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Abstract: Hydrogen atom transfer-mediated intramolecular C-C 

coupling reactions between alkenes and nitriles, using PhSiH3 and 

catalytic Fe(acac)3, are described. This introduces a new strategic 

bond disconnection for ring-closing reactions, forming ketones via 

imine intermediates. Of note is the scope of the reaction, including 

formation of sterically hindered ketones, spirocycles and fused cyclic 

systems.  

In the early 1960s, Kwiatek and Seyler first reported the use of 

metal hydrides as catalysts in the hydrogenation of α,β-

unsaturated compounds.[1,2] The discovery by Halpern,[3] later 

elegantly developed by Norton,[4] that metal-hydride hydrogen 

atom transfer (HAT) proceeded by a free-radical mechanism 

opened the door to a wide range of alkene hydrofunctionalisation 

reactions. But it was the pioneering work by Mukaiyama[5] on the 

catalytic hydration of alkenes, using Co(acac)2 and oxygen, that 

sparked wider interest in the field of alkene hydrofunctionalisation. 

As a result, there now exists an extensive ‘toolkit’ for the addition 

of hydrogen and a functional group to an alkene with Markovnikov 

selectivity and high chemo-selectivity using cobalt, manganese 

and iron complexes.[6,7] Efforts have also been made to extend 

HAT methodologies to C-C bond formation, both in an intra- and 

intermolecular fashion: Baran’s group developed a general C-C 

coupling reaction, utilising electron-deficient alkenes as capable 

radical acceptors (Scheme 1ai).[8–10] Hydropyridylation of alkenes 

by intramolecular Minisci reaction was recently demonstrated by 

Starr,[11] which allows for the formation of structures such as 

dihydropyranopyridines (Scheme 1aii). Furthermore, whilst 

conducting the work described in this paper, Bonjoch showed that 

ketones were able to undergo radical cyclisation to their tertiary 

alcohol counterparts (Scheme 1aiii).[12]  

Yet, despite the use of radical acceptors such as 

acrylonitrile,[9] the HAT-initiated radical addition to nitriles has 

remained unreported. Whilst radical cyclisation onto a C≡N π-

bond is feasible, it is about 50 times slower than its C=C and C≡C 

variants.[13] This is highlighted by the numerous reported  failed 

attempts to cyclise onto a nitrile group;[14–16] although in isolated 

examples, radical cyclisations to nitriles have been achieved 

utilising tributyltin hydride,[17–19] titanium[20–22] and manganese[23] 

reagents.  

In this work (Scheme 1b), we show that the scope of HAT-

mediated cyclisation reactions can be expanded to exploit nitriles 

as radical acceptors, despite potential issues such as β-

scission[24] and competing alkene/nitrile reduction pathways.[25] 

 

 

Scheme 1. a) Previous examples of HAT-mediated C-C bond forming 

cyclisation reactions, b) the outline of this work and its challenges. 

 During studies of conventional hydrofunctionalisation 

chemistry with alkene-nitrile 1, an interesting observation was 

made (Scheme 2). Rather than the radical intermediate A reacting 

with the electrophilic radicophile TsCN in an intermolecular 

fashion, leading to product B, the radical was trapped in an 6-exo-

dig cyclisation to afford imine C. Dihydroquinolinone 2 was 

subsequently isolated from the reaction mixture upon treatment 

with aqueous acid (see below).  

 

 

Scheme 2. Intramolecular HAT-mediated radical cyclisation onto the proximal 

nitrile vs. conventional hydrofunctionalisation reaction. 

To explore the scope of the reaction, conditions were 

screened for conversion of test substrate 1 to ketone 2 (Table 1, 

see SI for further details). As oxygen might be needed for the 

regeneration of the catalyst, but could also potentially 

detrimentally intercept crucial organic radicals on our pathway, we 

performed experiments in sealed vials with a limited headspace 

of air (conditions A), or open to air (conditions B), or occasionally 

under inert gas (N2) (conditions C), in all cases using solvents that 
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were not degassed. To access the ketone, it was found that 

hydrolysis of the imine intermediate was most effective under 

microwave conditions. 

Examining firstly the catalyst, the reaction provided higher 

yields when using Fe(acac)3 rather than Mn(dpm)3 (entry 1 vs. 

entry 2). Switching from EtOH as solvent (see SI) to iPrOH caused 

no change in yields for reactions performed under similar 

conditions; however, iPrOH was preferred for reactions 

conducted open to the air because of its higher boiling point. 

Comparison of entries 3 and 4 showed that for small scale 

reactions, loading at 50 mol% of Fe(acac)3 worked better than 

20%, but when performed on larger (0.5 mmol) scale, conditions 

B with 20 mol% catalyst gave the best isolated yield of desired 

ketone 2 (94%) on a 0.5 mmol scale, after just 1 h at 50 ºC (cf. 

entry 5 vs 6).  

Table 1 Screening of reaction conditions for conversion of 1 to 2. 

 

 

Entry[a] [M] (mol%) Solvent Conditions[b] 
Yield (%) 

1 2 

1 Fe(acac)3 (50) EtOH A 3 81 

2 Mn(dpm)3 (50) EtOH A 14 66 

3 Fe(acac)3 (50) iPrOH B <1 70 

4 Fe(acac)3 (20) iPrOH B <1 57 

5[c] Fe(acac)3 (20) iPrOH A 19 71 

6[c] Fe(acac)3 (20) iPrOH B - 94 

[a] HAT: 0.1 mmol; solution yield quoted, quantified by HPLC using an 

internal standard. [b] Conditions A, performed in a sealed vial with limited 

headspace of air; conditions B, performed in a vial open to air. [c] 0.5 mmol 

scale, isolated yields quoted. 

We also optimised for conversion of substrate 3, bearing an 

all-carbon side-chain, to ketone 4 (Table 2, see SI for further 

details), and discovered subtle differences compared to the N-

linked substrate 1. Substrate 3 performed moderately well (59% 

yield) on a small scale under the sealed conditions A (entry 1), 

with the competitive formation of oxidised side-product 5, 

reflecting slower radical cyclisation kinetics than for substrate 1. 

To enhance the kinetics, hexafluoroisopropanol (HFIP) was 

selected as a co-solvent. HFIP is a known Lewis acid[26] that might 

facilitate cyclisation onto the nitrile group. Addition of HFIP as a 

co-solvent with EtOH (1:1) increased the yield of desired product 

4 to 77% (entry 2). This was increased yet further to 86% under 

conditions C (entry 3). Aerobic conditions on a 0.1 mmol scale 

(entry 4), were not beneficial, with the undesired tertiary alcohol 5 

predominating at lower temperature (entry 5). However, on larger 

scale (0.5 mmol), aerobic conditions with 20 mol% catalyst 

(optimum for substrate 1) gave a good yield of 4 (entry 6), 

although a superior yield (83%) was observed with EtOH:HFIP 

(N2, entry 7). Conducting the reaction under conditions C in pure 

EtOH depleted the conversion (entry 8), highlighting the 

importance of HFIP for substrate 3 when the volume of air is 

limited. The beneficial effect of HFIP may be due to its Lewis acid 

character, although its benefits may extend beyond this - oxygen 

has a high solubility in fluorinated solvents,[27] which may facilitate 

catalyst turnover under sealed conditions (see SI, homogeneous 

solution for entry 7 vs. heterogeneous for entry 8). 

Table 2. Screening of reaction conditions for conversion of 3 to 4. 

 

Entry[a] Solvent Conditions 
Yield (%) 

(3) (4) (5) 

1 EtOH A 3 59 8 

2 EtOH:HFIP A <1 77 5 

3 EtOH:HFIP C 4 86 3 

4 iPrOH B <1 52 18 

5[b] iPrOH B 21 11 51 

6[c*] iPrOH B  74  

7[c] EtOH:HFIP C  83  

8[d*] EtOH C  33  

[a] HAT: 0.1 mmol; solution yield quoted, quantified by HPLC using an 

internal standard. [b] HAT conducted at RT. [c] 0.5 mmol scale, isolated 

yields quoted. *20 mol% Fe(acac)3. [d] 0.5 mmol scale, NMR yield quoted 

as 3 and 4 co-elute during chromatography. 

The optimised conditions (Table 1, entry 6) were applied to 

a range of aromatic substrates (Scheme 3). The 5-exo-dig 

cyclisation of alkene-nitrile 6 proceeded excellently under aerobic 

conditions (catalyst loading as low as 5 mol% also worked well; 

see SI), with only a slight drop in yield for the 6-exo-dig variant for 

substrate 3. Benzyl protection of the tethering NH in 7 was well 

tolerated (although not necessary, cf. 1) as was the inclusion of 

steric hindrance ortho to the nitrile in 8. The presence of an iodide, 

(substrate 9), was also well tolerated.  

The amino-tethered substrate (1) outperforms its all-carbon 

variant (3), likely due to the planar N atom, positioning the two 

reacting groups in closer proximity resulting in faster cyclisation. 

Pleasingly, the HAT reaction of 1 to 2 was performed on a 1g 

scale without decrease in yield. Cyclisation proceeded smoothly 

with electron-donating aryl substituents para to the nitrile, 

operating either by inductive effect [10 gave 21 (77%)] or 

mesomeric effect) [11 gave 22 (69%)]. Similarly, electron-

withdrawing groups (CF3, 12) (CO2Et, 13) produced successful 

cyclisations (76% and 88% respectively, as did heterocycle 14. 

Facile access to spirocycles 26 and 27 was also achieved in good 

yields (72% and 82% respectively), providing a new entry to 

structurally complex scaffolds. 

We next turned our attention to alkene-nitrile cyclisations in 

which the alkene and nitrile are not rigidly held by an aromatic ring 

(Scheme 4). Pleasingly, cis-fused aliphatic ring system 34 was 

formed in very good yield (73%) from 28. Substrate 29  

 
Scheme 3. Aromatic substrate scope for the HAT-mediated cyclisation of 

alkene-nitriles. 
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Isolated yields quoted. All reactions performed on a 0.5 mmol scale using 

conditions from Table 1 entry 6, unless otherwise stated. If ‘X‘ is undefined, 

assume it is CH. [a] Conditions taken from entry 7, Table 2. [b] Hydrolysis for 5 h. 

*94% yield on 1g (5.8 mmol) scale. 

derived from diethyl malonate cyclised in excellent yield (93%) to 

form 5-membered saturated ring 38 and the analogous 6-

membered product 36 was obtained from 30. Ethyl cyanoacetate-

derived 31 was cyclised in good yield to form 37 (61%). 

Interestingly, substrate 32 underwent 5-exo-dig-cyclisation 

followed by reversible nitrile translocation. In aerobic conditions, 

the resulting benzyl radical is trapped by oxygen leading to the 

formation of benzoyl derivative 39.[28] However, under conditions 

C, the iminyl radical was preferentially trapped and the resulting 

imine was hydrolysed on work-up to the expected ketone 38 

(70%). The excellent selectivity shown likely reflects the strength 

of the Si-H bond, impeding abstraction by a stabilised benzylic 

radical; in contrast, the electrophilic iminyl radical may more 

rapidly abstract an H atom from the hydridic Si-H bond, due to 

polarity matching. Meanwhile, trapping of molecular oxygen 

occurs rapidly for the benzylic radical, while the electrophilic iminyl 

radical should be slow to form a weak N-O bond through coupling 

to O2. The diphenyl variant 33 underwent cyclisation to yield the 

highly sterically hindered, and consequently hydrolytically stable, 

imine 40. 

We envisage a simplified mechanism[10] for coupling of alkenes to 

nitriles (Scheme 5). HAT from in situ-generated HFe(acac)2 (41) 

to the alkene sets up the exo-dig cyclisation. We then considered 

the fate of the resulting iminyl radical. In the examples by 

Bonjoch[12]  (alkoxyl radicals) and Baran[8–10] (radicals α- to an 

electron-withdrawing group), single electron transfer (SET), is 

proposed to convert the radicals to the 

Scheme 4. Construction of aliphatic ring systems by HAT-mediated cyclisation 

of alkene-nitriles. 

 
Isolated yield quoted, NMR yield determined with an internal standard given in 

parenthesis were applicable. [a] Aerobic conditions taken from Table 1, entry 6. 
[b] Inert conditions taken from Table 2, entry 7. * 30 mins reaction time and 

hydrolysis omitted, isolated product is impure. ^ 75 mol% Fe(acac)3 and 4.5 eq 

PhSiH3. 
+NMR yield, some fractions of 39 co-elute on silica with the 

hydrogenated starting material. 

corresponding anions, with FeII being simultaneously oxidised to 

FeIII. The iminyl radical present in our reactions may not be so 

easily reduced by electron transfer, and instead may abstract H 

from PhSiH3 (supported by large drop off in yield when only 1.5eq 

of PhSiH3 are used, see SI). The resulting imine is then 

hydrolysed in situ with aqueous acid to the corresponding ketone. 

The FeII species can be oxidised to FeIII in the presence of oxygen 

to complete the catalytic cycle. 

Scheme 5. Proposed mechanism for HAT-mediated alkene-nitrile 

cyclisation 

 
 If the iminyl radical intermediate is not being converted 

rapidly to the anion, then it should be possible to intercept the 

radical in a tandem cyclisation reaction (Scheme 6). To test this 

hypothesis, we designed substrate 42 (see S2 in SI also), capable 

of undergoing a second cyclisation and subjected it to our 

standard reaction conditions (Scheme 6). The isolated tandem 

product was the 7-membered ring heterocycle 43 (14%), 

(rationalised in the SI file). The mono-cyclised product 44 was 
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also isolated (10%). This initial observation of tandem radical 

cyclisations supports our proposal that the lifetime of the iminyl 

radical is not negligible. 

Scheme 6. HAT-mediated alkene-nitrile-alkene tandem cyclisation reaction. 

 

NMR yields quoted were determined with an internal standard (products 
isolated by MDAP and characterised).  

Encouraged by this result, we next applied our methodology 

to substrates bearing a cyanamide moiety that could undergo a 

tandem cyclisation with an (hetero)aromatic ring (Scheme 7). To 

our delight, benzamide 45 underwent the desired transformation 

in very good yield (70%) to form spiro-quinazolinone 48. We also 

pursued challenging targets 49 and 50, of direct relevance29-31 to 

medicinal chemistry programmes. Nicotinic acid-derived 

substrate 46 gave 49 as the major product (30%), along with a 

small amount of 4-substituted regioisomer (5%); analogously, 

pyrazole 47 was converted to the complex fused heterocycle 50, 

an otherwise challenging target.  

Scheme 7.  HAT-mediated alkene-cyanamide-(hetero)aryl tandem cyclisation 

reactions. 

 

Isolated yields quoted. [a] Fe(acac)3 20 mol%, 1.05 eq PhSiH3, iPrOH, 50 ºC, 1h, 

air. [b] Fe(acac)3 20 mol%, 1.5 eq PhSiH3, 2 eq TFA, iPrOH, 80 ºC, 14h, air - note 

5% 4-substituted regioisomer isolated also. * 24 h. Reduced yields for the 

nitrogen containing heterocycles is due to esterification of the starting 

cyanamide with isopropanol. 

In summary, we have developed an iron-mediated HAT 

reaction between alkenes and nitriles. This work allows for the 

formation of hindered ketones, spirocycles and fused bicyclic 

systems. The reaction has been optimised to perform catalytically 

under air and has been shown to scale-up without significant loss 

of yield. Further investigations on cyanamides and other novel 

HAT substrates are currently ongoing. 
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C-C coupling reaction between alkenes and nitriles, using PhSiH3 and catalytic 

Fe(acac)3. This introduces a new strategic bond disconnection for ring-closing 

reactions, forming ketones via imine intermediates. 
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