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Plants produce a high diversity of natural products or secondary metabolites sghich a

56 important for the communication of plants with other organisms. A prominent functios is t
58 protection against herbivores and/or microbial pathogens. Some natural prodatds are
involved in defence against abiotic stresg, UV-B exposure. Many of the secondary

metabolites have interesting biological properties and quite a number ardioinale
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importance. Because the production of the valuable natural products, such as theeanticanc
drugs paclitaxel, vinblastine or camptothecin in plants is a costly procegghnological
alternatives to produce these alkaloids more economically become more anichpantant.

This review provides an overview of the state of art to produce alkaloids in re@orhbi
microorganisms, such as bacteria or yeast. Some progress has been machetaktblec
engineering usually employing a single recombinant alkaloid gene. Mpaatantly, for
benzylisoquinoline, monoterpene indole and diterpene alkaloids (taxanes) as welkas s
terpenoids and phenolics the proof of concept for the production of complex alkaloids in
recombinanEscherichia coliand yeast has already been achieved. In a long-term perspective,
it will probably be possible to generate gene cassettes for completeayat which could

then be used for the production of valuable natural products in bioreactors or for metabolic
engineering of crop plants to improve their resistance against herbivores mnzbbial

pathogens.

Received: 10-Sep-2009
Revised: 28-Oct-2009

Accepted: 02-Nov-2009

1 Introduction

Plants produce a wide variety and high diversity of secondary metabolit¢swBigh are

not needed for primary or energy metabolism. They are not useless waste compounds
however, as previously assumed, but important for the ecological fithess of a plantroduc
them. Secondary metabolites have apparently evolved as a means for plants to protect

themselves against insects, mammals and other herbivores, against baogrigirtises and
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1

2

2 even other competing plants. Some plants use SM in addition to attract pollinatingénd se
2 dispersing animals or for UV protection [1-6].

5 Plants usually synthesize, transport and store SM in a specific and partiaylg, w]. Even

ig a single plant produces a complex mixture of SM, which often derives fromediffgpes of

i?, SM; e.g.most plants produce phenolics, such as flavonoids but concomitantly terpenoids,
E such as saponins. The types of SM produced are sometimes but not always typical for a
g certain systematic group of plants [3, 5, 6]. Among more than 100 000 structures of SM that
;g have been identified so far, we can distinguish between nitrogen-containing agdmitree

21

2:23 SM. Among nitrogen-containing SM, alkaloids are the largest group with more than 20 000
gg structures, many of them with pronounced pharmacological and toxic properties [769]. Als
EZ important are non-protein amino acids (700 structures), amines (100 structunesgecya

ég glucosides (60 structures), glucosinolates (100 structures), alkamides (50rs#), as well

22 as lectins and other peptides (2000 structures). In the class of nitrog&Mregen more

gz structures have been determined. The largest class is terpenoids with moreG@@rk20wn

g? compounds, among them mono-, sesqui-, di-, and triterpenes with interesting bioactivities
23 Another bioactive group of SM, the polyphenols, is characterized by the presence aif sever
%g phenolic hydroxyl groups, which can dissociate intao@s under physiological conditions.

ji Members of polyphenols are flavonoids, anthocyanins, and tannins. In addition,

jg phenylpropanoids, coumarins, lignans and anthraquinones often possess phenolic OH-groups
47

jg [4-8].

22 Structures of most SM are not random but the consequence of millions of yearstairsele

gg during evolution. Therefore, it is not surprising that pharmacologists have disddlat a

gg number of SM exhibit significant biological properties and can interact withcolaletargets

2; in human cells or microorganisms [4-9]. Consequently, many of the drugs used immedici
28 today derive directly from plants or indirectly in that structures of bioa&ievere used as

a lead for the chemical synthesis with improved activities. SM from pd#thtsr are used as
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isolated chemical entities or as complex extracts (typical for phylieme/phytotherapy) [7—

9]. The latter approach has interesting aspects as the extracts apuanataily not only SM

with additive but also synergistic properties [9]. Examples of isolated SMhwahécbeing

used in medicine include vinblastine, vincristine, paclitaxel (taxol), camptothec
demecolcine, and podophyllotoxin (used in cancer therapy as probably the mostnmporta
drugs), but also emetine, serpentine, ajmaline, reserpine, yohimbine, steyangiobasine,
ergotamine, quinine, quinidine, sparteine, ephedrine, lobeline, caffeine, berberine,
sanguinarine, tubocurarine, papaverine, morphine, codeine, thebaine, noscapine, atropine,
scopolamine, cardiac glycosides, artemisinin, anthraquinones and severd/QtBeras can

be seen from this list, most of the interesting drugs are alkaloids; @&gp#w anticancer

drugs have a large market. So far, these drugs derive from plants, usually grown in
plantations. Since their production in plants is usually low, the production costs are high and
in consequence these drugs are costly.

Plant biotechnologists have explored possibilities to produce these valuable dnggs usi
variousin vitro systems, including bioreactors (Fig. 1). Callus cultures, suspension cell
cultures, organ cultures (root and hairy root cultures) and even large-scaatbdrom of
suspended cells were successfully established over the last 40 years [16481]. T
technically than-vitro production should be feasible. However, the employment of callus and
suspension cultures of medicinal plants often encountered the problem of very low or
insufficient product yields. Apparently, the genes encoding the proteinssagcés
biosynthesis, transport and storage of SM are not adequately expressed in most
undifferentiated cell cultures [22]. There are a few notable exceptions wi#brngisides in
Panax ginsengshikonin inLithospermum erythrorhizgmerberine irCoptis japonica
rosmarinic acid irColeus blumeianthraquinones iNorinda citrofolia or paclitaxel inTaxus

sp. [21, 23]. More encouragingly, root and hairy root cultures, which are differdrisgees,

show excellent product yields for those SM that are produced in roots (which is untytunat
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not the case for all SM) [21, 23, 24]. However, the large-scale fermentation of rootsrgnd ha
roots still is a challenge, although bioreactors have been developed for@aslsia vitro
cultivation [22—24].

((Figure 1))

An alternative to the production of valuable plant drugs in plant cells was didcusse
already more than 30 years ago but even more so these days [25—-39]. Once the genes are
known that encode the enzymes of a biosynthetic pathway, it should be possible to
functionally express these genes in a microbial system, such as bacteaatsy gnd let them
do the production (Fig. 1). As a first step, it could be shown in 198&#adierichia col
transformed with the plant gene encoding phenylalanine ammonium lyase (iBAld) w
convert phenylalanine into cinnamic acid, an important intermediate in the biosymthes
flavonoids and some phenylpropanoids [39]. As a prerequisite for the production of complex
natural products we need to isolate and characterize all the genes involved itibsisyand
storage of SM and then find a way to co-express them concomitantly in a micrgbeah sy
The search for the genes of plant secondary metabolism turned out to be varl diific
slow, because the genes of a biosynthetic pathway are usually not clusteréacteria, but
apparently well dispersed over the plant genome. Secondly, mutants to selenethege
also not available. Therefore, each individual enzyme of a pathway had to be isolated
beforehand, sequenced and then the genes could be isolated by employing corresponding
primers for PCR or cDNA synthesis. Once such a gene became known it was mszally
easier to find homologous genes in other plants. In the last 20 years, aniveprassber of
genes of secondary metabolism has been isolated (see next Sections). Stvwegeods
could be expressed in recombinant microorganisms and plants (reviewed in [25-39]). Most
excitingly, researchers were successful to functionally co-expressrteven more genes of a
pathway. Thus, through metabolic engineering it was possible to produce adetedel

benzylisoquinoline alkaloids and key intermediates of artemisinin or taxane biasgnthe
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recombinank. colior Saccharomyces cerevisifiZ8, 33—35]. Although these processes are
still incomplete and not yet commercial, they are important steps forwdrditouitro
production of SM.

This review will mainly focus on the progress made in finding the genes involvéaiaid
biosynthesis and in expressing these genes in recombinant systems. Alkaleidslected

as this group contains many candidates of medical importance and are thespémially
interesting for biotechnology. The few success stories that have beendeguofde on thén-
vitro production of alkaloids will be discussed in more detail as well as an outlook for the
future developments in this challenging field of biotechnology.

For the purpose of this review the weekly updated database Biosis Previews®dithoms
Scientific, Inc.) was searched systematically for relevant pulditatising the names of
enzymes involved in alkaloid biosynthesis, of substrates or products as keywords. With the
goal of giving a comprehensive summary of any progress made in metaboleszimg),
literature was cited only, if a gene had been both cloned and functionally chaeageeg.in

a heterologous system.

2 Biosynthesis of alkaloids

The enzymes that catalyze the biosynthesis of SM are usually subptaifezswhereas
enzymes of breakdown or turnover (such as esterases, glycosidases) hahebaoamder
substrate spectrum. The nitrogen atom in alkaloids derives from amino acidstinases
(except steroidal alkaloids) with phenylalanine, tyrosine, tryptophan, lysideraithine

being a precursor most often involved. In a first reaction, the amino acids arfeocgtzted

by decarboxylases with phenylethylamine, dopamine, tryptamine, cadavednajteescine

as the corresponding amines. Further reactions often involve the reaction of the awmmo gr

of the amine with an aldehyde function in the same or a second molecule. Aldelydes a
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amines are known to spontaneously form a Schiff’'s base under physiological conditions.
Other reactions include ring closure, oxidation or reductions of double bonds, the addition of
functional groups (hydroxyl-, methyl, methylene dioxy groups) and the furtheéifications
of OH-groups (esterification, glycosylation, methoxylation) (reviewgd®r46]). A scheme
of the pathways leading to major groups of alkaloids is illustrated in Fig. 2.
((Figure 2))

The search for the enzymes involved in the biosynthesis of alkaloids is an ongoing
process and so far has been successful (at least partially) for a nuraltk@taéial groups,
such as morphinane-, protoberberine-, monoterpene indole-, Taxus-, ergot-, purine-;,tropane
Nicotiana-, pyrrolizidine and furanoquinoline alkaloids (see reviews [40-55]). However
considering the high structural diversity of alkaloids and other SM, much wdnkestds to
be done until the picture is complete. Pathways have usually been explored in anfew pla
that produce a certain type of SM and it is silently assumed that pathwagsrdieal in all
plants that produce such compounds. This assumption still needs to be tested, but it is likely

that different organisms evolved different solutions for the same task.

3 Genes of alkaloid biosynthesis

Once the enzymes had been isolated and purified, they could be sequenced and using the
genetic code, primers for PCR and cDNA synthesis could be deduced. With somel{uck ful
length cDNA clones could be generated encoding specific enzymes in a particula
biosynthetic pathway. The corresponding genes could then be characterized easeekior
recombinant systems. This topic will be explored in more detail for majooallkgioups and
the relevant newer literature is summarized in the following. Earlieressgoht work has been

summarized in [4&5].
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3.1 Benzylisoquinoline alkaloids

Benzylisoquinoline alkaloids form one of the major groups with several drugs of medical
importance, such as morphine, thebaine, codeine, papaverine, berberine or saegdinari
biosynthesis of benzylisoquinoline alkaloids, which include structural types such as
tetrahydroisoquinoline, morphinan, protoberberine, benzophenanthridine and aporphine
alkaloids (Fig. 3) has been reviewed recently [47, 48, 51, 55-57]. The pathway leading to
tetrahydroisoquinoline, morphinane, and protoberberine alkaloids has been elucidatéd almos
completely by now and most of the responsible genes have been cloned and cletacteriz
(Table 1). For a few enzymes X-ray data are available, such as berb&tgeednzyme

(BBE) [58, 59] and norcoclaurine synthase [60].

((Figure 3)) ((Table 1))

3.2 Monoterpene indole alkaloids

Monoterpene indole alkaloids are especially abundant in Apocynaceae and contain seve
drugs of medicinal importance, such as the dimeric vinblastine and vincristine from
Catharanthus roseusmportant anticancer drugs), reserpine, ajmaline, ajmalicine, strychnine
and yohimbine. Recent reviews of the biosynthesis of monoterpene indole alkaloids, which
combine tryptamine and a monoterpene (secologanin) in their skeleton, have rezemtly b
published [47, 52, 55, 87, 88]. Strictosidine synthase (STR) is the key enzyme of this pathway
and has been studied by many groups. It was the first alkaloid gene to be cloned in T988 b
Kutchan and M. Zenk [89]. The pathway leading to a few complex monoterpene indole-
alkaloids (ajmalicine, serpentine, ajmaline, tabersonine, vindoline, catharantidroreeric

vinblastine) has been elucidated partially by now (Fig. 4) and several of plomsdde genes
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have been cloned and characterized (Table 2). For a few enzymes X-rayedatailable,
such as STR [90], strictosidine beta-D-glucosidase (SGD) [91, 92] and vinorinesgyntha
[110, 122] fromRauvolfia serpentina

((Figure 4)) ((Table 2))

3.3 Ergot alkaloids

Claviceps purpureuand other fungi produce indole alkaloids of the ergot alkaloid type with
pronounced activities in neuronal signal transduction (such as found in LSD, ergotamine,
ergometrine). Ergot alkaloids have also been detected in a few plants ahilye fa
Convolvulaceae. It could be shown recently, that the ergot alkaloid productmymioeais

due to an endophytic fungus that lives in symbiosis with its host plant [113]. The biosynthesi
of the lysergic acid skeleton starts from tryptamine to which a unit of asbpeene is added.
The corresponding 4-dimethylallyltryptophan synthase or 7-dimethylajpyttphan synthase
have been cloned, characterized (Table 3) and heterogeneously expréssaddijil4,

115].

((Table 3))

3.4 Purine alkaloids

Purine alkaloids, such as caffeine, theobromine and theophylline mediate the known
stimulating bioactivities of coffee and tea (inhibition of phosphodiesterase, aueneseptor
antagonist) [4, 7]. The biosynthesis of purine alkaloids, such as caffeine, starts wit
xanthosine as a precursor. The pathway to xanthosine is assumed to follow the general
pathway to purines, which is required for the purine bases adenine and guanine of DNA. The

modifications of xanthosine are relatively simple and involve consedwtmethylations
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with SAM as a methyl donor [40, 41, 123-125]. The responsible genes have been cloned and
characterized (Table 4).

((Table 4))

3.5 Paclitaxel (Taxol®)

Paclitaxel is a complex diterpene alkaloid, which has been introduced as &upower
anticancer drug (Taxol®) during the last 20 years [130]. Originally isolabed the bark of
the Pacific yew treeTiaxus brevifolig, the production of this important drug was not
sustainable at first. Later it was found that leaves from dthrusspecies could be used to
isolate taxanes in a more sustainable way: The taxanes can be converteditateepen a
semisynthetic process [40, 41, 130]. Nevertheless, researchers have starteaspiagitze
chemical and biotechnological production of paclitaxel or its precursors. Seepslrsthe
biosynthesis of taxanes have been elucidated [40, 41, 46] (Fig. 5) and some of the
corresponding genes have been isolated and characterized (Table 5).

((Figure 5)) ((Table 5))

3.6 Tropane alkaloids and nicotine

Hyoscyamine and scopolamine are tropane alkaloids of medical importance synaesthe
antagonist of the muscarinic acetylcholine receptor [4, 7, 40, 41]. Nicotine is aatkajoid

of tobacco; it is an agonist at the nicotinic acetylcholine receptor [4, 7, 40, 41] and had been
used as a natural insecticide for many years [151]. The biosynthetic pd¢iadang to

tropane alkaloids (including the polyhydroxyalkaloids of the calystegine type) eotthei

has been intensely studied and the initial steps have been elucidated (Fig. 6), but the

corresponding synthase genes are still enigmatic. In nicotine biosyntheqattwvays can
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lead to the intermediary putrescine: (i) via ornithine decarboxylation arftb(m)ornithine to
arginine and after decarboxylation (ADC) via agmatine. Several genebéavésolated,
expressed and characterized (Table 6).

((Figure 6)) ((Table 6))

3.7 Pyrrolizidine alkaloids

Pyrrolizidine alkaloids (PA), which occur in most taxa of the Boraginaceae aehke
Asteraceae, are of general toxicological importance, since most PA haagematand even
carcinogenic properties [40, 41]. Only one enzyme (homospermidine synthase) of PA
biosynthesis and the corresponding gene have been isolated and characterizédgs@far (
and Table 7) [177, 178]. When overexpressed in tobacco cells, an overproduction of
homospermidine was observed [179].

((Table 7))

3.8 Acridone alkaloids

Acridone alkaloids are common in Rutaceae and use anthranilate as a kegdider

(Fig. 2). So far, two enzymes plus corresponding genes have been charactetited)

The key enzyme acridone synthase has high sequence similarity to chalcbasesyatkey
enzyme in the formation of flavonoids); only three amino acids differ between botheszym
[180].

((Table 8))

3.9 Betalains
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Betalains are nitrogen-containing red-orange or yellow colored SM (areddreealkaloids),
which replace anthocyanins in some taxonomic groegsCaryophyllales) as flower
pigments. They also occur in some fungi. A few steps of their biosynthesis have been
elucidated in detail (Table 9).

((Table 9))

4 Metabolic engineering and alkaloid production in recombinant systems

The enzymes mentioned in Section 3 were characterized either as protdiaed from plant
sources, or after the corresponding genes had been expressed in recombigaaiibact
yeasts in order to have enough material. Usually the focus of such work was not tioadlinc
expression of these genes in terms of metabolic engineering. A few egpeyinave been
reported in which a single key enzyme was cloned in a heterologous systeny, arsoihiér
plant species, such as tobacco, and a change in the profile of primary and secondary
metabolites was recorded. Sometimes the recombinant plants were feldevagiptopriate
precursor and it was analyzed if a biotransformation took place.

Ultimately, it will be necessary to transform plants or microbes withiessef genes
or complete pathways and co-express them in order to produce a given compound in a
recombinant system (Fig. 1). For the synthesis of antibiotics, such an approacmhas bee
shown to be feasible [190, 191]. However, here the situation is somehow easier, asthe gene
come in a cassette already and contain all the appropriate signahtsleimehis Section, the
progress in the line of metabolic engineering of natural products from plantsewill

discussed.

4.1 Benzylisoquinoline alkaloids

Wiley-VCH 12
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In terms of metabolic engineering two alkaloid genes f@optis japonicad 60MT and
4’0OMT) were overexpressed in another alkaloid pl&sthscholzia californica.
Consequently, the alkaloid content was elevated 7.5 times [192]. When berberine bridge
enzyme was knocked down by RNAIilschscholzia californicaan enhanced reticuline
accumulation was observed [193]. In another approach salutaridinol 7-O-acefigtaaasn
opium poppy was overexpressed or suppressed by RNAI [194].

When multiple genes in the BIA pathway were functionally co-expressedst ged
E. colithe production of simple benzyliosquinoline alkaloids such as reticuline and related
alkaloids [195], or reticuline, magnoflorine, and scoulerine was demonstrated [33. Thes
findings are especially encouraging because they are a proof of contépé thiepduction of
complex alkaloids is possible by using recombinant microorganisms. However, tluacppr
is not optimal yet, since the production was not carried out in a single recombirtant sys

with some steps done k& coli, somein vitro and others through transformations in yeast.

4.2. Monoterpene indole alkaloids (MIA)

Metabolic engineering with genes of the MIA pathway in homologous and hetauslogll
culture systems has been carried out with tryptophan decarboxylase andidiniet
synthase. The different experiments and results have been summarized in Tabke 10. T
production of MIA in recombinant microorganisms is more complicated than that of BIA
since the biosynthesis of the terpenoid precursor, secologanin is complex and the
corresponding biosynthesis genes are not available.

((Table 10))

4.3 Purine alkaloids

Wiley-VCH 13
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When tobacco plants were transformed with the genes of caffeine biosynthdses 3MT,
MXMT and DXMT a caffeine production was recorded; it has been argued that such a
transformation could be interesting for crop plants, because caffeine appanectilons as a
natural pest repellent [205]. The down-regulation of the genes of caffeine bigsgnthe
produced coffee plants without caffeine; this approach is interesting for the poacfct

decaffeinated coffee [206].

4.4 Paclitaxel

Because of the importance of paclitaxel as an anticancer drug, resetrobgard of
metabolic engineering of the taxane pathway was quite active during thé hgesrs [29,
30]. The key enzyme taxadiene synthase, which converts geranyl-geranyl dipdasiohine
diterpene skeleton, could be functionally expressed and taxadiene was det@csdidopsis
thaliana[207], in transgenic tomato with carotenoid deficiency [208] and in the moss
Physcomitrella paten209].

A few groups were already successful in co-expressing severa gepaclitaxel
biosynthesis in recombinant microbes: The expression of isopentenyl diphosphat@ssym
geranylgeranyl diphosphate synthase and taxadiane syntHaseolhnmade it possible to
synthesize taxadiene from isopentenyl diphosphate both in cell-free ezmdadts
recombinant bacteria [28, 31]. The co-expression of reductase and oxygenase enhances the
formation of hydroxylated taxanes in recombinant yeast cells [210]. A samifstep in the
same direction was reported from the Croteau lab [28], which functionally expreight
genes of taxane biosynthesis in yeast and could demonstrate a formation oh&&adie
acetoxy-1@-ol from precursors of primary metabolism. However, a cytochrome p450

hydroxylation step seems to be a bottleneck in the present process [28].
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5 Conclusions and outlook

Research towards the production of valuable alkaloids has seen much progress ellastg th
two decades [38, 211, 212], but we are still not at a stage where these results can be used
directly in the biotech industry. The proofs of concept obtained with isoquinoline dkaloi
and taxanes are very encouraging but also show the problems that have to be oviercome. |
should be mentioned that similar approaches have been done with pathways leading to mono-
and sesquiterpenes (several terpene synthases have been isolated andlifyespoessed)

[25, 26, 34, 35, 38, 211-213]. Research in the biosynthesis of flavonoids and related
polyphenols has the longest tradition so far and many papers show the impact of metaboli
engineering and practical applications [26, 27, 32, 37, 38, 211, 212].

In the long run, once the expression cassettes for different pathwayseleavesiablished,
these systems are likely to be used for the production of valuable drugs in fermented
microorganisms, for the biotransformation of critical steps in a chenyictiesis or when
transferred into crop plants for the enhancement of resistance agaimdieniand/or

herbivores.

The authors have declared no conflict of interest.
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Figure 1. Some strategies for the production of secondary metabolites.

Figure 2. Overview of biosynthetic pathways of major groups of alkaloids.

Figure 3. Biosynthesis of benzylisoquinoline alkaloids. (A) Pathway from tyrosine to S-

reticuline; (B) pathway from reticuline to protoberberine alkaloids; (C) pagHrmom

reticuline to morphinan alkaloids, (D) pathway from scoulerine to benzophenanthridine

alkaloids.

Figure 4. Biosynthesis of monoterpene indole alkaloids. (A) Pathway from tryptophan to

ajmalicine; (B) pathway from strictosidine to ajmalin; (C) pathway fstrictosidine to

vinblastine.

Figure 5. Biosynthesis of paclitaxel.

Figure 6. Biosynthetic pathway from ornithine to tropane alkaloids.
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Table 1.Cloned genes and characterized enzymes involved in the biosynthesis of

benzylisoquinoline alkaloids (see also [42-46, 48, 50, 54] for earlier publications). *, These

plants do not produce benzylisoquinoline alkaloids.

112

Enzyme Plant Referenc
Tyrosine decarboxylase (TYDC) | Papaver somniferum, Oryza sativa*, [61-64]
Thalictrum flavum, Arabidopsis thalianaf
Norcoclaurine synthase (NCS) Thalictrum flavum, Coptis japonica [65, 66]
Norcoclaurine 69- Thalictrum tuberosum, Thalictrum flavum[63, 67-
methyltransferase (60MT) Coptis japonica, Papaver somniferum, | 70]
CoclaurineN-methyltransferase Thalictrum flavum, Papaver somniferum,[63,69,71]
(CNMT) Coptis japonica
Berbamunine synthase (Cyp80ALl) Berberis stolonifera [72]
N-methylcoclaurine 3’-hydroxylase Thalictrum flavum, Eschscholzia [63, 73-
(Cyp80B) californica 75]
3-HydroxyN-methylcoclaurine 4- | Thalictrum flavum, Coptis japonica, [63, 68,
O-Methyltransferase (4'OMT) Papaver somniferum 69]
Reticuline 7©-methyltransferase | Papaver somniferum [70]
(7OMT)
Berberine bridge enzyme (BBE) | Thalictrum flavum, Eschscholzia [63,
californica, Papaver somniferum 76,77]

Cheilanthifoline synthase Eschscholzia californica [78]
(Cyp719A5)
Stylopine synthase (Cyp719A2, 3) Eschscholzia californica [79]

41

Wiley-VCH



©CoO~NOUTA,WNPE

Biotechnology Journal

Page 42 of 67

Tetrahydroprotoberbering- Papaver somniferum [56]
methyltransferase (TNMT)

Cyp719A1 Thalictrum flavum, Coptis japonica [63, 80]
Scoulerine ©-methyltransferase | Thalictrum flavum, Coptis japonica [63, 81]
(SOMT)

Columbaminegd-methyltransferase| Coptis japonica [82]
(CoOMT)

Salutaridine reductase (SalR) Papaver somniferum [83]
Salutaridinol 7©-acetyltransferase| Papaver somniferum [84]
(SalAT)

Codeinone reductase (COR) Papaver somniferum [85]
Cyp80G2 Coptis japonica [86]
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Table 2.Cloned genes and characterized enzymes involved in the biosynthesis of

monoterpene indole alkaloids. *,

Not an alkaloidal plant.

Enzyme Plant Reference
Tryptophan decarboxylase Oryza sativa*, Catharanthus roseus, [62, 93-95]
(TDC) Camptotheca acuminata, Ophiorrhiza
pumila
Geraniol 10-hydroxylase Catharanthus roseus [96]
(G10H or Cyp76B6)
Cyp72Al1 Catharanthus roseus [97]
Loganic acidO-methyltransferase Catharanthus roseus [98]
(LAMT)
Strictosidine synthase Rauvolfia serpentina, Ophiorrhiza pumilg[89, 95, 99-
(STR) Catharanthus roseus, Rauvolfia mannii,| 101]
Rauvolfia verticillata

Strictosidine betd-glucosidase | Catharanthus roseus, Rauvolfia [102, 103]
(SGD) serpentina
Tabersonine 16-hydroxylase Catharanthus roseus [104]
(T16H or Cyp71D12)
16-Hydroxytabersonine-16- Catharanthus roseus [105]
methyltransferase (1610MT)
Desacetoxyvindoline-4- Catharanthus roseus [106]
hydroxylase (D4H)
Deacetylvindoline 42- Catharanthus roseus [107]
acetyltransferase (DAT)

43

Wiley-VCH




©CoO~NOUTA,WNPE

Biotechnology Journal

Page 44 of 67

Minovincinine-190- Catharanthus roseus [108]
acetyltransferase (MAT)

Polyneuridine aldehyde esterase Rauvolfia serpentina [109]
(PNAE)

Vinorine synthase (VS) Rauvolfia serpentina [110, 122]
Acetylajmalan esterase (AAE) | Rauvolfia serpentina [87]
Raucaffricine©-betab- Rauvolfia serpentina [111]
glucosidase

Perakine reductase (PR) Rauvolfia serpentina [112]
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Table 3.Cloned and characterized enzymes involved in the biosynthesis of ergot alkaloids

Enzyme Fungus Reference

©CoO~NOUTA,WNPE

4-Dimethylallyltryptophan Claviceps purpurea, Neotyphodium sp.; [116-119]
synthase Aspergillus fumigatus, Malbranchea

13 aurantiaca

15 7-Dimethylallyltryptophan Aspergillus fumigatus [120]

18 synthase

20 4-DimethylallyltryptopharN- | Aspergillus fumigatus [121]

methyltransferase

25 Brevianamide F Aspergillus fumigatus [113]

27 prenyltransferase
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Table 4.Cloned and characterized enzymes involved in the biosynthesis of purine alkaloids

Enzyme

Plant

Reference

Xanthosine M-
methyltransferase (XMT) or 7
methylxanthosine synthase

(XRS)

Coffea arabica

[126, 127]

Caffeine synthase (CS)

Camellia sinensis, Coffea arabica

[124, 126, 128]

7-Methylxanthine Coffea arabica [127, 129]
methyltransferase (MXMT)
Dimethylxanthosine Coffea arabica [127]
methyltransferase (DXMT)
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Table 5.Cloned and characterized enzymes involved in the biosynthesis of paclitaxel

Enzyme Plant Reference
Taxa-4(5), 11(12)-diene synthase Taxus brevifolia, T. chinensis, T. | [131-133]
media

Geranylgeranyl diphosphate synthase Taxus canadensis [134]
Taxane a-O-benzoyltransferase Taxus cuspidata [135]
10-Deacetylbaccatin I1I-10-O- Taxus cuspidata, T. media [136, 137]
acetyltransferase

Taxa-4(20),11(12)-dien-5alpha-6- Taxus sp. [138]
acetyl transferase

Taxane 1d-hydroxylase Taxus sp. [139]
Taxane 1p-hydroxylase Taxus sp., T. media [140, 141]
Taxoid 14-hydroxylase Taxus sp. [142]
Taxoid 2-hydroxylase Taxus sp. [143]
Taxoid B-hydroxylase Taxus sp. [144]
Taxadiene &-hydroxylase Taxus sp. [145]
C-13 phenylpropanoid side chain-CoATaxus sp. [146]
acetyl transferase

C13-side-chaiN-benzoyl transferase | Taxus sp. [147]
Phenylalanine ammonium mutase Taxus cuspidata, T. chinensis [148, 149]
Taxadiene &-ol-O-acetyltransferase | Taxus sp. [150]

47

Wiley-VCH




©CoO~NOUTA,WNPE

Biotechnology Journal

Page 48 of 67

Table 6.Cloned and characterized enzymes involved in the biosynthesis of tropane alkaloids

and nicotine
Enzyme Plant Reference
Ornithine decarboxylase Datura stramonium, Nicotiana glutinosa,[152-155]
(ODC) N. tabacum, Capsicum annuum
PutrescinédN-methyltransferase Nicotiana tabacum, Atropa belladonna,| [156-161]
(PMT) Hyoscyamus niger, Anisodus tanguticus,

Solanum specCalystegia sepium, Datura

spec., Physalis divaricarpa, Anisodus

acutangulus
N-methylputrescine oxidase | Nicotiana tabacum [162, 163]
(MPO)
Tropinone reductase | Hyoscyamus niger, Datura stramonium, [164-166]
(TRD) Solanum tuberosum
Tropinone reductase |l Hyoscyamus niger, Datura stramonium), [164, 165,
(TRI) Solanum tuberosum 167]
Cyp80F1 Hyoscyamus niger [168]
Hyoscyamine B-hydroxylase | Hyoscyamus niger, Atropa belladonna,| [169-174]
(H6H) Anisodus tanguticus, A. acutangulus,

Brugmansia candida, Atropa beatica
Nicotine N-demethylase Nicotiana tabacum [175]
(NND)
Arginine decarboxylase Nicotiana tabacum [176]
(ADC)

48

Wiley-VCH



Page 49 of 67 Biotechnology Journal

Table 7.Cloned and characterized enzymes involved in the biosynthesis of pyrrolizidine

alkaloids

©CoO~NOUTA,WNPE

Enzyme Plant Reference

13 Homospermidine synthase | BoraginaceaeHeliotropium, [178]
15 (HSS) Cynoglossum, Symphytjirsteraceae
18 (Eupatorium, Senecio, Petasiies

20 Convolvulaceaelpomoea hederifolia),
22 Solanaceae\jcotiana tabacur)

25 Fabaceae(rotalaria), Orchidaceae

27 (Phalaenopsis
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Table 8.Cloned and characterized enzymes involved in the biosynthesis of acridone alkaloids

Enzyme Plant Reference

Acridone synthase Ruta graveolens, [181, 182]
Huperzia serrata

AnthranilateN- Ruta graveolens [183]

methyltransferase

Wiley-VCH
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Table 9.Cloned and characterized enzymes involved in the biosynthesis of betalains

Enzyme Plant Reference
DOPA 4,5-dioxygenase Amanita muscaria, | [184-187]
Portulacca
grandiflora, P.
americana,
Polyphenol oxidase Phytolacca [188]
americana
Betanidin 50- Dorotheanthus [189]
glucosyltransferase bellidiformis
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Table 10.Expression of tryptophan decarboxylase and strictosidine synthase; metabolic

engineering of the monoterpene indole alkaloid biosynthesis

Enzyme Source Transgenic | Goal/remark Ref.
plant
Tryptophan Catharanthus Brassica Reduction of tryptophan [196]
decarboxylase | roseus napus derived glucosinolates
Catharanthus Nicotina Investigation of influence of | [197]
roseus tabacum subcellular localization on
enzyme activity and
tryptamine accumulation
Camptotheca Populus sp. | Study of tryptamine [198]
acuminata accumulation and effect on
insect pests
Catharanthus Catharanthus| Stimulation of tryptamine [199]
roseus roseus production but no change of
MIA content
Tryptophan Catharanthus Nicotina Plasmid construct with both | [200]
decarboxylase | roseus tabacum genes
+ strictosodine
synthase
Catharanthus Cinchona Functional expression of TDC[201]
roseus officinalis and STR; enhanced levels of
strictosidine and Cinchona
alkaloids in hairy root cultures
52
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Catharanthus

roseus

Catharanthus

roseus

Over-expression of TDC and
STR with stimulation of MIA

synthesis

[202,

203]

Catharanthus

roseus

Nicotina

tabacum

Functional expression of TD(
and STR in tobacco cell
cultures and strictosidine
production after feeding od

secologanin

©[204]
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