (13)

Let's take a closer look at βM̄:

βM = (XM
T WXM)−1(XM

T Wz)

= (XM
T WXM)−1

XM
T WXMβM + ∂

∂βM
ℓM(βM)

βM = βM

= βM + (XM
T WXM)−1 ∂

∂βM
ℓM(βM)

βM = βM

= βM + λ(XM
T WXM)−1

sM

where

ℓM(βM) ≡ ℓ
βM
0

is the log-likelihood of the selected model and

IM(βM) = XM
T WXM = XM

T W(βM)XM
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is its Fisher information matrix evaluated at βM̂. We see that β̄M is defined by one Newton-

Raphson step in the selected model from β̂M.

If we had not used the data to select variables M and signs sM, then assuming the model with 

variables M is correctly specified, as well as standard assumptions on X (Bunea (2008)), βM̄ 

would be asymptotically Gaussian centered around βM
∗  with approximate covariance 

(XM
T WXM)−1

. This approximation is of course the usual one used in forming Wald tests and 

confidence intervals in generalized linear models.

3 A more general form and an asymptotic justification

We assume that p is fixed, that is, our results do not apply in the high-dimensional regime 

where p → ∞ To state our main result, we begin by considering a general lasso-penalized 

problem. Given a log-likelihood ℓ(β), denote an ℓ1 -penalized estimator by

β = βλ = arg minβ [ − ℓ(β)] + λ β 1 . (14)

On the event {(M̂, sM^) = (M, sM), the active block of the KKT conditions is

∂
∂βM

ℓM(βM)
βM = βM

= λsM

where ℓM is the log-likelihood of the submodel M. The corresponding one-step estimator is

βM = βM + λIM(βM)−1sM = βM + IM(βM)−1 ∂
∂βM

ℓM(βM)
βM = βM

. (15)

where IM (βM̂) is the |M| × |M| observed Fisher information matrix of the submodel M 
evaluated at β̂M.

In the previous section, we noted that β̄M almost solves the KKT conditions for the 

unpenalized logistic regression model. We further recognized it as a one step estimator with 

initial estimator βM̂ in the logistic regression model. In the context (14) we have directly 

defined β̄M as a one-step estimator with the initial estimator β̂M. As long as λ is selected so 

that β̂M is n consistent (usually satisfied by taking λ ∝ n1/2 at least in the fixed p setting 

considered here) the estimator β̄M would typically have the same limiting distribution as the 

unpenalized MLE in the selected model if we had not used the data to choose the variables 

to be included in the model. That is, if we had not selected the variables based on the data, 

standard asymptotic arguments yield
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βM ≈ N βM
∗ , IM(βM)−1

(16)

where IM (βM̂)−1 is the “plug-in” estimate of the asymptotic covariance of β̄M, with the 

population value being EF[IM(βM
∗ )]−1

. Implicit in this notation is that IM = IM,n, i.e. the 

information is based on a sample of size n from some model. We specify this model 

precisely in Section 3.1 below.

However, selection with the LASSO has imposed the “active” constraints, i.e. we have 

observed the following event is true

diag(sM) βM − IM(βM)−1λsM) ≥ 0 , (17)

as well as some “inactive” constraints that we return to shortly. Selective inference Fithian et 

al. (2014); Taylor and Tibshirani (2015) modifies the preselection distribution by 

conditioning on the LASSO having chosen these variables and signs, i.e. by conditioning on 

this information we have learned about the data.

3.1 Specification of the model

As the objective function involves a log-likelihood, there is some parametric family of 

distributions that is natural to use for inferential purposes. In the generalized linear model 

setting, these distributions are models for the laws yi|X. Combining this with a marginal 

distribution for X yields a full specification of the joint law of (y, X). In our only result 

below, we consider the Xi's to be IID draws from some distribution F and yi|X to be 

independently drawn according to the log-likelihood corresponding to the generalized linear 

model setting. In this case, our model is specified by a pair (β, F) and we can now consider 

asymptotic behaviour of our procedure sending n → ∞. Similarly, for p fixed and any M ⊂ 
{1, …, p} our selected model is specified by the pair (βM, F) and we can consider similar 

asymptotic questions. As is often the case, the most interesting asymptotic questions are 

local alternatives in which βM itself depends on n, typically taking the form βM, n
∗ = n−1/2θM

∗ . 

These assumptions are similar to those studied in Bunea (2008). In local coordinates, (16) 

could more properly be restated as

θM = n1/2βM ≈ N θM
∗ , nIM(βM)−1

(18)

where nIM(βM̂)−1 will have non-zero limit
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lim
n ∞ EF[IM(n1/2θM

∗ )/n]−1 .

For example, in the Bernoulli case (binary Y), for any M ⊂ {1, …, p} and sample size n our 

selected model is therefore parametrized by (θM
∗ , F) where features are drawn IID according 

to F and, conditionally on Xi we have

yi Xi Bernoulli(π(n−1/2θM
∗ )) .

3.2 Asymptotics of the one-step estimator

In this section we lay out a description of the limiting conditional distribution of the one-step 

estimator in the logistic case. Under our local alternatives, in the selected model the data 

generating mechanism is completely determined by the tuple (n, θM
∗ , F) where F is the 

distribution of the features X and y|X is assumed to follow the parametric logistic regression 

model with features XM and parameters βM
∗ = n−1/2θM

∗ . Therefore, any statement about 

consistency and weak convergence that follows is a statement about this sequence of data 

generating mechanisms.

The event (17) can be rewritten as

diag(sM) θM − (n−1/2λ)ℐM
−1sM) + RM ≥ 0 (19)

where

RM = (n−1/2λ) ⋅ (ℐM
−1 − (IM(βM)/n)−1)sM = (n−1/2λ) ⋅ ℐM

−1 − EF[IM(n−1/2θM
∗ )/n]−1

sM + (n−1/2λ)

⋅ EF[IM(n−1/2θM
∗ )/n]−1 − (IM(n−1/2θM

∗ )/n)−1
sM + (n−1/2λ) ⋅ DM(n−1/2θ M

∗ )(n−1/2θ M
∗ − βM)sM

is an unobservable remainder. The second equality is just Taylor's theorem with DM 

denoting the derivative of IM/n−1 with respect to β which is evaluated at some n−1/2θ
∼

M
∗

between n−1/2θM
∗  and β̂M. If λ = Cn1/2 then all terms in the above event have non-

degenerate limits as n → ∞ with the only randomness in the event being θ̄M and the 

remainder RM.

Pre-selection, the first term of the remainder is seen to converge to 0 by the assumption that 

the information converges. The second term is seen to converge to 0 by the strong law of 

large numbers and the third term is seen to converge to 0 when β̂M is consistent for 

n−1/2θM
∗ =(both βM

∗ and βM
∗ converge to zero . As we are interested in the selective distribution 
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we need to ensure that this remainder goes to 0 in probability, conditional on the selection 

event. For this, it suffices to assume that the probability of selecting variables M is bounded 

below by some ε > 0, ensuring that Lemma 1 of Tian and Taylor (2015) is applicable to 

transfer consistency pre-selection to consistency after selection. In terms of establishing a 

limiting distribution for inference, we appeal to the CLT which holds for pre-selection and 

consider its behaviour after selection. It was shown in Tian and Taylor (2015) that CLTs that 

hold before selection extend to selective inference after adding noise to the outcome, under 

suitable assumptions.

We provide a sketch of such a proof in our setting. As we want to transfer a CLT pre-

selection to the selective case, we assume that θM̄ satisfies a CLT pre-selection under our 

sequence of data generating mechanisms. Now, consider the selection event after removing 

the ignorable remainder RM under the assumption that λ = Cn1/2

diag(sM [θM − C ⋅ ℐM
−1sM ] ≥ 0 (20)

If the probability of (20) converges to some positive limit under our sequence of data 

generating mechanisms, it must agree with the same probability computed under the limiting 

Gaussian distribution. A direct application of the Portmanteau theorem establishes that the 

sequence of conditional distributions of θ̄M will therefore converge weakly and this limit 

will be the limiting Gaussian conditioned on (20).

This simple argument establishes weak convergence of the conditional distribution for a 

particular (θM
∗ , F) sending n → ∞. For full inferential purposes, this pointwise weak 

convergence is not always sufficient. See Tibshirani et al. (2015) for some discussion of this 

topic and honest confidence intervals. A more rigorous treatment of transferring a CLT pre-

selection to the selective model is discussed in Tian and Taylor (2015), where quantitative 

bounds are derived to compare the true distribution of a pivotal quantity to its distribution 

under the limiting Gaussian distribution.

Let's look at the inactive constraints. In the logistic regression example, with π = πM(βM
∗ ), we 

see that by construction

X−M
T W(z − XMβ) = X−M

T (y − πM(βM)) = X−M
T (y − πM(βM

∗ )) − EF[X−M
T W(βM

∗ )XM](βM − βM
∗ ) + Δ(F, M

)sM + RM, 2

where

Δ(F, M) = EF[X−M
T W(βM

∗ )XM]EF[(XM
T W(βM

∗ )XM)]−1
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is a population version of the matrix appearing in the well-known irrepresentable condition 

[Wainwright (2009); Tropp (2004)] and the remainder RM,2 goes to 0 in probability after 

appropriate rescaling Tian and Taylor (2015). Hence, our “inactive constraints” can be 

rewritten in terms of the random vector

X−M
T (y − πM(βM

∗ )) − EF[X−M
T W(βM

∗ )XM](βM − βM
∗ ),

the remainder RM,2 and a constant vector. Now, under our selected model, standard 

asymptotic arguments show that the random vector

βM − βM
∗

X−M
T (y − π) − EF[X−M

T W(βM
∗ )XM](βM − βM

∗ )
(21)

satisifes a CLT before selection. It is straightforward to check that under this limiting 

Gaussian distribution these two components are independent. Indeed, in the Gaussian case, 

they are independent for every n. This implies a simplification similar to (5) occurs 

asymptotically for the problem (14). While this calculation was somewhat specific to logistic 

regression, this asymptotic independence of the two blocks and simplification of the 

constraints also holds when the likelihood in (14) is an exponential family and β with being 

the natural parameters.

If we knew βM
∗  and F we could compute all relevant constants in the constraints and simply 

apply the polyhedral lemma (Lee et al. (2013)). This would yield asymptotically exact 

selective inference for the selection event (M, s
M

) = (M, sM)  by construction of a pivotal 

quantity

g(θM; lim
n ∞ nEF[IM(n1/2θM

∗ )]−1; A, b) (22)

as in (6), where A and b can be derived from the polyhedral constraints (19). Specifically, A 

= −diag(sM), and b = − EF[IM(n1/2θM
∗ )/n]−1(n−1/2λ)sM) − n1/2RM, 1.

However, the quantities needed to compute limn ∞ nEF[IM(n1/2θM
∗ )]−1

 are unknown, 

though there are certainly natural plug-in estimators that would be consistent without 

selection. This suggests using a plug-in estimate of variance. In Tian and Taylor (2015) it 

was shown that, under mild regularity assumptions, consistent estimates of variance can be 

plugged into limiting Gaussian approximations for asymptotically valid selective inference. 

Hence, to construct a practical algorithm, we apply the polyhedral lemma to the limiting 

Taylor and Tibshirani Page 12

Can J Stat. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution of n1/2 βM̄, with M, sM fixed and n ∇2 ℓM(β̂M) as a plugin estimate for 

nEF[IM(βM
∗ )].

Thus we have the following result:

Result 1. Suppose that the model described in Section (3.1) holds for all n and some (θM
∗ , F)

such that the corresponding population covariance ℐM(θM
∗ ) is non-degenerate. Then, the 

pivot (22) is asymptotically U(0, 1) as n →∞ conditioned on having selected variables M 

with signs sM. Furthermore, plugging in nIM(βM)−1 both in the limiting variance and in the 

constraints of (19) of the pivot is also asymptotically U(0, 1).

As noted in the introduction, a detailed proof of this result will appear elsewhere.

Remark A. In the Gaussian model, our one-step estimator has the form

βM = βM + (XM
T XM)−1XM

T (y − XβM) = (XM
T XM)−1XM

T y (23)

with βM N((XM
T XM)−1

XM
T Xβ, (XM

T XM)−1
σ2) and constraints

diag(sM)[βM − (XM
T XM)−1)

−1
λsM)] ≥ 0 . (24)

These are just the usual least squares estimates for the active variables. We note the strong 

similarity between the one-step estimator and the “debiased lasso” construction of Zhang 

and Zhang (2014), Bühlmann (2013), van de Geer et al. (2013), and Javanmard and 

Montanari (2014). In the context of Gaussian regression, the latter approach uses

βd ≡ βM + (1/N)ΘXT(y − XβM) (25)

where Θ is an estimate of (XT X/N)−1. This estimator takes a Newton step in the full model 

direction. Our one-step estimator has a similar form to (25), but takes a step only in the 

active variables, leaving the others at 0. Further, the (XM
T XM /N)−1

 is used as the estimate for 

Θ. The debiased lasso (25) uses a full model regularized estimate of Θ and ignores the 

constraints in (17). As pointed out by a referee, the debiased lasso is more complex because 

it does not assume that the lasso has the screening property, (i.e. the true nonzero set is 

included in the estimated nonzero set). Another important difference is that their target of 

inference for the debiased lasso is a population parameter, i.e. is determined before 

observing the data. This is not the case for our procedure.
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Remark B. The conclusions of Result 1 can be strengthened to hold uniformly over 

compact subsets of θM
∗  parameters. While we do not pursue this here, such results are stated 

more formally in Tian and Taylor (2015) in the setting where noise is first added to the data 

before model fitting and selection. Lemma 1 is a statement about the conditional distribution 

of the pivot under selected model. In the Gaussian case, similar results hold unconditionally 

for the pivot in the saturated model Tian and Taylor (2014); Tibshirani et al. (2015).

Remark C. For the Cox model, we define the one-step estimator in a similar fashion. In 

terms of the appropriate distribution for inference, we simply replace the likelihood by a 

partial likelihood.

3.3 Unpenalized variables

It is common to include an intercept in logistic regression and other models, which is 

typically not penalized in the ℓ1 penalty. More generally, suppose that features Un×k are to 

have unpenalized coefficients while those for Xn×p are to be penalized. This changes the 

KKT conditions we have been using somewhat, but not in any material way. We now have η 
= Uα + Xβ and the KKT conditions now include a set of conditions for the unpenalized 

variables, say U. In the logistic regression case, these read as

UTW(z − XMβM − Uα) = 0 . (26)

The corresponding one-step estimator is

α
βM

=
α

βM
+ IM(α, βM)−1 0

λsM

where IM is the (|M|+k)×(|M|+k) Fisher information matrix of the submodel M. In terms of 

constraints, we only really need consider the signs of the selected variables and the 

corresponding “plug-in” form of the active constraints are

sign βM − EM IM(α, βM)−1 0
λsM

= sM .

The population version uses the expected Fisher information at (α∗, βM
∗ ) instead of the 

observed information and EM is the matrix that selects rows corresponding to M. As our 

one-step estimator is expressed in terms of the likelihood this estimator can be used in 

problems that are not regression problems but that have unpenalized parameters such as the 

graphical LASSO discussed in Section 6.
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3.4 The random X-case

The truncated Gaussian theory of Lee et al. (2013) assumes that X is fixed, and conditions 

on it in the inference. When X is random (most often the case), this ignores its inherent 

variability and makes the inference non-robust when the error variance is non-

heterogeneous. This point is made forcefully by Buja et al. (2016).

The one-step estimation framework of this paper provides a way to deal with the problem. 

Consider for simplicity the Gaussian case for the lasso of Lee et al. (2013), which expresses 

the selection as Ay ≤ 0 with y ∼ N(μ, Iσ). Above, we have re-expressed this as β̄M ~ N(β*, 
Σ) where β̄M is the one-step estimator for the selected model. In the Gaussian case, β̄M is 

just β̂M, the usual least squares estimate on the selected set and ∑ = (XM
T XM)−1

σ2. Now 

analogous to (21), for the Gaussian case we have the asymptotic result

βM − βM
∗

X−M
T (y − Xβ∗) − EF[X−M

T XM](βM − βM
∗ )

N(0, ∑′ ) . (27)

This suggests that we can use the pairs bootstrap to estimate the unconditional variance-

covariance matrix Σ′ and then simply apply the polyhedral lemma, as before. Alternatively, 

a sandwich-style estimator of Σ′ can be used.

Figure 2 shows an example, illustrating how the pairs bootstrap can give robustness with 

heterogeneity of the error variance. Details are in the caption.

4 Simulations

To assess performance in the ℓ1-penalized logistic model, we generated Gaussian features 

with pairwise correlation 0.2 in two scenarios: n = 30, p = 10 and n = 40, p = 60. Then y was 

generated as Pr(Y = 1|x) = 1/(1 + exp(−xTβ)). There are two signal settings: null (β = 0) 

(Figure 3) non-null (β = (5, 0, 0 …)) (Figure 4). Finally, in each case we tried two methods 

for choosing the regularization parameter λ: a fixed value yielding a moderately sparse 

model and cross-validation. The figures show the cumulative distribution function of the 

resulting p-values over 1000 simulations. Thus a function above the 45 degree line indicates 

an anti-conservative test in the null setting and a test with some power in the non-null case. 

We see the adjusted p-values are close to uniform under the null in every case and show 

power in the non-null setting. Even with a cross-validation-based choice for λ the type I 

error seems to be controlled, although we have no theoretical support for this finding. In 

Figure 3 we also plot the naive p-values from GLM theory: as expected they are very anti-

conservative.

Figure 5 shows the results of an analogous experiment for the Cox model in the null setting, 

using exponential survival times and random 50% censoring. Type I error control is good, 

except in the cross-validation case where it is badly anti-conservative for smaller p-values. 
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We have seen similar behaviour in the Gaussian lasso setting, and this phenomenon deserves 

further study.

Table 1 shows the miscoverage and median lengths of intervals for the logistic regression 

example in the null setting, with a target miscoverage of 10%. The intervals can sometimes 

be very long, and in fact, have infinite expected length.

As a comparison, Table 2 shows analogous results for Gaussian regression, using the 

proposal of Lee et al. (2013). For estimation of the error variance σ2, we used the mean 

residual error for N > p and the cross-validation estimate of Reid et al. (2013) for N < p.

Again, the intervals can be quite long. There are potentially better ways to construct the 

intervals: Tibshirani et al. (2015) propose a bootstrap method for post-selection inference 

that in our current problem would draw bootstrap samples from z1, z2, … zn and use their 

empirical distribution in the polyhedral lemma (in place of the Gaussian distribution). The 

“randomized response” strategy provides another way to obtain shorter intervals, at the 

expense of increased computation: see Tian and Taylor (2015).

5 Examples

5.1 Liver data

The data in this example and the following (edited) description were provided by D. 

Harrington and T. Fleming.

“Primary biliary cirrhosis (PBC) of the liver is a rare but fatal chronic liver disease of 

unknown cause, with a prevalence of about 50-cases-per-million population. The primary 

pathologic event appears to be the destruction of interlobular bile ducts, which may be 

mediated by immunologic mechanisms.

The following briefly describes data collected for the Mayo Clinic trial in PBC of the liver 

conducted between January, 1974 and May, 1984 comparing the drug D-penicillamine 

(DPCA) with a placebo. The first 312 cases participated in the randomized trial of D-

penicillamine versus placebo, and contain largely complete data. An additional 112 cases did 

not participate in the clinical trial, but consented to have basic measurements recorded and to 

be followed for survival. Six of those cases were lost to follow-up shortly after diagnosis, so 

there are data here on an additional 106 cases as well as the 312 randomized participants.”

We discarded observations with missing values, leaving 276 observations. The predictors are

X1 : Treatment Code, 1 = D-penicillamine, 2 = placebo.

X2 : Age in years. For the first 312 cases, age was calculated by dividing the number 

of days between birth and study registration by 365.

X3 : Sex, 0 = male, 1 = female.

X4 : Presence of ascites, 0 = no, 1 = yes.

X5 : Presence of hepatomegaly, 0 = no, 1 = yes.
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X6 : Presence of spiders, 0 = no, 1 = yes.

X7 : Presence of edema, 0 = no, .5 yes but responded to diuretic treatment, 1 = yes, 

did not respond to treatment.

X8 : Serum bilirubin, in mg/dl.

X9 : Serum cholesterol, in mg/dl.

X10 : Albumin, in gm/dl.

X11 : Urine copper, in μg/day.

X12 : Alkaline phosphatase, in U/litre.

X13 : SGOT, in U/ml.

X14 : Triglycerides, in mg/dl.

X15 : Platelet count; coded value is number of platelets per cubic ml. of blood divided 

by 1000.

X16 : Prothrombine time, in seconds.

X17 : Histologic stage of disease, graded 1, 2, 3, or 4.

We applied Cox's proportional hazards model. Figures 6 and 7 show the results. As 

expected, the adjusted p-values are larger than the naive ones and the corresponding 

selection (confidence) intervals tend to be wider.

6 The Graphical lasso

Another, different, example is the graphical lasso for estimation of sparse inverse covariance 

graphs. Here we have data Xn×p ∼ N(0, Σ). Let S = XT X/N, Θ = Σ−1.

We maximize

ℓ(Θ) = log det Θ − trS∑ − λ Θ 1 (28)

where the norm in the second is the sum of the absolute values.

The KKT conditions have the form

Θ−1 − S − λs(Θ) = 0 (29)

or for one row/column, Σ11β − s12 − λs(β) = 0, where β is a p − 1 vector in the pth row/

column of Θ, excluding the diagonal, and Σ 11 is the block Σ of excluding one row and 

column. Defining R = d2ℓ/dΘdΘT we have
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ΘM = ΘM + λR−1sM . (30)

Hence we apply the polyhedral lemma to ΘM N(ΘM
∗ , R−1) with constraints −diag (sM)(Θ̄

M

−R−1 sM) ≤ 0. From this we can obtain p-values for testing whether a link parameter is zero 

(H0 : θjk = 0) and confidence intervals for θjk. We note the related work on high-dimensional 

inverse covariance estimation in Jankova and van de Geer (2014).

Figure 8 shows the results of a simulation study with n = 80, p = 20 with the components X1, 
X2, … Xp being standard Gaussian variables. All components were generated independently 

except for the first two, which had correlation 0.7. A fixed moderate value of the 

regularization parameter was used. Conditioning on realizations for which the partial 

correlation for the first two variables was non-zero, the Figure shows the p-values for non-

null (1,2) entry and the null (the rest). We see that the null p-values are close to uniform and 

the non-null ones are (slightly) sub-uniform.

6.1 Example

Here we analyze the protein data discussed in Friedman et al. (2008). The measurements are 

from flow cytometry, with 11 proteins measured over 7466 cells. Table 3 and Figure 9 show 

the results of applying the post-selection procedure with a moderate value of the 

regularization parameter λ. Six interactions are present in the selected model, with only one 

(Mek-P38) being strongly significant.

7 Discussion

We have proposed a method for post-selection inference, with applications to ℓ1-penalized 

likelihood models. These include generalized linear models, Cox's proportional hazards 

model, and the graphical lasso. As noted earlier, while our focus has been on selection via ℓ1-

penalization, a similar approach can be applied to forward stepwise methods for likelihood 

models, and in principle, least angle regression.

A major challenge remains in the estimation of the tuning parameter λ One possibility is to 

use a choice proposed by Negahban et al. (2012) (Theorem 1), which is λ′ = 2⋅E[maxj ∇ 
L(0)]. In the logistic and Cox models, for example, this is not a function of y and hence the 

proposals of this paper can be applied. More generally, it would be desirable to allow for the 

choice of λ by cross-validation in our methodology. Choosing λ by cross-validation is 

feasible, particularly in the “randomized response” setting of Tian and Taylor (2015) though 

this approach requires MCMC for inference. A related approach to selective inference after 

cross-validation is described in Loftus (2015).

The proposals of this paper are implemented in our selectiveInference R package in the 

public CRAN repository.
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Appendix

The Polyhedral lemma and truncation limits for post-selection Gaussian 

inference

Let y ∼N(μ, Σ) and suppose that we apply the lasso with parameter λ to data (X, y), yielding 

active variables M. Lee et al. (2013) show that for the active variables, 

A1 = − D(XM
T XM)−1

XM
T , b1 = − D(XM

T XM)−1
λs where D = diag(s). For inactive variables, 

A0 = 1
λ

X−M
T

−X−M
T

, b0 =
1 + X−M

T XMβ /λ

1 − X−M
T XMβ /λ

Finally, we define A =
A1
A0

, b = (b1, b0). They also show that

Ay ≤ b = ν−(y) ≤ γTy ≤ ν+(y), ν0(y) ≥ 0 , (31)

and furthermore, γT y and (ν−(y), ν+(y), ν0(y)) are statistically independent. This surprising 

result is known as the polyhedral lemma. Let c ≡ Σγ(γTΣγ)−1, and r ≡ (IN − cγT)y. Then the 

three values on the righthand side of (31) are computed via

ν−1(r) = max
j: (Ac) j < 0

b j − (Ar) j
(Ac) j

ν+1(r) = min
j: (Ac) j > 0

b j − (Ar) j
(Ac) j

ν0(r) = min
j: (Ac) j = 0 b j − (Ar) j .

(32)

Hence the selection event {Ay ≤ b} is equivalent to the event that γT y falls into a certain 

range, a range depending on A and b. This equivalence and the independence means that the 

conditional inference on γT μ can be made using the truncated distribution of γT y, a 

truncated normal distribution.

The Hessian for the graphical lasso

Let (Δij)1≤i≤j≤p denote the upper triangular parameters for the graphical lasso and
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Θ(Δ)i j =
Δ ji i > j

Δi j i ≤ j

be the symmetric version so that

∂
∂Δi j

Θkl = δikδ jl + δilδ jk .

Now,

∂2
∂Θi j∂Θkl

( − log det Θ) = Tr(eie j
TΘ−1ekel

TΘ−1) = ∑ jk ∑il

with Σ = Θ−1. Note that we evaluate this at a symmetric matrix, i.e. ΘT = Θ.

Therefore,

∂2
∂Δi j∂Δkl

( − log det (Θ(Δ)))

= ∑
i′, j′, k′, l′

∑ j′k′ ∑i′l′ (δii′δ j j′ + δi j′δ ji′)(δkk′δll′ + δkl′δlk′)

= 2(∑il∑ jk + ∑ik∑ jl) .
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Figure 1. 
South African Heart disease data. P-values from naive and selection-adjusted approaches, 

for original data (left) and data with 100 additional noise predictors (right). Each model was 

chosen by lasso-penalized logistic regression, choosing the tuning parameter by cross-

validation. The small p-values in the left panel are all below 0.001
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Figure 2. 
P-values for the lasso in the Gaussian setting: n = 200, p = 50, 20 strong signals. Predictors 

have pairwise correlation of 0.3 and variance of the errors depends on non-signal variables. 

Shown are the quantile-quantile plots for the non-signal variables in realizations for which 

the lasso has successfully screened (captured all of the signal variables). We see that the 

conditional analysis yields anti-conservative p-values while the pairs bootstrap gives p-

values closer to uniform.
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Figure 3. 
P-values for the logistic regression model, null setting. The top panels use a fixed λ while 

the bottom ones use cross-validation to choose λ.
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Figure 4. 
P-values for the logistic regression model, non-null setting. The top panels use a fixed λ 
while the bottom ones use cross-validation to choose λ.
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Figure 5. 
P-values for the Cox Model, null setting. The top panels use a fixed λ while the bottom ones 

use cross-validation to choose λ.
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Figure 6. P-values for Cox model applied to the liver data
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Figure 7. Selection intervals for Cox model applied to the liver data
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Figure 8. 
Simulation results: P-values for the graphical lasso. Details are given in the text.
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Figure 9. 
Results for protein data. The red lines indicate non-zero fitted entries in Θ̂.
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Table 1

Lasso-penalized logistic regression. Details as in Figure 4. Shown are the the miscoverage and median length 

of selection (confidence) intervals for main proposal of this paper. The target miscoverage is 10%. Selection of 

λ is done using either a fixed value yielding moderate sparsity or cross-validation (cv).

N>p, fixed λ N>p, cv N<p, fixed λ N<p, cv

miscoverage 0.11 0.11 0.14 0.14

median length 8.07 6.63 5.75 29.69
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Table 2

Lasso-penalized Gaussian regression. Shown are the miscoverage and median lengths of selection 

(confidence) intervals based on the Gaussian model of Lee et al. (2013). The target level is 10%. Selection of 

λ is done using either a fixed value yielding moderate sparsity or cross-validation (cv).

N > p, fixed λ N >p, cv N < p, fixed λ N < p, cv

miscoverage 0.11 0.12 0.13 0.10

median length 12.29 6.90 20.50 32.06
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Table 3
P-values from the graphical lasso applied to the protein data

Protein pair P-values

Raf -Mek 0.789

Mek -P38 0.005

Plcg- PIP2 0.107

PIP2 -P38 0.070

PKA -P38 0.951

P38 -Jnk 0.557
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