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Abstract

In order to study the molecular biological differences between normal and diseased tissues,

it is desirable to perform classification among diseases and stages of disease using

microarray-based gene-expression values. Owing to the limited number of microarrays

typically used in these studies, serious issues arise with respect to the design, performance

and analysis of classifiers based on microarray data. This paper reviews some fundamental

issues facing small-sample classification: classification rules, constrained classifiers, error

estimation and feature selection. It discusses both unconstrained and constrained classifier

design from sample data, and the contributions to classifier error from constrained

optimization and lack of optimality owing to design from sample data. The difficulty with

estimating classifier error when confined to small samples is addressed, particularly

estimating the error from training data. The impact of small samples on the ability to

include more than a few variables as classifier features is explained. Copyright # 2001

John Wiley & Sons, Ltd.
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Introduction

cDNA microarrays can provide expression mea-
surements for thousands of genes at once [2,3,7].
A key goal is to perform classification via different
expression patterns, e.g. cancer classification [4].
This requires designing a classifier (decision func-
tion) that takes a vector of gene expression levels as
input, and outputs a class label, which predicts the
class containing the input vector. Classification can
be between different kinds of cancer, different
stages of tumour development or a host of such
differences. Classifiers are designed from a sample
of expression vectors. This requires assessing
expression levels from RNA obtained from the
different tissues with microarrays, determining
genes whose expression levels can be used as
classifier variables, and then applying some rule to
design the classifier from the sample microarray
data. Expression values have randomness arising
from both biological and experimental variability.
Design, performance evaluation and application of
classifiers must take this randomness into account.

Three critical issues arise. First, given a set of

variables, how does one design a classifier from the
sample data that provides good classification over
the general population? Second, how does one
estimate the error of a designed classifier when
data is limited? Third, given a large set of potential
variables, such as the large number of expression
level determinations provided by microarrays, how
does one select a set of variables as the input vector
to the classifier? The problem of error estimation
impacts variable selection in a devilish way. An
error estimator may be unbiased but have a large
variance and therefore often be low. This can
produce a large number of gene (variable) sets and
classifiers with low error estimates. For a small
sample, we can end up with thousands of gene sets
for which the error estimate from the data at hand
is zero.

For at least the near future, small samples are
likely to be a critical issue for microarray-based
classification. The irony is that, while microarray
technology yields information on very large gene
sets, it is just these large sets that demand
experimental replication. If detectors for each gene
are not duplicated on an array, then one microarray
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yields a single sample point per gene. In this case, a
study using 30 arrays provides a very small
sampling of gene behaviour. This paper discusses
classification issues, with particular attention to the
perplexing effect of small samples.

Classification rules

Classification involves a classifier, y, a feature
vector, X=(X1, X2,. . ., Xd) composed of random
variables, and a binary random variable, Y, to be
predicted by y(X). The values, 0 or 1, of Y are
treated as class labels. The error, e(y), of y is the
probability, P(y(X)lY), that the classification is
erroneous. It equals the expected (mean) absolute
difference, E(|Yxy(X)|), between the label and the
classification. X1, X2,. . ., Xd can be discrete or real-
valued. In the latter case, the domain of y is
d-dimensional Euclidean space Rd. An optimal
classifier, y$, is one having minimal error, e$,
among all binary functions on Rd. y$ and e$ are
called the Bayes classifier and Bayes error, respec-
tively. Classification accuracy, and thus the error,
depends on the probability distribution of the
feature–label pair (X, Y)—how well the labels are
distributed among the variables (gene expression
levels) being used to discriminate them, and how the
variables are distributed in Rd.

The Bayes classifier is defined in a natural way:
for any specific vector x, y$(x)=1 if the expected
value of Y given x, E(Y|x), exceeds K, and
y$(x)=0 otherwise. Formulated in terms of proba-
bilities, y$(x)=1 if the conditional probability of
Y=1 given x exceeds the conditional probability of
Y=0 given x, and y$(x)=0 otherwise; that is,
y$(x)=1 if and only if P(Y=1|x)>P(Y=0|x). This
is most intuitive: the label 1 is predicted upon
observation of x if the probability that x lies
in class 1 exceeds the probability that x lies in
class 0. Since the sum of the probabilities is 1,
P(Y=1|x)>P(Y=0|x) if and only if P(Y=1|x)>K.
The problem is that we do not know these
conditional probabilities, and therefore must
design a classifier from sample data.

Supervised classifier design uses a sample
Sn=[(X1, Y1), (X2, Y2),. . ., (Xn, Yn)] of feature–label
pairs and a classification rule to construct a classifier
yn whose error is hopefully close to the Bayes error.
The Bayes error e$ is estimated by the error en of yn.
Because e$ is minimal, enie$, and there is a design

error (cost of estimation), Dn=enxe$. Since it
depends on the sample, en is a random variable, as
is Dn. Hopefully, Dn gets closer to 0 as the sample
size grows. This will depend on the classifica-
tion rule and the distribution of the feature–label
pair (X, Y).

A classification rule is said to be consistent for the
distribution of (X, Y) if E(Dn)p0 as np‘, where
the expectation is relative to the distribution of the
sample. The expected design error goes to zero as
the sample size goes to infinity. This is equivalent to
P(Dn>t)p0 as np‘ for any t>0, which says that
the probability of the design error exceeding t goes
to 0. As stated, consistency depends upon the
relation between the classification rule and the
joint feature–label distribution. If E(Dn)p0 for any
distribution, then the classification rule is said to be
universally consistent. Since we often lack an
estimate of the distribution, universal consistency
is desirable.

Since the Bayes classifier is defined by y$(x)=1 if
and only if P(Y=1|x)>K, an obvious way to
proceed is too obtain an estimate Pn(Y=1|x) of
P(Y=1|x) from the sample Sn. The plug-in rule
designs a classifier by yn(x)=1 if and only if
Pn(Y=1|x)>K. If the data is discrete, then there
is a finite number of vectors and Pn(Y=1|x) can be
defined to be the number of times the pair (x, 1) is
observed in the sample divided by the number of
times x is observed. The problem is that, if x is
observed very few times, then Pn(Y=1|x) is not a
good estimate. Even worse, if x is never observed,
then yn(x) must be defined by some convention.
The rule is consistent, but depending on the number
of variables, may require a large sample to have
E(Dn) close to 0, or equivalently, en close to the
Bayes error. Consistency is of little consequence for
small samples.

For continuous data, many classification rules
partition Rd into a disjoint union of cells.
Pn(Y=1|x) is the number of 1-labelled sample
points in the cell containing x divided by the total
number of points in the cell. A histogram rule is
defined by the plug-in rule: yn(x) is 0 or 1 according
to which is the majority label in the cell. The cells
may change with n and may depend on the sample
points. They do not depend on the labels. To obtain
consistency for a distribution, two conditions are
sufficient when stated with the appropriate mathe-
matical rigour: (1) the partition should be fine
enough to take into account local structure of the
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distribution, and (2) there should be enough labels
in each cell so that the majority decision reflects the
decision based on the true conditional probabilities.

The cubic histogram rule partitions Rd into same-
size cubes. These can remain the same or vary with
sample size n. If the cube edge length approaches 0
and n times the common volume approaches
infinity as np‘, then the rule is universally
consistent. For discrete data, the cubic histogram
rule reduces to the plug-in rule for discrete data if
the cubes are sufficiently small.

Another popular rule is the nearest-neighbour
(NN) rule. yn(x) is the label of the sample point
closest to x. This rule is simple, but not consistent.
An extension of this rule is the k-nearest-neighbour
(kNN) rule. For k odd, the k points closest to x are
selected and yn(x) is defined to be 0 or 1 according
to which is the majority among the labels of the
chosen points. The kNN is universally consistent if
kp‘ in such a way that k/np0 as np‘.

Constrained Classifiers

To reduce design error, one can restrict the
functions from which an optimal classifier must be
chosen to a class C. This leads to trying to find an
optimal constrained classifier, yCsC, having error
eC. Constraining the classifier can reduce the
expected design error, but at the cost of increasing
the error of the best possible classifier. Since
optimization in C is over a subclass of classifiers,
the error, eC, of yC will typically exceed the Bayes
error, unless the Bayes classifier happens to be
in C. This cost of constraint (approximation) is
DC=eCxe$. A classification rule yields a classifier
yn,CsC with error en,C, and en,CieCie$. Design
error for constrained classification is Dn,C=en,CxeC.
For small samples, this can be substantially less
than Dn, depending on C and the rule. The error of
the designed constrained classifier is decomposed as
en,C=e$+DC+Dn,C. The expected error of the
designed classifier from C can be decomposed as:

E(en,C)~e.zDCzE(Dn,C) ð1Þ

The constraint is beneficial if and only if
E(en,C)<E(en), which means DC<E(Dn)xE(Dn,C).
If the cost of constraint is less than the decrease in
expected design cost, then the expected error of yn,C
is less than that of yn. The dilemma: strong

constraint reduces E(Dn,C) at the cost of increasing

eC.The matter can be graphically illustrated. For the

discrete-data plug-in rule and the cubic histogram

rule with fixed cube size, E(Dn) is non-increasing,

meaning that E(Dn+1)jE(Dn). This means that the

expected design error never increases as sample sizes

increase, and it holds for any feature–label distribu-

tion. Such classification rules are called ‘smart’.

They fit our intuition about increasing sample sizes.

The nearest-neighbour rule is not smart because

there exist distributions for which E(Dn+1)jE(Dn)

does not hold for all n. Now consider

a consistent rule, constraint, and distribution for

which E(Dn+1)jE(Dn) and E(Dn+1,C)jE(Dn,C).

Then Figure 1 illustrates the design problem. The

axes correspond to sample size and error. The

horizontal dashed and solid lines represent e$ and

eC, respectively; the decreasing dashed and solid

lines represent E(en) and E(en,C), respectively. If n is

sufficiently large, then E(en)<E(en,C); however, if n

is sufficiently small, then E(en)>E(en,C). The point

N0 at which the decreasing lines cross is the cut-off:

for n>N0, the constraint is detrimental; for n<N0,

it is beneficial. When n<N0, the advantage of the

constraint is the difference between the decreasing

solid and dashed lines.
There are many kinds of constrained classifiers.

Perceptrons form a constrained class with some

attractive properties: simplicity, a linear-like struc-

ture, and contributions of individual variables that

can be easily appreciated. Savings in sample size

(in comparison to unconstrained classification)

accelerate as the number of variables increases.

Figure 1. Relation between sample size and constraint
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A perceptron is defined by:

y(X)~T(a1X1za2X2z...zamXmzb) ð2Þ

where T is a threshold function, T(z)=0 if zj0,
and T(z)=1 if z>0. A perceptron splits Rd into
two by the hyperplane defined by setting the
sum in the preceding equation to 0. Design of
a perceptron requires estimating the coefficients
a1, a2,. . ., am, and b.

Neural networks are multi-layer perceptrons.
A basic two-layer neural network takes the outputs
of K perceptrons (called neurons) and inputs these
outputs into a final perceptron. More general
networks exist. Neural networks offer an advantage
over perceptrons because by increasing the number
of neurons one can arbitrarily decrease the con-
straint. But this makes neural networks tricky to
use because decreasing the constraint increases the
expected design cost. One faces the inevitable
conundrums of balancing the contributions to
E(en,C) in Eq. 1. The data requirement grows
rapidly as the number of neurons is increased.

Error Estimation

The error of a designed classifier needs to be
estimated. If there is an abundance of data, then it
can be split into training and test data. A classifier is
designed on the training data. Its estimated error is
the proportion of errors it makes on the test data.
The estimate is unbiased and its variance tends to
zero as the amount of test data goes to infinity.

A problem arises when data are limited. One
approach is to use all sample data to design a
classifier yn, and estimate en by applying yn to the
same data. The resubstitution estimate, en, is the
fraction of errors made by yn. For histogram rules,
en is biased low, meaning E(en)jE(en). For small
samples, the bias can be severe. It improves for
large samples. For binary features, an upper bound
for the mean-square error of en as an estimator of en

is given by E(|enxen|2)j6(2d)/n. Note the exponen-
tial contribution of the number of variables.
Figure 2 shows a generic situation for the inequality
E(en)jE(e$)jE(en) for increasing sample size.

To appreciate the problem with resubstitution,
consider the plug-in rule for discrete data. For any
vector x, let n(x) be the number of occurrences of x

in the sample data, n(Y=1|x) be the number
oftimesxhaslabel1,andPn(Y=1|x)=n(Y=1|x)/n(x).

n(x). There are three possibilities: (1) x

is observed in training, n(Y=1|x)>n(x)/2,

Pn(Y=1|x)>K, and yn(x)=1; (2) x is observed

in training, n(Y=1|x)jn(x)/2, Pn(Y=1|x)jK,

and yn(x)=0; or (3) x is not observed in training

and yn(x) is defined by a convention. Each x in the

first category contributes n(Y=0|x) errors. Each x

in the second category contributes n(Y=1|x) errors.

For a small sample, there may be an enormous

number of vectors in the third category. These

contribute nothing to en, but may contribute

substantially to en. Moreover, there may be many

vectors in the first and second categories observed

only once, and they also contribute nothing to en.
Another small-sample approach is cross-

validation. Classifiers are designed from parts of

the sample, each is tested on the remaining data,

and en is estimated by averaging the errors. For

leave-one-out estimation, n classifiers are designed

from sample subsets formed by leaving out one

sample pair. Each is applied to the left-out pair, and

the estimator ên is 1/n times the number of errors

made by the n classifiers. Since the classifiers are

designed on sample sizes of nx1, ên actually

estimates the error enx1. It is an unbiased estimator

of enx1, meaning that E(ên)~E(en�1). Unbiasedness

is important, but of critical concern is the variance

of the estimator for small n.
For a sample of size n, ên estimates en based on

the same sample. Performance depends on the

classification rule. For the k-nearest-neighbour

rule, E( ên{enj j2)ƒ(6kz1)=n. Given that ênis

approximately an unbiased estimator of en, this

Figure 2. Expected design error vs. expected resubstitution
error
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inequality bounds the variance of ên{en. Although

an upper bound does not say how bad the situation

is, but only how bad it can at most be, it can be

instructive to look at its order of magnitude. For

k=1 and n=175, upon taking the square root, this

bound only ensures that the standard deviation of

ên{en is less than 0.2.
It is informative to compare the resubstitution

and leave-one-out estimates for the histogram rule.

The variance of the resubstitution estimator is

bounded above by 1/n, and if the partition on

which it is based contains N cells, then

E(|enxen|2)j6N/n. For the leave-one-out estimator:

E½ ên{enj j2�ƒ 1z6e{1

n
z

6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(n{1)

p ð3Þ

[see (1) for bounds].
ffiffiffiffiffiffiffiffiffiffi
n{1

p
as opposed to n in the

denominator for en shows greater variance for ên.

There is a certain tightness to this bound. For any

partition there is a distribution for which:

E½ ên{enj j2�§ 1

e1=12
ffiffiffiffiffiffiffiffi
2pn

p ð4Þ

Performance can be very bad for small n. Unbia-

sedness comes with increased variance.

To appreciate the difficulties inherent in the

leave-one-out bounds, we will simplify them in a

way that makes them more favourable to precise

estimation. The performance of ên guaranteed by

Eq. 3 becomes better if we lower the bound.

A lower bound than the one in Eq. 3 is

(1:8)=
ffiffiffiffiffiffiffiffiffiffi
n{1

p
. The corresponding standard-deviation

bounds for n=50 and 100 exceed 0.5 and 0.435,

respectively. These are essentially useless. The

minimum worst-case-performance bound of Eq. 4

would be better if it were lower. A lower bound

than the one given is (0:35)=
ffiffiffi
n

p
. The corresponding

standard-deviation bounds for n=50 and 100,

exceed 0.22 and 0.18, respectively.
Returning to the situation in which the data is

split into training and test data, if the test-data error

estimate is �en and there are m sample pairs in the

test data, then E½ �en{enj j2�ƒ1=4m. The problem is

that, for small samples, one would like to use all the

data for design. It is necessary to use 25 sample

pairs for test data to get the corresponding

standard-deviation bound down to 0.1.

Feature Selection

Given a large set of potential features, such as the

set of all genes on a microarray, it is necessary to

find a small subset with which to classify. There are

various methods of choosing feature sets, each

having advantages and disadvantages. The typical

intent is to choose a set of variables that provide

good classification. The basic idea is to choose

variables that are not redundant.
A critical problem arises with small samples.

Given a large set of variables, every subset is a

potential feature set. For v variables, there are 2vx1

possible feature vectors. Even for choosing from

among 200 variables and allowing at most 20

variables, the number of possible vectors is astro-

nomical. One cannot apply a classification rule to

all of these; nonetheless, even if the classes are

moderately separated, one may find many thou-

sands of vectors for which ên&0. It would be wrong

to conclude that the Bayes errors of all the

corresponding classifiers are small.
Adjoining variables stepwise to the feature vector

decreases the Bayes error but can increase design

error. For fixed sample size n and different numbers

of variables d, Figure 3 shows a generic situation

for the Bayes error e$(d) and the expected error

E[en(d)] of the designed classifier as functions of d.

e$(d) decreases; E[en(d)] decreases and then

increases. Were E[en(d)] known, then we could

conclude that e$(d) is no worse than E[en(d)];

however, we have only an estimate of en(d), which

for small samples can be well below (or above)

e$(d). Thus, the estimate curve ên(d) might drop far

Figure 3. Effect of increasing numbers of variables
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below the Bayes-error curve e$(d), even being 0 over
a fairly long interval.

We confront the general issue of the number of
variables. The expected design error is written in
terms of n and C in Eq. 1. But C depends on d.
A celebrated theorem of pattern recognition pro-
vides bounds for E(Dn,C) [8]. The empirical-error
rule chooses the classifier in C that makes the least
number of errors on the sample data. For this
(intuitive) rule, E(Dn,C) satisfies the bound:

E(Dn,C)ƒ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VC log nz4

2n

r
ð5Þ

where VC is the VC (Vapnik–Chervonenkis) dimen-
sion of C. Details of the VC dimension are outside
the scope of this paper. Nonetheless, it is clear from
Eq. 5 that n must greatly exceed VC for the bound
to be small. The VC dimension of a perceptron is
d+1. For a neural network with an even number, k,
of neurons, the VC dimension has the lower bound
VCidk. If k is odd, then VCid(kx1). To
appreciate the implications, suppose d=k=10.
Setting VC=100 and n=5000 in Eq. 5 yields a
bound exceeding 1, which says nothing. Admittedly,
the bound of Eq. 5 is worst-case because there are
no distributional assumptions. The situation may
not be nearly so bad. Still, one must proceed with
care, especially in the absence of distributional
knowledge. Adding variables and neurons is often
counterproductive unless there is a large sample
available. Otherwise, one could end up with a very
bad classifier whose error estimate is very small!

Conclusion

The purpose of this review has been to provide the
general micorarray community with some basic
guideposts in its effort to design expression-based
classifiers. There are many more implications of the
kind discussed here. In some sense, we have been
discussing a worst-case setting: no assumptions on
the distribution of features and labels, and real-
valued variables. The data requirement can be
significantly reduced if some prior knowledge
concerning the distribution is applied, or if a
strong constraint based on biological knowledge is
imposed. The data problem can also be mitigated if
the classifier variables are discrete and limited in
their possible values. Two possibilities naturally

arise. The Boolean model has been suggested for

genomic networks, and could be used here instead
of considering raw expression values [5]. In it, a

gene is either on (1) or off (0). Ternary values
are also appropriate for microrarray ratio data:

a gene is upregulated (1), downregulated (x1), or
invariant (0). This model has been used to measure

gene interaction via expression ratios [6]. One might
reasonably argue that compression of the contin-

uous data gives up too much information; however,
given the data variability, it might be safer only to

consider genes that change significantly, and base

classification on an up–down model of control.
Most likely, it will not be possible to design a

classifier from a single set of microarray experi-

ments. Separation of the sample data by designed
classifiers will likely have to be taken as evidence

that the corresponding gene sets are potential
variable sets for classification. Their effectiveness

will have to be checked by large-replicate experi-
ments designed to estimate their classification error,

perhaps in conjunction with biological input or
phenotype evidence. There may, in fact, be many

gene sets that provide accurate classification of a

given pathology. Of these, some sets may provide
mechanistic insights into the molecular aetiology of

the disease, while other sets may be indecipherable.
This listing of difficulties in producing accurate

classifiers based on measurements of the expression
profiles of small samples is not intended to persuade

researchers to cease doing experiments and subse-
quent analysis to arrive at indications that certain

conditions can be discriminated via gene expression.
Rather, it is intended to focus attention on the need

to find classification screening algorithms that

provide reasonable collections of gene sets to be
tested with new experiments.
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