This is the peer reviewed version of the following article: Chemistry - A European Journal, 2010, Volume 16, Issue 22, Pages 6416-6428, which has been published in final form at: <u>https://doi.org/10.1002/chem.201000580</u>

Low-Valent Organometallics – Synthesis, Reactivity and Potential Applications

Stephan Schulz*^[a]

[a] Prof. Dr. S. Schulz

Inorganic Chemistry, University of Duisburg-Essen, S07S03C30, 45117 Essen Fax: (+) 201-1833830, E-mail: stephan.schulz@uni-due.de

Abstract: General concepts for the synthesis and stabilization of low-valent organometallic complexes of group 2, 12, 13, and 15 metals and common structural motifs are described. While kinetically-stabilized complexes are in the focus for more than two decades, the principle of base-stabilization only recently allowed the synthesis of unforeseen compounds. As-prepared complexes not only show fascinating structural diversities, but exhibit also very interesting chemical properties. Low-valent complexes are of particular interest in the synthesis of novel molecular complexes, but may also find applications as tailor-made precursors for the synthesis of nanosized materials.

Introduction

The synthesis and characterization of low-valent organometallic complexes of main group elements has received a steadily growing interest over the last decades owing to the general interest in fundamental molecular processes of the formation and breaking of metal–metal bonds. Moreover, the so-called "*classical double bond rule*",¹ according to which the formation of stable element-element double bonds is restricted to elements of the second row of the periodic table, has also largely motivated these studies, which not only resulted in the synthesis of novel multiple-bonded main group element complexes,² but also unforeseen complexes in unusual oxidation states such as metal-rich "*metalloid*" cluster complexes³ have been structurally characterized for the first time. In addition, low-valent complexes exhibit fascinating chemical and physical properties, which make them very promising precursors in materials sciences.

Herein, general synthetic approaches for low-valent group 2 (Mg), 12 (Zn), 13 (Al, Ga, In) and 15 (Sb, Bi) metal complexes are briefly summarized and central reaction patterns, which are of significant interest for their potential application as suitable reagent in metal organic synthesis are described. In addition, their potential capability to serve as novel, tailor-made precursors for the synthesis of nanostructured materials will be demonstrated.

1

1. Synthesis and reactivity of metal-metal bonded complexes

Metal complexes containing metal-metal single and multiple bonds are typically synthesized by Wurtzanalogous coupling reaction of halide-substituted complexes or by salt elimination reaction starting with low-valent metal halides. The use of sterically demanding, very often chelating, organic substituents plays a crucial role (*kinetical stabilization*). In addition, strong Lewis bases (σ -donors) such as N-heterocyclic carbenes (NHC's) were found in recent years to be very suitable for the synthesis of unforeseen complexes (*base-stabilization*) such as (NHC)₂Si₂ containing a Si=Si double bond with Si atoms in the formal oxidation state 0.⁴

1.1 Kinetically-stabilized complexes

1.1.1 Low-valent Mg, Ca and Zn complexes

Even though $[Hg_2]^{2^+}$ and $[Cd_2]^{2^+}$ dications are well known for decades, it was not before 2004 when *Carmona et al.*⁵ reported for the first time on the structural characterization of a complex containing a direct Zn-Zn bond.⁶ Decamethyldizincocene Cp*₂Zn₂ was unexpectedly obtained by reaction of Et₂Zn and Cp*₂Zn. Since then, Zn-Zn bonded complexes bonds have been synthesized by reductive coupling reactions (DippNacnac₂Zn₂; DippNacnac = CH[MeC[2,6-*i*-Pr₂C₆H₃)N]₂),⁷ by reaction of ZnX₂ with anionic ligands (dpp-Bian₂Zn₂ (dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene,⁸ {[(2,6-*i*-Pr₂C₆H₃)NC(Me)]₂}₂Zn₂)⁹ as well as by ligand exchange reactions (Mesnacnac₂Zn₂; MesNacnac = CH[MeC[2,6-*i*-Pr₂C₆H₃)N]₂)).¹⁰ Moreover, complexes of heavier group 12 elements containing Cd-Cd¹¹ and Hg-Hg^{11b} bonds have been synthesized and structurally characterized, including the complete series M₂Ar'₂ (M = Zn, Cd, Hg; Ar' = 2,6-Dipp₂-C₆H₃).

Scheme 1 here

The central Zn-Zn bonds in as-formed complexes range from 2.29 to 2.40 Å. They exhibit high scharacter (up to 95%) except for Ar'₂Zn₂, in which the Zn-Zn bond is mainly build by an overlap of the zinc 4p_z orbitals.^{7b} Calculated bond dissociation energies (BDE) of the Zn-Zn bond range from 55 to 70 kcal/mol, which is comparable to the energies computed for Zn₂H₂ (59 kcal/mol) and the dihalides Zn₂X₂ (57 – 67 kcal/mol).¹²

Motivated by the similarities between Zn and group 2 metals, the synthesis of low-valent group 2 complexes, whose chemistry is also dominated by the oxidation state +II, was investigated in more detail. Mg(I) compounds are known to exist under somewhat extreme conditions such as in deep space $(Mg^{I}(CN))^{13}$ or matrixes at low temperatures (MgX, Mg₂X₂),¹⁴ but organometallic complexes containing Mg-Mg have been prepared for the first time only recently by reductive coupling reactions of RMgI (R = Priso = [(DippN)₂CN*i*-Pr₂]), MesNacnac, DippNacnac, *t*-BuNacnac).¹⁵ In addition,

[K(THF)₃]₂[LMg–MgL] (L = [(2,6-*i*-Pr₂C₆H₃)NC(Me)]₂²⁻) was obtained by reduction of a mixture of a diimine and MgCl₂ with excess K.¹⁶ The Mg-Mg bond distances in these complexes range from 2.808(1) to 2.9370(18) Å, which is longer than the sum of the covalent radii (2.72 Å), but significantly shorter than the distances in diatomic or elemental magnesium (3.890, 3.20 Å). The Mg-Mg σ -bond in DippNacnac₂Mg₂ has considerable s-character, whereas the former ones show predominantly s-character. An experimental charge density study of DippNacnac₂Mg₂ confirmed the covalent nature of the metal-metal interaction even though the electron density between the magnesium atoms is rather diffuse.¹⁷

Figure 1 here

The metal atoms in these complexes reach the oxidation state I upon formation of a metal-metal bond, which is kinetically stabilized by bulky organic substituents. In contrast, *Westerhausen et al.* recently demonstrated, that the Ca(I) complex [(thf)₃Ca{ μ -C₆H₃-1,3,5-Ph₃}Ca(thf)₃] can be stabilized by an aromatic ligand (2,4,6-triphenyl-benzene), whose π^* orbital is in between the ionization energies of the first (6.11 eV) and second ionization (11.87 eV) of calcium. The Ca atoms in this "inverse" Ca(I) sandwich complex adopt opposite positions of the doubly negatively charged arene ligand with a Ca–Ca distance of 4.279(3) Å.¹⁸

Figure 2 here

As-described low-valent group 2 and 12 metal complexes have been used in several reactions, demonstrating their high potential for the synthesis of unusual complexes as summarized in the following.

Adduct formation. Mg(I) complexes except for the bulky *t*-BuNacnac magnesium(I) and the diimine complex were found to react with several Lewis bases with subsequent formation of the corresponding bisadducts R(base)Mg-Mg(base)R, in which both Mg atoms are coordinated by a single Lewis base.¹⁹ In contrast, Cp*₂Zn₂ was found to react with dmap with formation of Cp*Zn-Zn(dmap)₂Cp*, in which both dmap molecules unexpectedly bind in a *geminal* binding mode to only one Zn atom.²⁰

Scheme 2 here

The metal-metal bond distances in these base-stabilized complexes are significantly elongated, most likely due to the higher coordination number of the metal center and in case of (DippNacnac)₂Mg₂ due to the diffuseness of the electron density between the magnesium atoms.

Redox reactions. Magnesium(I) dimers serve as two-center/two-electron reducing agents toward a variety of unsaturated organic substrates such as carbodiimides, isocyanates, azides, azobenzene and cyclooctatetraene. As was expected, their reactivity is inversely proportional to the steric bulk of their substituents.^{15,21}

Scheme 3 here

Sterically less hindered Mg(I) complexes react with AdaN₃ with N-N-bond formation, yielding complexes with an unusual bridging $[AdaN_6Ada]^{2-}$ unit, whereas reactions with *t*-BuN=C=O proceeded with C-C bond formation. The resultant oxamide ligand was found to coordinate two Mg centers in a novel N,O,O ligating fashion. In contrast, sterically more hindered Mg(I) complexes such as the *t*-BuNacnac substituted derivative did not react with CyN=C=NCy and PhN=NPh.

Very recently, *Jones et al.* reported on the reduction reaction of an N-heterocyclic carbene (NHC) adduct of GeCl₂ with various reducing agents. While reactions with sodium metal and KC₈ failed to give any low-valent Ge complex, the reaction with MesNacnac₂Mg₂ yielded the NHC-stabilized digermene (NHC)₂Ge₂ (NHC = :C{N(Ar)CH}₂, Ar = 2,6-*i*-Pr₂-C₆H₃), in which the Ge atoms adopt the formal oxidation state zero.²² The Ge-Ge bond length (2.3490(8) Å) is typical for digermenes (2.344 Å), but significantly longer than typical values observed for digermynes (2.206–2.285 Å). This reaction clearly demonstrates that Mg(I) complexes may serve as very selective reducing agents in metal organic chemistry.

Of particular interest would be the reaction of the low-valent organozinc and -magnesium complexes with dihydrogen. Unfortunately, no signs of hydrogenation reaction were found for dizincocene as well as Mg(I) complexes when treated with H₂ even at elevated temperatures. Only the reaction of MesNacnac₂Mg₂ with H₂ at higher hydrogen pressures of approximately 70 atmospheres and 80 °C yielded numerous products, most likely due to cleavage and/or hydrogenation of the β -diketiminate substituent. The formation of Mg hydride species was not observed in any case.

Protonation reaction. *Carmona et al.* reported on reactions of $Cp*_2Zn_2$ with several H-acidic reagents such as H₂O, *t*-BuOH and NCXyl,⁵ but only disproportionation with subsequent formation of elemental zinc and the Zn(II) complexes was observed. In contrast, the reaction of $Cp*_2Zn_2$ with MesnacnacH at low temperature occurred with protonation of the Cp* substituent and formation of Mesnacnac₂Zn₂.^{10a}

The Zn-Zn bond is preserved in this reaction, which may open a general synthetic pathway to lowvalent organozinc complexes, including complexes which can't be obtained from Wurtz-analogous coupling reactions.

Scheme 4 here

The reaction of $Cp*_2Zn_2$ with $[H(OEt_2)_2][Al\{OC(CF_3)_3\}_4]$ yielded $[Zn_2(dmap)_6][Al\{OC(CF_3)_3\}_4]_2$, which exhibits a (base-stabilized) $[Zn_2]^{2+}$ dication.^{10b}

Figure 3 here

The rather low stability of the $[Zn_2]^{2+}$ dication, which was previously observed in a melt of Zn in ZnCl₂ and characterized by Raman spectroscopy,²³ is in remarkable contrast to the well known $[Hg_2]^{2+}$ and $[Cd_2]^{2+}$ dications and has been subject to several theoretical studies.²⁴ The Zn-Zn bond lengths of the dication of 2.419(1) Å atom is significantly elongated compared to Cp*₂Zn₂ (2.305(3) Å) and the calculated force constant of the Zn-Zn bond of 1.09 mdyne/Å is in between that one reported for $[Zn_2]^{2+}$ in Zn/ZnCl₂ (0.6 mdyne/Å)²⁴ and Cp*₂Zn₂ (1.42 mdyne/Å).²⁵ The Raman spectrum of $[Zn_2(dmap)_6][Al\{OC(CF_3)_3\}_4]_2$ shows a vibration at 174 cm⁻¹, that exhibits some Zn-Zn character. Moreover, an absorption band at 175 cm⁻¹ was reported for the $[Zn_2]^{2+}$ dication in Zn/ZnCl₂ glasses, in which the dication most likely exists as Zn₂Cl₂ unit, for which theoretical calculations predict an a_{1g}-vibration at 194 cm⁻¹.

1.1.2 Low-valent group Al, Ga and In complexes

In 1988, Uhl et al. firstly succeeded in the synthesis and structural characterization of a compound containing an Al-Al bond and the Al atoms in the formal oxidation state II.²⁶ Since then, the number of structurally characterized metal-metal bonded species of the type R₂M-MR₂ containing Al-Al,²⁷ Ga-Ga,²⁸ and In-In²⁹ bonds has systematically increased.³⁰ Complexes of the desired type were obtained by reductive coupling reactions and by salt elimination reactions starting with M₂X₄(dioxane)₂ (M = Ga, In; X = Cl, Br), which contain a central metal-metal single bond. In addition, group 13-metal complexes with the metal centers in the formal oxidation state +I were synthesized by reductive coupling reactions of RMX₂ and by salt elimination reactions using (metastable) solutions of MCl (M = Al, Ga In; X = Cl, Br, I).³¹ These complexes typically form oligomeric structures such as tetrahedral [MR]₄ and octahedral [MR]₆ cluster-type complexes, but also monomeric MR, dimeric RM=MR and chain-like structures such as a linear In₆ chain in In₆R₆I₂³² as well as a "*double tetrahedron*" [{(Me₃Si)₃C}₃Ga₃]Ga-Ga[Ga₃{C(SiMe₃)₃],³³ in which two Ga₄ tetrahedra are bridged by a single

gallium-gallium bond, have been observed. In addition, the synthesis and bonding situation of multiply bonded complexes has been largely investigated.³⁴ By far the most controversially discussed complex of this class is Na₂[(2,6-Dipp₂-C₆H₃)Ga]₂,³⁵ which was described as a digallyne containing a Ga=Ga triple bond. The Ga-Ga bond distance is extremely short 2.319(3) Å and the central C-Ga-Ga-C unit adopts a "*trans-bent*" orientation as was also observed in triple-bonded complexes of heavier group 14 elements of the type RE=ER (R = (2,6-Dipp₂-C₆H₃); E = Ge, Sn, Pb).³⁶ The analogues Al complex Na₂[(2,6-Dipp₂-C₆H₃)Al]₂ shows comparable structural features.³⁷

Metal-rich (*metalloid*) clusters $M_n R_m$ (m < n) with formal oxidation numbers between 0 and I have been largely explored by the Schnöckel group. The number of metal atoms, which are only bound to other metal atoms, range from one as observed in $[Al_7R_6]^-$ (R = N(SiMe_3)₂)³⁸ up to 38 (Al₅₀Cp*₁₂)³⁹ or even 57 $[Al_{77}R_{12}]^{2-40}$, respectively. The metal atom topology in metalloid clusters often reflects the topology of the metal itself as was shown for [N(SiMe₃)₂]-stabilized Al₇, Al₁₂, Al₁₄, Al₆₉ and Al₇₇clusters, in which the arrangement of the Al atoms mimics the close-packed structure of Al metal. The structural diversity observed in metalloid Ga complexes is even more expressed and reflects the more extensive variety of the different Ga phases. For instance, $[Ga_{18}R_8]$ and $[Ga_{22}R_8]$ (R = t-Bu₃Si) each contain a "cube-box" of eight GaR units, in which the remaining Ga atoms are either arranged as observed in the normal pressure modification of β -Ga or in the high-pressure modification Ga(III). The largest metalloid group 13 element clusters $[Ga_{84}R_{20}]^{x-}$ (R = N(SiMe_3)₂, x = 3, 4) contain 60 naked Ga atoms.⁴¹ Their central Ga₂ unit is surrounded by 32 Ga atoms, which consists of two icosahedral Ga₁₁ moieties connected through a puckered Ga₁₀ ring and which exhibits to some extend the icosahedra substructure of δ -gallium. These novel Ga₈₄ clusters not only show fascinating structural features, but are also very interesting due to their electronic properties since they show metallic conductivity⁴² and even superconductivity.43

Figure 4 here

Since the synthesis of low-valent group 13 complexes has been reviewed several times,⁴⁴ this article rather concentrates on their reactivity. The best investigated complexes are Uhl's M_2R_4 complexes (R = CH(SiMe_3)_2),⁴⁵ for which several general reaction types have been explored. Of particular interest are electron transfer reaction, Lewis base addition reactions and ligand exchange reactions, which proceed under preservation of the central M-M bond. In addition, insertion reactions into the M-M bond have been investigated, in detail.⁴⁶ Comparable reactivity patterns have been observed for monomeric, carbene-like diyls RM, dimetallenes RM=MR as well as cluster-type complexes [MR]_x (x = 4, 6).

Moreover, these complexes were found to serve as novel main group element ligands in complex chemistry due to the presence of an *electron lonepair*.

Redox reactions. Reactions with electron-rich azides RN₃, diazenes RN=NR and diazoalkenes R₂CN₂ yielded novel complexes including the first complexes containing M=N double bonds.⁴⁷ 2,6-Dipp-C₆H₃M=N(2,6-(4-*t*-BuXyl)-C₆H₃) (M = Al,⁴⁸ Ga, In)⁴⁹ were obtained from reactions of 2,6-Dipp-C₆H₃M with the sterically encumbered azide 2,6-(4-*t*-BuXyl)-C₆H₃N₃. These complexes adopt transbent CM=NC cores and the M-N bonding in these compounds can be interpreted as an interaction between the triplet form of the nitrene Ar'N and the monovalent M^I species, even though its triplet form is higher in energy than the singlet form. According to theoretical calculations, the double-bonding character within these compounds is relatively weak. In contrast, reactions with sterically less demanding azides typically yielded oligomeric species, as was shown in several reactions with Cp*Al⁵⁰ and Cp*Ga,⁵¹ respectively. Moreover, DippNacnacAl(I) showed some very surprising reactions with Me₃SiN₃, yielding the first aluminatetrazole containing an AlN₄ ring, whereas the reaction with acetylene yielded the first stable aluminacyclopropene.⁵²

Scheme 5 here

Activation of small molecules such as H₂ and P₄ as well as reactions with elemental chalcogens is of particular interest and has been investigated in detail. While H₂ activation so far has not been observed with low-valent group 13 metal complexes,⁵³ both phosphorus and chalcogen atoms were found to insert into the M-M bond of low-valent group 13 complexes. For instance, the reaction of P₄ and [Cp*Al]₄ yielded [Cp*₆Al₆P₄],⁵⁴ whereas [(Tms₃CGa)₃P₄] was obtained from the reaction with [GaCTms₃]₄.⁵⁵ Reactions with elemental chalcogens proceeded with complete oxidation of the M₄ cluster and subsequent formation of heterocubanes [RME]₄ (M = Al, Ga, In; E = S, Se, Te),⁵⁶ whereas the reaction of [Tms₃Cln]₄ with propylene sulfide occurred with partial oxidation and formation of the mixed-valent cluster [(Tms₃C)₄In₄S].⁵⁷ Moreover, less aggregated complexes such as dimeric [{HC[MeCDippN)₂}GaE]₂ (E = O, S)⁵⁸) and monomeric ([*t*-Bu₂Tp]ME (M = Ga, In; E = S, Se, Te) were synthesized.⁵⁹ The monomeric compounds show the shortest M-E bond distances due to their multiple bonding character,⁶⁰ which is very rare for heavier p-block elements. Surprisingly, the reaction of [*t*-Bu₂Tp]In (η²-S4).⁶¹

Coordination chemistry. Univalent group 13 diyl complexes $[MR]_x$ have been applied in coordination chemistry since the M(I)R fragment, which is isolobal with CO and PR₃, exhibits σ -donor and π -

acceptor properties. In particular Cp*M (M = Al, Ga) were found to be suitable donor ligands for a wide range of main group and transition metals.⁶² The Lewis basicity of group 13 diyls was found to steadily decreases with increasing atomic number of the group 13 element and β -diketiminato substituted diyls were found to express a higher Lewis basicity than Cp*-substituted diyls, most likely due to the increased negative charge at the gallium atom.⁶³

Fischer et al. recently demonstrated in a series of very interesting publications, that even MeGa, which is unstable under ambient conditions, as well as "naked" Ga⁺ and In⁺ may serve as ligands in transition metal chemistry. The MeGa ligand was synthesized *in situ* by reaction of the Rh complex (Cp*Ga)₄Rh(Ga(Me)Cp*) with [H(OEt₂)₂]BAr^F₄ (Ar^F = 3,5-(CF₃)₂C₆H₃),⁶⁴ whereas the complexes [GaPt(GaCp*)₄]BAr^F₄ and [InPt(PPh₃)₃]BAr^F₄, in which "naked" Ga⁺ and In⁺ ligands exclusively act as σ - and π -acceptors,⁶⁵ were prepared by reaction of PtL₄ (L = GaCp*, PPh₃) with [Ga₂Cp*]BAr^F₄, which was obtained from the protonation reaction of Cp*Ga with [H(OEt₂)₂]BAr^F₄,⁶⁶ and InBAr^F₄, respectively.

Scheme 6 here

1.1.3 Low-valent Sb and Bi complexes

Low-valent group 15 complexes of the type E₂R₄ with the group 15 element in the formal oxidations state II have been intensely studied in the last century. In fact, As₂Me₄, which was discovered by *Cadet* in 1757, belongs to the first metal organic complexes ever synthesized.⁶⁷ Due to the steadily decreasing E-E bond strength with increasing atomic number, the stability of distibines and dibismuthines is rather low. However, they were found to act as monodentate and bidentate ligands in complexation reactions with transition and main group metal complexes.⁶⁸

Figure 5 here

These reactions either proceeded with preservation or under cleavage of the central E-E bond. For instance, distibines react with group 13 metalorganics with formation of heterocycles of the general type $[R_2MSbR'_2]_x$ (M = Ga, In; x = 2, 3).⁶⁹ Sb-Sb bond cleavage was also observed in the reaction of Cp*Al with *t*-Bu₄Sb₄, which yielded the new complex (Cp*Al)₃Sb₂.⁷⁰ Reactions with elemental chalcogens were also found to proceed with insertion of the chalcogen into the E-E bond.

In addition, complexes containing an E-E double bond have received increasing interest in recent years. Doubly-bonded species were either stabilized in the coordination sphere of a transition metal complex⁷¹ or by sterically demanding substituents such as Tbt $(2,4,6-[(CH(SiMe_3)_2]_3-C_6H_2))$ and Bbt $(2,6-[(CH(SiMe_3)_2]_2-4-[C(SiMe_3)_3]-C_6H_2))$ as was shown by Tokitoh et al.⁷² Very recently, a novel type of

Bi=Bi doubly-bonded compound was obtained by reaction of Bi(OR)₃ with the Ga-NHC analogue DippNacnacGa(I).⁷³

Scheme 7 here

The reactivity of as described distibenes and dibismuthenes has also been investigated. Reduction of Bbt_2Sb_2 with Li metal yielded the stibene radical anion, in which the Sb-Sb bond is elongated due to the population of the antibonding π^* orbital.⁷⁴ In addition, reactions with elemental chalcogens and chalcogen transfer reagents R₃P=E (E = Se, Te) were found to proceed either with formation of four-membered (REO)₂ and three-membered heterocycles of the type R₂E₂Se and R₂E₂Te, whereas sulfurization reactions of Bbt₂E₂ (E = Sb, Bi) with S₈ resulted in the formation four-, five- and six-membered heterocycles.⁷⁵

1.2 Base-stabilized complexes

The synthesis of metal-metal bonds was typically achieved by use of sterically demanding (chelating) organic substituents, which exhibit a kinetically stabilizing effect. However, pioneering studies of *Robinson et al.* only recently demonstrated that the concept of base-stabilization is also very useful for the synthesis of novel main group element complexes.^{2a} In a series of papers, the capability of DippNHC, which is known to be an excellent σ -donor ligand,⁷⁶ for the stabilization of unforeseen molecules including diborene B₂H₂,⁷⁷ P₂,⁷⁸ As₂,⁷⁹ Si₂Cl₂ and even Si₂⁴ has been demonstrated. Moreover, DippNHC was also found to be able to stabilize dichloro- and dibromosilylene SiX₂,⁸⁰ a Ga₆ octahedron (Ga₆Mes₄(DippNHC)₂)⁸¹ and diatomic Ge₂, which was obtained from the reduction with a Mg(I) complex.²²

Scheme 8 here

The diatomic Si₂ and Ge₂ molecules can be regarded as novel, soluble silicon and germanium allotropes,⁸² which are stabilized by two Lewis bases, whereas P_2L_2 (L = DippNHC) is the base-stabilized form of the high temperature phosphorus allotrop P_2 . The formation of these novel types of low-valent main group element complexes not only is very interesting in regard to their unforeseen structural features but may also open a new synthetic approach to novel main group complexes in the near future. Moreover, the principle of base-stabilization is expected also to allow the synthesis of novel transition metal complexes.

2. Potential applications of low-valent metal complexes in material sciences

The search for new nanoscale materials such as binary and multinary III-V, III-VI, II-VI and V-VI materials, which exhibit potential applications in opto- and micro-electronic devices due to their semiconducting and thermoelectric properties, significantly increased the demand for novel, tailor*made* precursors. One-dimensional nanowires and two-dimensional material films are typically obtained via top-down processes. However, the increasing demand for smaller and smaller device architectures has let to new synthetic procedures, which are typically referred to as *bottom-up approach*. Nanosized materials are formed by wet chemical processes in solution (soft chemistry methods) or via gas-phase based techniques such as MOCVD (metal organic chemical vapor deposition) processes. Since the design of the specific molecular precursors used in these processes plays a key role, the interest in novel precursor systems has systematically increased over the last decade. Single source precursors,⁸³ which contain the specific element combination of the desired material preformed at the molecular level within a single molecule, are promising candidates for the synthesis of nanoscale materials since their most important chemical and physical properties such as volatility, stability and decomposition temperatures can be controlled to some extent. In the following, some selected examples are shown, which demonstrate the high potential of novel low-valent precursors in the synthesis of nanoscale materials.

2.1 Material synthesis via gas phase MOCVD process

2.1.1 Deposition of GaSb and GaS films

As-mentioned before, distibines Sb₂R'₄ react with GaR₃ with formation of completely alkyl-substituted heterocycles $[R_2GaSbR'_2]_x$,⁶⁹ which are not accessible by any other standard synthetic procedure. These heterocycles are suitable single source precursors for the deposition of high-quality, crystalline GaSb films in HV-MOCVD (*high vacuum metal organic chemical vapor deposition*) processes at deposition temperatures as low as 400 °C,⁸⁴ which is about 100 °C below typical deposition temperatures achieved with standard precursors (SbR₃ and GaR₃).

Figure 6 here

The polycrystalline film consists of agglomerated GaSb particles as was shown by TEM (*transmission electron microscopy*) and carbon contaminations were only found on the surface of the films. The roughness of these GaSb films was as low as 10 nm as shown by AFM (*atomic force microscopy*).

Lowering deposition temperatures may become an important issue when it comes to the synthesis of metastable materials. A prominent example was given by Barron et al., demonstrating the potential of cubane-type $[(t-Bu)GaS]_4$ precursors for the synthesis of a new metastable cubic GaS.⁸⁵ Heterocubanes [RME]₄ (M = Al, Ga, In; E = S, Se, Te) are generally accessible by reaction of low-valent group 13

diyls RM as well as MR₃ with elemental chalcogens. The deposition of cubic GaS was achieved under low-temperature conditions at 380 °C, which turned out to be essential since the metastable cubic phase readily undergoes phase transition into the thermodynamically stable hexagonal phase at higher temperatures. Traditional precursors for the MOCVD deposition of GaS films are GaMe₃ and H₂S, which typically require decomposition temperatures above 500 °C according to their rather strong Ga-C bonds, consequently yielding the hexagonal phase of GaS.

2.1.2 Deposition of GaSb and Bi nanowires

Semiconducting nanowires nowadays steadily receive an increasing interest due to their advantageous physical properties,⁸⁶ which render them very promising for potential applications in nanoelectronics and optoelectronics.⁸⁷ They were grown by MOVPE (*metal–organic vapor phase epitaxy*)⁸⁸ according to the so-called VLS mechanism (*vapor-liquid-solid*),⁸⁹ in which a low melting metal such as a Aunanoparticle serves as preferential site for adsorption of the reactant(s) and nucleation site for the nanowire growth. The diameter of the growing nanowire is controlled by the size of the droplets, even though the role of the size of the catalytic particle is still discussed.⁹⁰

Figure 7 here

We began only recently to investigate the use of distibines in MOCVD processes. Distibines exhibit significantly lower decomposition temperatures compared to trialkylstibines. For instance, Sb₂Et₄ decomposes between 100 to 250 °C, whereas SbEt₃ starts to decompose at temperatures above 400 °C.⁹¹ Consequently, distibines can be used in the Ga-assisted growth of GaSb nanowires at very low temperature of 250 °C.⁹² In addition, the single source precursor *t*-Bu₃Ga-Sb*i*-Pr₃ was found suitable for the growth of GaSb nanowires at 300 °C in closed glass ampoules.

2.3 Solution-based synthesis of nanoscale E_2Te_3 (E = Sb, Bi) and Bi particles

The wet-chemical approach to nanoscale materials is also intensely investigated.⁹³ The synthesis of E_2Te_3 (E = Sb, Bi), which belong to the most important thermoelectric materials, and Bi nanoparticles is of particular interest, since Bi nanowires show strong diameter-dependent properties such as superconductivity and increased magneto resistance and even stronger increases in the figure of merit (*ZT*) are predicted in quantum wires.⁹⁴ Suitable single source precursors of the type R₂E-Te-ER₂ were synthesized by reaction of elemental Te with the distibine Sb₂Et₄ and dibismuthine Bi₂Et₄. Wet-chemical synthesis typically uses capping agents, which stabilize the nanoparticle. The effect of TOPO on the synthesis of Sb₂Te₃ nanoparticles, which were obtained at 160 °C from the single source

precursor Te(SbEt₂)₂ is clearly visible. Isolated, crystalline Sb₂Te₃ nanoplates were obtained in the presence of TOPO, whereas in its absence, larger agglomerates were obtained.⁹⁵

Figure 8 here

Thermal decomposition of Bi₂Et₄ between 50 and 100 °C in the presence of suitable capping agents yielded homogeneous, crystalline Bi cubes with an average size of up to 200 nm, depending on the reaction time. These are the lowest deposition temperatures ever achieved and these promising results clearly show that precursor chemistry plays a crucial role in the synthesis of nanostructured materials.⁹⁵

Figure 9 here

3.4 Intermetallic nanomaterials via solution-based synthesis

The capability of group 13 diyls to coordinate as two-electron donor ligand to various transition metal complexes was already mentioned. Moreover, Ga diyls such as Cp*Ga and DippNacnacGa were also very recently used in the Fischer group for the synthesis of unforeseen molecular, metal-rich intermetallic complexes. The reaction of $[Mo(CO)_4(GaCp^*)_2]$ with four equivalents of ZnMe₂ yielded $[\{Mo(CO)_4\}_4(Zn)_6(\mu-ZnCp^*)_4],^{96}$ which may be viewed as a cut-out of Hume-Rothery type intermetallic compounds. In addition, the reaction of $[Mo(GaCp^*)_6]$ with fourteen equivalents of ZnMe₂ resulted in the formation of $[\{MoZn_{12}Me_9Cp^*_3].^{97}$ This reaction was shown to proceed through the intermediate formation of $[\{MoZn_4Ga_4Me_4Cp^*_4\}]$ and $[\{MoZn_8Ga_2Me_6Cp^*_4]$, respectively, which were also structurally characterized.

Moreover, the reaction of DippNacnacGa with $SnCl_2$ yielded two novel metalloid tin clusters, $[Sn_7{DippNacnacGaCl}_2]$ and $[Sn_{17}{DippNacnacGaCl}_4]$, respectively.⁹⁸ The Sn_{17} core is composed of two identical Sn_9 clusters, which share a common vertex. If the Ga atom in the DippNacnacGaCl moiety is described as Ga(III) species (DippNacnacGaCl⁺), the Sn_{17} cluster has to be viewed as Sn_{17}^{4-} unit, which according to its 40 electrons fulfils the Jellium model. The two Sn_9^{2-} clusters both adopt distorted trigonal prismatic structures.

Figure 10 here

These complexes not only highlight the distinct structural variety that can be seen in metal cluster complexes but also offer a bridge between (metalloid) cluster complexes and classical Werner coordination complexes. These novel types of complexes are only accessible by tuning the reducing and trapping properties of the reducing agents. Low-valent group 13 diyls MR may be somehow the

most ideal candidates for further studies since the variation of the substituents R allows to tune to some extent their steric demand, their Lewis basicity and their redox potential. Using these new synthetic strategies, new intermetallic complexes far beyond the means of what classical solid state chemistry offers might be accessible in the future.

Summary and Outlook

Low-valent main group metal complexes are no longer laboratory curiosities since in the last two decades, general pathways for their synthesis were established by use of kinetically-stabilizing (bulky) as well as electronically-stabilizing substituents (Lewis bases). Moreover, the development of metastable solutions of group 13 monohalides MX has opened new synthetic pathways in group 13 metal complexes. Hopefully, the most recent synthesis of Mg₂Cl₂ has comparable effects.¹⁴ The novel (metalloid) complexes not only fascinate due to the large structural variety but also due to their sometimes unexpected reactivity, which allowed the synthesis of nanoscale materials, which often has to be performed under kinetically-controlled reaction conditions, render them very interesting for various applications in material sciences. In addition, they might be valuable models for mimicking reactions of bulk phases as was shown recently by *Schnöckel et al.*, who investigated the reaction of an Al₁₃ cluster with singlet oxygen, hence modeling the corrosion of bulk aluminum.⁹⁹

Acknowledgements

S. Schulz gratefully acknowledges financial support by the DFG and the Fonds der Chemischen Industrie (FCI).

Keywords: metal organics - lov-valent - precursor - material sciences

References

[1] K. Pitzer, J. Am. Chem. Soc. **1948**, 70, 2140.

[2] a) Y. Wang, G. H. Robinson, *Chem. Commun.* 2009, 5201; b) E. Rivard, P. P. Power, *Inorg. Chem.* 2007, 46, 10047.

[3] The term "metalloid" has been established for the description of metal complexes in which the number of direct metal-metal bonds exceeds the number of metal-ligand bonds.

[4] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson, *Science* 2008, *321*, 1069.

[5] I. Resa, E. Carmona, E. Gutierrez-Puebla, A. Monge, *Science* 2004, *305*, 1136.

[6] Prior to these studies, the synthesis of Zn₂Cl₂ in a Zn/ZnCl₂ melt (D. H. Kerridge, S. A. Tariq, J. Chem. Soc. A 1967, 1122.) and the formation of [Zn]⁺ cations in microporous materials (a) K. Seff, Microporous Mesoporous Mater. 2005, 85, 351; b) Y. Tian, G.-D. Li, J.-S. Chen, J. Am. Chem. Soc. 2003, 125, 6622; c) S. Zhen, D. Bae, K. Seff, J. Phys. Chem. B 2000, 104, 515; d) F. Rittner, A. Seidel, B. Boddenberg, Microporous Mesoporous Mater. 1998, 24, 127.) was reported. In addition, Zn₂H₂ was trapped in an Ar matrix at 12 K and characterized by vibrational spectroscopy and computational calculations. a) X. Wang, L. J. Andrews, Phys. Chem. A 2004, 108, 11006; b) T. M. Greene, W. Brown, L. Andrews, A. J. Downs, G. V. Chertihin, N. Runeberg, P. Pyykkö, J. Phys. Chem. 1995, 99, 7925.

[7] a) A. Grirrane, I. Resa, A. Rodriguez, E. Carmona, E. Alvarez, E. Gutierrez-Puebla, A. Monge, A. Galindo, D. del Río, R. A. Andersen, *J. Am. Chem. Soc.* 2007, *129*, 693; b) Z. Zhu, R. J. Wright, M. M. Olmstead, E. Rivard, M. Brynda, P. P. Power, *Angew. Chem.* 2006, *118*, 5939; *Angew. Chem. Int. Ed.* 2006, *45*, 5807; c) Y. Wang, B. Quillian, P. Wei, H. Wang, X.-J. Yang, Y. Xie, R. B. King, P. v. R. Schleyer, H. F. Schaefer, III, G. H. Robinson, *J. Am. Chem. Soc.* 2005, *127*, 11944; d) X.-J. Yang, J. Yu, Y. Liu, Y. Xie, H. F. Schaefer, Y. Liang, B. Wu, *Chem. Commun.* 2007, 2363; e) Y.-C. Tsai, D.-Y. Lu, Y.-M. Lin, j.-K. Hwang, J.-S. K. Yu, *Chem. Commun.* 2007, 4125.

[8] I. L. Fedushkin, A. A. Skatova, S. Y. Ketkov, O. V. Eremenko, A. V. Piskunov, G. K. Fukin, *Angew. Chem.* **2007**, *119*, 4380; *Angew. Chem. Int. Ed.* **2007**, *46*, 4302.

[9] Y. Liu, S. Li, X.-J. Yang, P. Yang, J. Gao, Y. Xia, B. Wu Organometallics 2009, 28, 5270.

[10] a) S. Schulz, D. Schuchmann, U. Westphal, M. Bolte, M. Organometallics **2009**, *28*, 1590; b) S.

Schulz, D. Schuchmann, I. Krossing, D. Himmel, D. Bläser, R. Boese, *Angew. Chem.* 2009, *121*, 5859; *Angew. Chem. Int. Ed.* 2009, *48*, 5748.

[11] a) Z. Zhu, R. C. Fischer, J. C. Fettinger, E. Rivard, M. Brynda, P. P. Power, J. Am. Chem. Soc.
2006, 128, 15068; b) Z. Zhu, M. Brynda, R. J. Wright, R. C. Fischer, W. A. Merrill, E. Rivard, R. Wolf, J. C. Fettinger, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 2007, 129, 10847.

[12] E. Carmona, A. Galindo, Angew. Chem. 2008, 120, 6626; Angew. Chem. Int. Ed. 2008, 47, 6526.

[13] S. Petrie, Aust. J. Chem. 2003, 56, 259.

- [14] a) R. Köppe, P. Henke, H. Schnöckel, Angew. Chem. 2008, 120, 8868; Angew. Chem. Int. Ed.
 2008, 47, 8740; b) X. Wang, L. Andrews, J. Phys. Chem. A 2004, 108, 11511.
- [15] a) S. P. Green, C. Jones, A. Stasch, *Science* 2007, *318*, 1754; b) S. J. Bonyhady, C. Jones, S. Nembenna, A. Stasch, A. J. Edwards, G. J. McIntyre, *Chem. Eur. J.* 2010, *16*, 938.
- [16] Y. Liu, S. Li, X.-J Yang, P. Yang, B. Wu, J. Am. Chem. Soc. 2009, 131, 4210.
- [17] J. Overgaard, C. Jones, A. Stasch, B. B. Iversen, J. Am. Chem. Soc. 2009, 131, 4208.
- [18] S. Krieck, H. Görls, L. Yu, M. Reiher, M. Westerhausen, J. Am. Chem. Soc. 2009, 131, 2977.

[19] S. P. Green, C. Jones, A. Stasch, Angew. Chem. 2008, 120, 9219, Angew. Chem. Int. Ed. 2008, 47, 9079.

[20] D. Schuchmann, U. Westphal, S. Schulz, U. Flörke, D. Bläser, R. Boese, *Angew. Chem.* 2009, *121*, 821; *Angew. Chem. Int. Ed.*, 2009, *48*, 807.

[21] S. J. Bonyhady, S. P. Green, C. Jones, S. Nembenna, A. Stasch, *Angew. Chem.* 2009, *121*, 3017;
 Angew. Chem. Int. Ed. 2009, *48*, 2973.

[22] A. Sidiropoulos, C. Jones, A. Stasch, S. Klein, G. Frenking, *Angew. Chem.* **2009**, *121*, 9881; *Angew. Chem. Int. Ed.* **2009**, *48*, 9701.

[23] D. H. Kerridge, S. A. Tariq, J. Chem. Soc. A 1967, 1122.

[24] a) M. Kaupp, H. G. von Schnering, Inorg. Chem. 1994, 33, 4179; b) M.-S. Liao, Q.-E. Zhang,

W. H. E. Schwarz, *Inorg. Chem.* 1995, 34, 5597; c) K. K. Pandey, *J. Mol. Struct. Theochem* 2007, 823, 59; d) M. Hargittai, *Chem. Rev.* 2000, 100, 2233.

[25] D. del Rio, I. Resa, A. Rodriguez, L. Sánchez, R. Köppe, A. J. Downs, C. Y. Tang, E. Carmona, J. Phys. Chem. A 2008, 112, 10516.

[26] W. Uhl, Z. Naturforsch. B 1988, 43, 1113.

[27] a) R. J. Wehmschulte, K. Ruhlandt-Senge, M. M. Olmstead, H. Hope, B. E. Sturgeon, P. P. Power, *Inorg. Chem.* 1993, *32*, 2983; b) N. Wiberg, K. Amelunxen, T. Blank, H. Nöth, J. Knizek, *Organometallics* 1998, *17*, 5431.

[28] a) W. Uhl, M. Layh, T. Hildenbrand, J. Organomet. Chem. 1989, 364, 289; b) X. He, R. A. Barlett, M. M. Olmstead, K. Ruhlandt-Senge, B. E. Sturgeon, P. P. Power, Angew. Chem. 1993, 105, 761, Angew. Chem. Int. Ed. 1993, 32, 717.

[29] a) W. Uhl, M. Layh, W. Hiller, J. Organomet. Chem. 1989, 368, 139; b) M. S. Hill, P. B. Hitchcock, R. Pongtavornpinyo, Angew. Chem. 2005, 117, 4303, Angew. Chem. Int. Ed. 2005, 44, 4231; c) R. J. Wright, A. D. Phillips, N. J. Hardman, P. P. Power, J. Am. Chem. Soc. 2002, 124, 8538; d) P. J. Brothers, K. Hübler, U. Hübler, B. C. Noll, M. M. Olmstead, P. P. Power, Angew. Chem. 1996, 108, 2528, Angew. Chem. Int. Ed. Engl. 1996, 35, 2355.

[30] a) Y. Wang, G. H. Robinson, *Organometallics* 2007, 26, 2; b) J. A. J. Pardoe, A. J. Downs, *Chem. Rev.* 2007, 107, 2.

[31] AlCl is a high-temperature species that can be prepared by reaction of Al and HCl at 1200 K. M. Tacke, H. Schnöckel, *Inorg. Chem.* **1989**, *28*, 2895.

[32] M. S. Hill, P. B. Hitchcock, R. Pongtavornpinyo, *Science* 2006, 311, 1904.

[33] A. Schnepf, R. Köppe, H. Schnöckel, Angew. Chem. 2001, 113, 1287, Angew. Chem. Int. Ed.2001, 40, 1241.

[34] a) Y. Wang, G. H. Robinson, *Organometallics* 2007, 26, 2; b) E. Rivard, P. P. Power, *Inorg. Chem.* 2007, 46, 10047.

[35] J. Su, X.-W. Li, C. Crittendorn, G. H. Robinson, *J. Am. Chem. Soc.* **1997**, *119*, 5471. The X-ray crystal structure of Na₂[(2,6-Dipp₂-C₆H₃)Ga]₂ was also determined by Power et al.: B. Twamley, P. P. Power, *Angew. Chem.* **2000**, *112*, 3643, *Angew. Chem. Int. Ed.* **2000**, *39*, 3500.

[36] a) M. Stender, A. D. Phillips, R. J. Wright, P. P. Power, Angew. Chem. 2002, 114, 1863, Angew. Chem. Int. Ed. 2002, 41, 1785. b) A. D. Phillips, R. J. Wright, M. M. Olmstead, P. P. Power, J. Am.Chem. Soc. 2002, 124, 5930; c) L. Pu, B. Twamley, P. P. Power, J. Am. Chem. Soc. 2000, 122, 3524.

[37] R. J. Wright, M. Brynda, P. P. Power, Angew. Chem. 2006, 118, 6099, Angew. Chem. Int. Ed.
2006, 45, 5953.

[38] A. Purath, R. Köppe, H. Schnöckel, Angew. Chem. 1999, 111, 3114; Angew. Chem. Int. Ed.1999, 38, 2926.

[39] J. Vollet, J. R. Hartig, H. Schnöckel, Angew. Chem. 2004, 116, 3248; Angew. Chem. Int. Ed.
2004, 43, 3186.

[40] A. Ecker, E. Weckert, H. Schnöckel, *Nature* **1997**, *387*, 379.

[41] (a) A. Schnepf, H. Schnöckel, *Angew. Chem.* 2001, *113*, 733, *Angew. Chem. Int. Ed.* 2001, *40*, 712; (b) A. Schnepf, B. Jee, H. Schnöckel, E. Weckert, A. Meents, D. Lubbert, E. Herrling, B. Pilawa, *Inorg. Chem.* 2003, *42*, 7731.

[42] O. N. Bakharev, N. Zelders, H. B. Brom, A. Schnepf, H. Schnöckel, L. J. de Jongh, *Eur. Phys. J.***2003**, *D24*, 101.

[43] J. Hagel, M. T. Kelemen, G. Fischer, B. Pilawa, J. Wosnitza, E. Dormann, H. v. Löhneysen, A. Schnepf, H. Schnöckel, U. Neisel, J. Beck, *J. Low Temp. Phys.* 2002, *314*, 133.

[44] a) H. Schnöckel, H. Köhnlein, *Polyhedron* 2002, 21, 489; b) H. Schnöckel, *Dalton Trans.* 2005, 3131; c) G. Linti, H. Schnöckel, *Coord. Chem. Rev.* 2000, 285, 206; d) A. Schnepf, H. Schnöckel, *Angew. Chem.* 2002, 114, 3682, *Angew. Chem. Int. Ed.* 2002, 41, 3532; e) J. A. J. Pardoe, A. J. Downs, *Chem. Rev.* 2007, 107, 2.

[45] a) W. Uhl, Coord. Chem. Rev. 1997, 163, 1; b) W. Uhl, Chem. Soc. Rev. 2000, 259; c) W. Uhl,
 Adv. Organomet. Chem. 2004, 51, 53.

[46] S. Schulz, in *Comprehensive Organometallic Chemistry III* (Eds. R. H. Crabtree, D. M. P. Mingos), Vol. 3 (Vol. Ed. C. E. Housecroft), Elsevier, Amsterdam, **2007**, pp. 287-342.

[47] R. J. Wright, M. Brynda, J. C. Fettinger, A. R. Betzer, P. P. Power, *J. Am. Chem. Soc.* 2006, *128*, 12498.

[48] N. J. Hardman, C. Cui, H. W. Roesky, W. H. Fink, P. P. Power, *Angew. Chem.* **2001**, *113*, 2230, *Angew. Chem. Int. Ed.* **2001**, *40*, 2172.

[49] R. J. Wright, A. D. Phillips, T. L. Allen, W. H. Fink, P. P. Power J. Am. Chem. Soc. 2003, 125, 1694.

[50] a) S. Schulz, L. Häming, R. Herbst-Irmer, H. W. Roesky, G. M. Sheldrick *Angew. Chem.* 1994, *106*, 1052, *Angew. Chem. Int. Ed.* 1994, *33*, 969; b) S. Schulz, A. Voigt, H. W. Roesky, L. Häming, R. Herbst-Irmer *Organometallics* 1996, *15*, 5252; c) S. Schulz, F. Thomas, W. Priesmann, M. Nieger, *Organometallics* 2006, *25*, 1392.

[51] P. Jutzi, B. Neumann, G. Reumann, H.-G. Stammler, Organometallics 1999, 18, 2037.

[52] S. Nagendran, H. W. Roesky, Organometallics 2008, 27, 457.

[53] In contrast, Stephan et al. showed that frustrated Lewis acid-base pairs allow reversible H₂ binding at 25 °C. See for instance: a) G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124; b) S. J. Geier, T. M. Gilbert, D. W. Stephan, J. Am. Chem. Soc. 2008, 130, 12632; c) M. Ullrich, A. J. Lough, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 52.

[54] C. Dohmeier, H. Schnöckel, C. Robl, U. Schneider, R. Ahlrichs, *Angew. Chem.* **1994**, *106*, 225, *Angew. Chem. Int. Ed.* **1994**, *33*, 199.

[55] W. Uhl, M. Benter, Chem. Commun. 1999, 771.

[56] a) W. Uhl, M. Benter, W. Saak, P. G. Jones, Z. Anorg. Allg. Chem. 1998, 624, 1622; b) W. Uhl,
M. Pohlmann, Chem. Commun. 1998, 451; c) W. Uhl, R. Graupner, M. Pohlmann, S. Pohl, W. Saak,
Chem. Ber. 1996, 129, 143; d) S. Schulz, H. W. Roesky, H.-J. Koch, G. M. Sheldrick, D. Stalke, A.
Kuhn, Angew. Chem. 1993, 105, 1828; Angew. Chem. Int. Ed.1993, 32, 1729.

[57] W. Uhl, R. Graupner, W. Hiller, M. Neumayer, *Angew. Chem.* **1997**, *109*, 62; *Angew. Chem. Int. Ed.* **1997**, *36*, 62.

[58] N. J. Hardman, P. P. Power, *Inorg. Chem.* **2001**, *40*, 2474.

[59] For a review on terminal chalcogenido complexes see: M. C. Kuchta, G. Parkin, *Coord. Chem. Rev.* **1998**, *176*, 323.

[60] A detailed description of the electronic structure of these complexes is given by: C. J. Green, J.L. Suter, *Dalton Trans.* 1999, 4087.

[61] M. C. Kuchta, G. Parkin, *Main Group Chem.* 1996, 1, 291.

[62] a) C. Gemel, T. Steinke, M. Cokoja, A. Kempter, R. A. Fischer *Eur. J. Inorg. Chem.* 2004, 4161; b) R. J. Baker, C. Jones, *Coord. Chem. Rev.* 2005, 249, 1857; c) G. Frenking, K. Wichmann, N.

Fröhlich, C. Loschen, M. Lein, J. Frunzke, V. M. Rayón, Cord. Chem. Rev. 2003, 238, 55; d) P. W. Roesky, Dalton Trans. 2009, 1887.

[63] N. J. Hardman, P. P. Power, J. D. Gorden, C. L. B. Macdonald, A. H. Cowley, *Chem. Commun.*2001, 1866.

[64] T. Cadenbach, C. Demel, D. Zacher, R. A. Fischer, *Angew. Chem.* **2008**, *120*, 3487; *Angew. Chem.* Int. Ed.**2008**, *47*, 3438.

[65] B. Buchin, C. Demel, T. Cadenbach, I. Fernández, G. Frenking, R. A. Fischer, *Angew. Chem.* **2006**, *118*, 5331; *Angew. Chem.* Int. Ed.**2006**, *45*, 5207.

[66] B. Buchin, C. Demel, T. Cadenbach, R. Schmid, R. A. Fischer, *Angew. Chem.* **2006**, *118*, 1091; *Angew. Chem.* Int. Ed.**2006**, *45*, 1074.

[67] For a historical review see: D. Seyferth, *Organometallics* **2001**, *20*, 1488.

[68] a) H. J. Breunig, R. Rösler, *Coord. Chem. Rev.* **1997**, *163*, 33; b) L. Balasz, H. J. Breunig, *Coord. Chem. Rev.* **2004**, *248*, 603.

[69] S. Schulz, Adv. Organomet. Chem. 2003, 49, 225.

[70] S. Schulz, T. Schoop, H. W. Roesky, L. Häming, A. Steiner, R. Herbst-Irmer, *Angew. Chem.* **1995**, *107*, 1015; *Angew. Chem.* Int. Ed.**1995**, *34*, 919.

[71] C. Jones, Coord. Chem. Rev. 2001, 215, 151.

[72] a) N. Tokitoh, Y. Arai, R. Okazaki, S. Nagase, *Science* 1997, 277, 78; b) T. Sasamori, N. Tokitoh, *Dalton Trans.* 2008, 1395.

[73] G. Prabusankar, C. Gemel, P. Parameswaran, C. Flener, G. Frenking, R. A. Fischer, *Angew. Chem.* **2009**, *121*, 5634; *Angew. Chem.* Int. Ed. **2009**, *48*, 5526.

[74] T. Sasamori, E. Mieda, N. Nagahora, K. Sato, D. Shiomi, T. Takui, Y. Hosoi, Y. Furukawa, N. Takagi, S. Nagase, N. Tokitoh, *J. Am. Chem. Soc.* **2006**, *128*, 12582.

[75] T. Sasamori, E. Mieda, N. Takeda, N. Tokitoh, Chem. Lett. 2004, 33, 104.

[76] a) N. Kuhn and A. Al-Sheikh, Coord. Chem. Rev. 2005, 249, 829; b) D. Bourissou, O. Guerret,
F. P. Gabbaie and G. Bertrand, *Chem. Rev.* 2000, 100, 39; c) A. J. Arduengo, III, *Acc. Chem. Res.* 1999, 32, 913.

[77] Y. Wang, B. Quillian, P. Wei, C. S. Wannere, Y. Xie, R. B. King, H. F. Schaefer, III, P. v. R. Schleyer, G. H. Robinson, *J. Am. Chem. Soc.* **2007**, *129*, 12412.

[78] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, III, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2008, 130, 14970.

[79] M. Y. Abraham, Y. Wang, Y. Xie, P. Wei, H. F. Schaefer, III, P. von R. Schleyer, G. H. Robinson, *Chem. Eur. J.* **2010**, *16*, 432.

[80] a) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, *Angew. Chem.* 2009, *121*, 5793; *Angew. Chem.* Int. Ed.2009, *48*, 5683; b) A. C. Filippou, O. Chernov, G. Schnakenburg, *Angew. Chem.*2009, *121*, 5797; *Angew. Chem.* Int. Ed. 2009, *48*, 5687.

[81] B. Quillian, P. Wei, C. S. Wannere, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2009, 131, 3168.

[82] C. A. Dyker, G. Bertrand, *Science* **2008**, *321*, 1050.

[83] a) A. H. Cowley, R. A. Jones, Angew. Chem. 1989, 101, 1235; Angew. Chem. Int. Ed. 1989, 28, 1208; b) J. A. Jegier, W. L. Gladfelter, Coord. Chem. Rev. 2000, 206-207, 631; c) A. C. Jones, Chem. Soc. Rev. 1997, 101; d) A. N. Gleizes, Chem. Vap. Deposition, 2000, 6, 155; e) M. Lazell, P. O'Brien,

D. J. Otway, J.-H. Park, *Dalton Trans.* 2000, 4479.
[84] a) S. Schulz, in *Top. Organomet. Chem.*, Vol. 9, (Vol. Ed. R. A. Fischer), Springer Verlag,

Berlin, 2005, pp. 101-124; b) S. Schulz, S. Fahrenholz, A. Kuczkowski, W. Assenmacher, A. Seemayer,
K. Wandelt, *Chem. Mater.* 2005, *17*, 1982; c) D. Schuchmann, M. Schwartz, S. Schulz, A. Seemayer,
K. Wandelt, *J. Cryst. Growth* 2008, *310*, 4715.

[85] A. N. MacInnes, M. B. Power, A. R. Barron, Chem. Mater. 1992, 4, 11.

[86] a) T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, *Science* 1995, *270*, 1791; b) A. M. Morales, C. M. Lieber, *Science* 1998, *279*, 208; c) M. K. Sunkara, S. Sharma, R. Miranda, G. Lian, E. C. Dickey, *Appl. Phys. Lett.* 2001, *79*, 1546; d) J. H. Lee, Z. M. Wang, Z. Y. AbuWaar, G. J. Salamo, *Cryst. Growth & Design* 2009, *9*, 715.

[87] a) P. D. Yang, *MRS Bull.* 2005, 30, 85; b) Y. Huang, X. F. Duan, C. M. Lieber, *Small* 2005, 1, 142.

[88] W. Seifert, M. T. Borgström, K. Deppert, K. A. Dick, J. Johansson, M. W. Larsson, T. Martensson, N. Sköld, C. P. T. Svensson, B. A. Wacaser, L. R. Wallenberg, L. Samuelson, *J. Crystal Growth* **2004**, *272*, 211.

[89] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.

[90] a) B. A. Wacaser, K. A. Dick, J. Johansson, M. T. Borgström, K. Deppert, L. Samuelson, *Adv. Mater.* 2009, *21*, 153; b) M. T. Borgström, G. Immink, B. Ketelaars, R. Algra, E. P. A. M. Bakkers, *Nature Nanotech.* 2007, *2*, 541.

[91] N. Bahlawane, F. Reilmann, S. Schulz, D. Schuchmann, K. Kohse-Höinghaus, *J. Am. Soc. Mass Spectrom.* **2008**, *19*, 1336.

[92] S. Schulz, M. Schwartz, A. Kuczkowski, W. Assenmacher, J. Cryst. Growth 2010, 312, 1475.

[93] a) N. L. Pickett, P. O'Brien, Chem. Record 2001, 1, 467; b) Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. 2009, 121, 62; Angew. Chem. Int. Ed. 2009, 48, 60.

[94] a) B. Weitzel, H. Micklitz, *Phys. Rev. Lett.* 1991, 66, 385; b) S. Cho, Y. Kim, A. J. Freeman, G. K. L. Wong, J. B. Ketterson, L. J. Olafsen, I. Vurgaftman, J. R. Meyer, C. A. Hoffman, *Appl. Phys. Lett.*

2001, *79*, 3651; c) L. D. Hicks, M. S. Dresselhaus, *Phys. Rev. B* **1993**, *47*, 12727; d) L. D.; Hicks, M. S. Dresselhaus, *Phys. Rev. B* **1993**, *47*, 16631; e) A. Boukai, K. Xu, J. R. Heath, *Adv. Mater* **2006**, *18*, 864.

[95] S. Schulz, S. Heimann, W. Assenmacher, manuscript in preparation.

[96] T. Cadenbach, C. Gemel, R. A. Fischer, Angew. Chem. 2008, 120, 9286; Angew. Chem. Int. Ed.
2008, 47, 9146.

[97] T. Cadenbach, T. Bollermann, C. Gemel, I. Fernandez, M. von Hopffgarten, G. Frenking, R. A. Fischer, *Angew. Chem.* **2008**, *120*, 9290; *Angew. Chem. Int. Ed.* **2008**, *47*, 9150.

[98] G. Prabusankar, A. Kempter, C. Gemel, M. K. Schröter, R. A. Fischer, *Angew. Chem.* 2008, *120*, 7344; *Angew. Chem. Int. Ed.* 2008, *47*, 7234.

[99] R. Burgert, H. Schnöckel, A. Grubisic, X. Li, S. T. Stokes, K. H. Bowen, G. F. Ganteför, B. Kiran, P. Jena, *Science* **2008**, *319*,438.

Figures

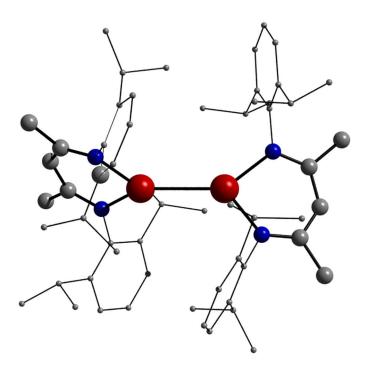


Figure 1. Structure of $DippNacnac_2Mg_2$ (Dipp substituents reduced for clarity).

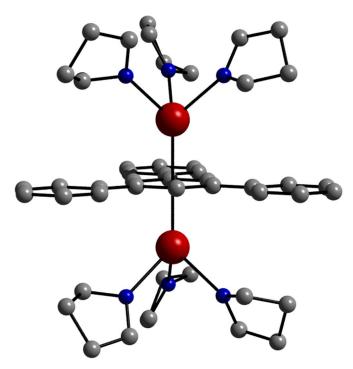


Figure 2. Structure of the inverse sandwich Ca(I) complex.

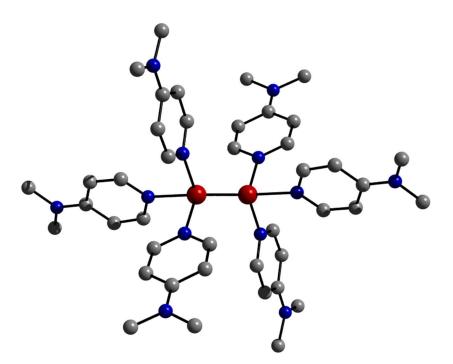


Figure 3. Structure of the dmap-stabilized $[Zn_2]^{2+}$ dication.

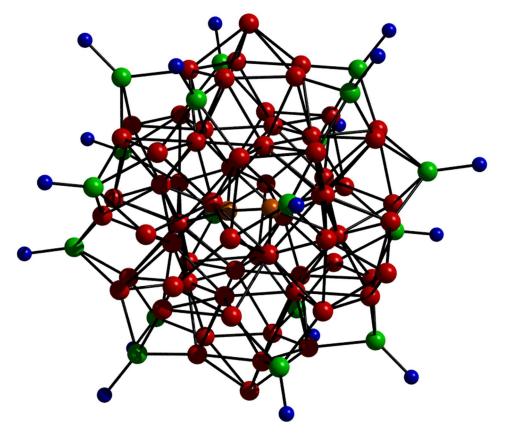


Figure 4. Reduced representation of the giant Ga₈₄ cluster; substituents bearing Ga atom in green; central Ga₂ hantle in orange.

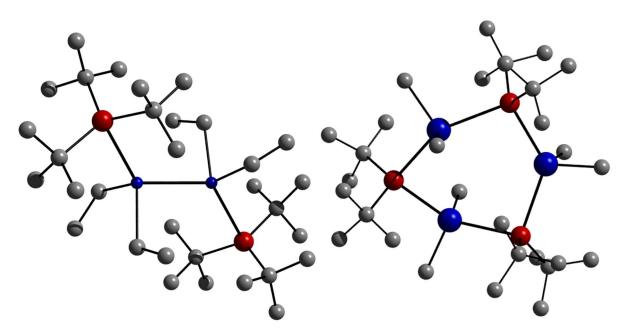


Figure 5. Structure of [Bi₂Et₄][Ga(*t*-Bu)₃]₂ and [Me₂GaSbMe₂]₃.

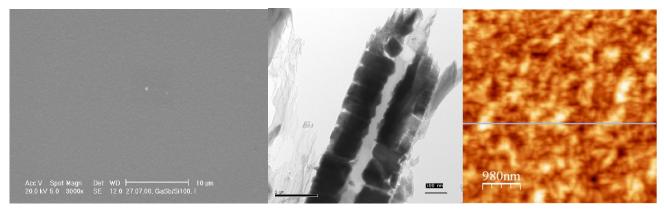


Figure 6. REM, TEM and AFM pictures of a GaSb film deposited at 410 $^{\circ}\mathrm{C}.$

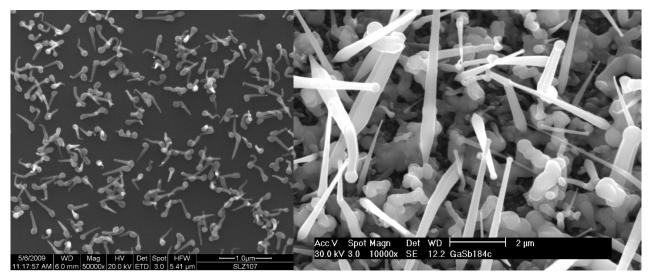


Figure 7. REM pictures of GaSb nanowires obtained from Sb₂Et₄ at 250 °C and *t*-Bu₃Ga-Sb(*i*-Pr)₃ at 350 °C.

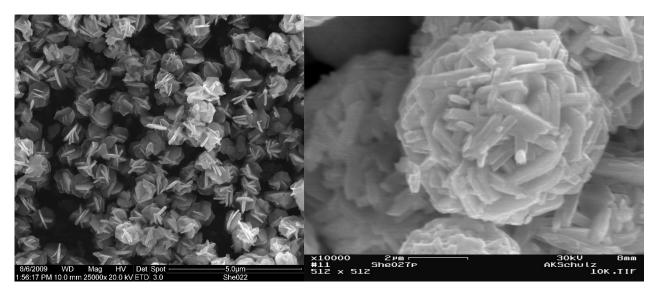


Figure 8. REM pictures of Sb₂Te₃ nanoparticles obtained from Te(SbEt₂)₂ with and without TOPO at 150 °C.

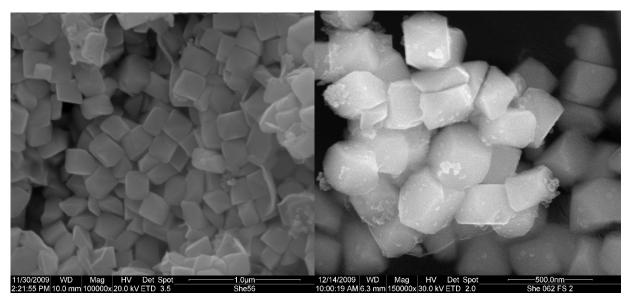
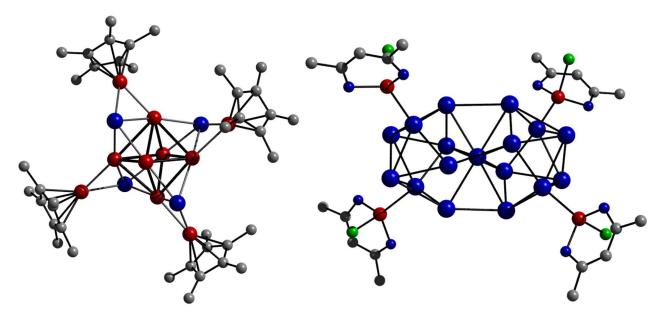
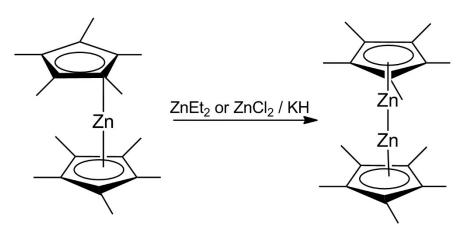
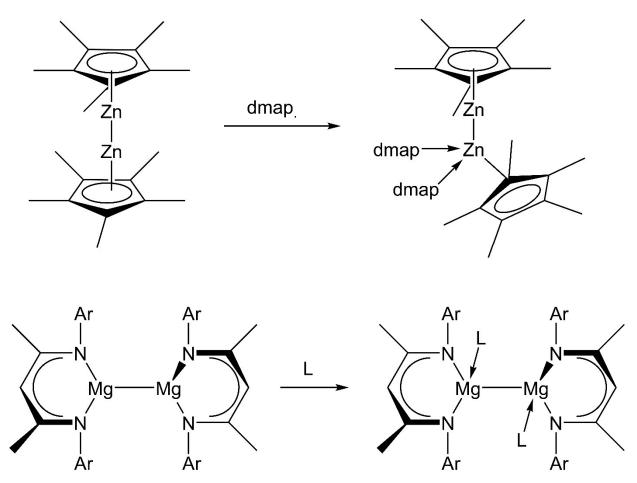
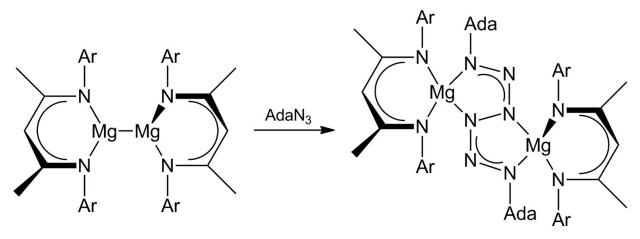




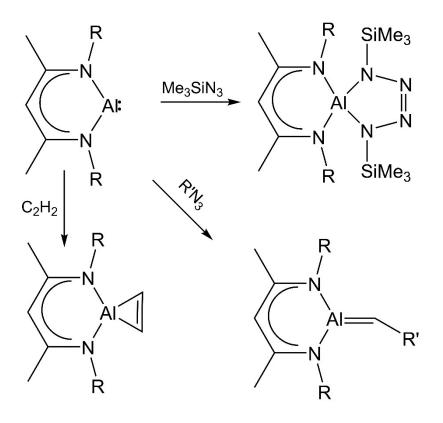
Figure 9. REM pictures of Bi nanocubes obtained from Bi_2Et4 at 150 $^{\circ}\mathrm{C}.$



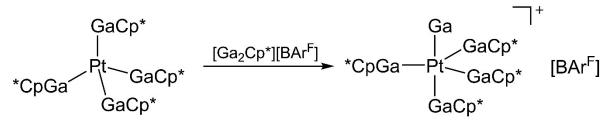
 $Figure \ 10. \ Reduced \ representations \ of \ [\{Mo(CO)_4\}_4(Zn)_6(\mu-ZnCp^*)_4] \ and \ [Sn_{17}\{DippNacnacGaCl\}_4].$


Schemes

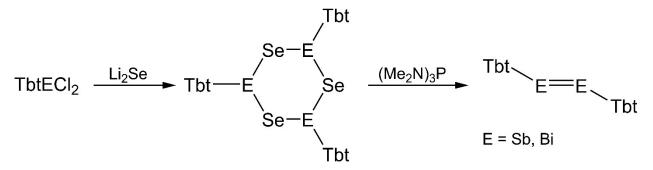
Scheme 1. Synthesis of $Cp*_2Zn_2$.


Scheme 2. Adduct formation reactions of Zn(I) and Mg(I) complexes.

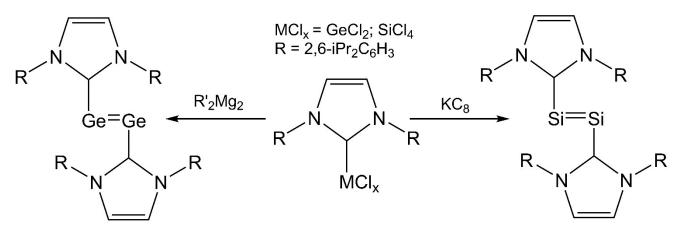
Scheme 3. Reaction of a Mg(I) dimer with adamantylazide.


 $\begin{array}{cccc} Zn_2(MesNacnac)_2 & \stackrel{a}{\longleftarrow} & Zn_2Cp^*_2 & \stackrel{b}{\longrightarrow} & [Zn_2(dmap)_6][Al\{OC(CF_3)_3\}_4]_2 \\ a) \ 2MesNacnacH \\ b) \ 2[H(OEt_2)_2][Al\{OC(CF_3)_3\}_4]; \ 6dmap \end{array}$

Scheme 4. Protonation reaction of $Cp*_2Zn_2$.



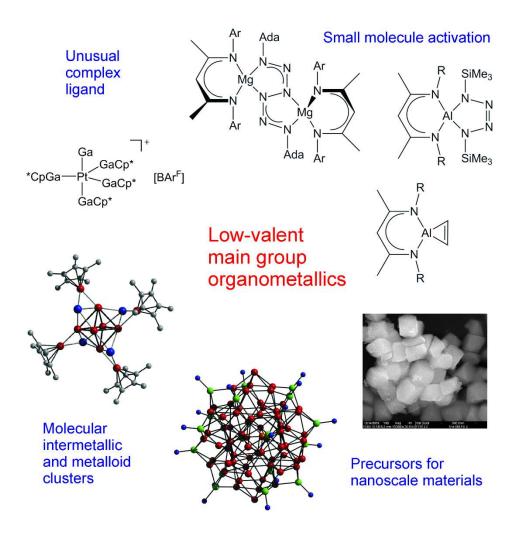
 $\begin{array}{l} \mathsf{R} = 2,6\text{-}i\mathsf{Pr}_2\mathsf{C}_6\mathsf{H}_3; \ 2,4,6\text{-}i\mathsf{Pr}_3\mathsf{C}_6\mathsf{H}_2\\ \mathsf{R}' = 2,6\text{-}(2,4,6\text{-}i\mathsf{Pr}_3\mathsf{C}_6\mathsf{H}_2)_2\mathsf{C}_6\mathsf{H}_3 \end{array}$


Scheme 5. Reactions of low-valent group 13 complexes with electron-rich azides, diazenes and acetylene.

Scheme 6. Synthesis of a Pt complex with a naked Ga⁺ acceptor ligand.

Scheme 7. Synthesis of RE=ER containing E=E double-bonds.

Scheme 8. Synthesis of singlet Si(0) and Ge(0) dimers.


Entry for the Table of Contents

Far beyond lab curiosities

Stephan Schulz

Low-Valent Organometallics - Synthesis, Reactivity and Potential Applications

The synthesis of kinetically stabilized (sterically demanding substituents) and electronically-stabilized (base stabilization) low-valent complexes of group 2, 12, 13 and 15 is summarized and their potential application as selective reductants, unusual ligands in coordination chemistry and as novel precursors in material sciences is summarized.

This text is made available via DuEPublico, the institutional repository of the University of Duisburg-Essen. This version may eventually differ from another version distributed by a commercial publisher.

DOI: 10.1002/chem.201000580 **URN:** urn:nbn:de:hbz:464-20201104-080200-8

This is the peer reviewed version of the following article: Chemistry - A European Journal, 2010,Volume 16, Issue 22, Pages 6416-6428, which has been published in final form at: https://doi.org/10.1002/chem.201000580

All rights reserved.