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Plants produce a high diversity of natural products or secondary metabolites which are 

important for the communication of plants with other organisms. A prominent function is the 

protection against herbivores and/or microbial pathogens. Some natural products are also 

involved in defence against abiotic stress, e.g. UV-B exposure. Many of the secondary 

metabolites have interesting biological properties and quite a number are of medicinal 
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importance. Because the production of the valuable natural products, such as the anticancer 

drugs paclitaxel, vinblastine or camptothecin in plants is a costly process, biotechnological 

alternatives to produce these alkaloids more economically become more and more important. 

This review provides an overview of the state of art to produce alkaloids in recombinant 

microorganisms, such as bacteria or yeast. Some progress has been made in the metabolic 

engineering usually employing a single recombinant alkaloid gene. More importantly, for 

benzylisoquinoline, monoterpene indole and diterpene alkaloids (taxanes) as well as some 

terpenoids and phenolics the proof of concept for the production of complex alkaloids in 

recombinant Escherichia coli and yeast has already been achieved. In a long-term perspective, 

it will probably be possible to generate gene cassettes for complete pathways, which could 

then be used for the production of valuable natural products in bioreactors or for metabolic 

engineering of crop plants to improve their resistance against herbivores and/or microbial 

pathogens. 

 

Received:   10-Sep-2009 

Revised:     28-Oct-2009 

Accepted:   02-Nov-2009 

 
1 Introduction 

 

Plants produce a wide variety and high diversity of secondary metabolites (SM), which are 

not needed for primary or energy metabolism. They are not useless waste compounds, 

however, as previously assumed, but important for the ecological fitness of a plant producing 

them. Secondary metabolites have apparently evolved as a means for plants to protect 

themselves against insects, mammals and other herbivores, against bacteria, fungi, viruses and 
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even other competing plants. Some plants use SM in addition to attract pollinating and seed 

dispersing animals or for UV protection [1–6]. 

Plants usually synthesize, transport and store SM in a specific and particular way [3, 4]. Even 

a single plant produces a complex mixture of SM, which often derives from different types of 

SM; e.g. most plants produce phenolics, such as flavonoids but concomitantly terpenoids, 

such as saponins. The types of SM produced are sometimes but not always typical for a 

certain systematic group of plants [3, 5, 6]. Among more than 100 000 structures of SM that 

have been identified so far, we can distinguish between nitrogen-containing and nitrogen-free 

SM. Among nitrogen-containing SM, alkaloids are the largest group with more than 20 000 

structures, many of them with pronounced pharmacological and toxic properties [7–9]. Also 

important are non-protein amino acids (700 structures), amines (100 structures), cyanogenic 

glucosides (60 structures), glucosinolates (100 structures), alkamides (150 structures), as well 

as lectins and other peptides (2000 structures). In the class of nitrogen-free SM, even more 

structures have been determined. The largest class is terpenoids with more than 20 000 known 

compounds, among them mono-, sesqui-, di-, and triterpenes with interesting bioactivities. 

Another bioactive group of SM, the polyphenols, is characterized by the presence of several 

phenolic hydroxyl groups, which can dissociate into O- ions under physiological conditions. 

Members of polyphenols are flavonoids, anthocyanins, and tannins. In addition, 

phenylpropanoids, coumarins, lignans and anthraquinones often possess phenolic OH-groups 

[4–8]. 

Structures of most SM are not random but the consequence of millions of years of selection 

during evolution. Therefore, it is not surprising that pharmacologists have discovered that a 

number of SM exhibit significant biological properties and can interact with molecular targets 

in human cells or microorganisms [4–9]. Consequently, many of the drugs used in medicine 

today derive directly from plants or indirectly in that structures of bioactive SM were used as 

a lead for the chemical synthesis with improved activities. SM from plants either are used as 
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isolated chemical entities or as complex extracts (typical for phytomedicine/phytotherapy) [7–

9]. The latter approach has interesting aspects as the extracts apparently contain not only SM 

with additive but also synergistic properties [9]. Examples of isolated SM, which are being 

used in medicine include vinblastine, vincristine, paclitaxel (taxol), camptothecin, 

demecolcine, and podophyllotoxin (used in cancer therapy as probably the most important 

drugs), but also emetine, serpentine, ajmaline, reserpine, yohimbine, strychnine, ergobasine, 

ergotamine, quinine, quinidine, sparteine, ephedrine, lobeline, caffeine, berberine, 

sanguinarine, tubocurarine, papaverine, morphine, codeine, thebaine, noscapine, atropine, 

scopolamine, cardiac glycosides, artemisinin, anthraquinones and several others [7, 8]. As can 

be seen from this list, most of the interesting drugs are alkaloids; especially the anticancer 

drugs have a large market. So far, these drugs derive from plants, usually grown in 

plantations. Since their production in plants is usually low, the production costs are high and 

in consequence these drugs are costly. 

Plant biotechnologists have explored possibilities to produce these valuable drugs using 

various in vitro systems, including bioreactors (Fig. 1). Callus cultures, suspension cell 

cultures, organ cultures (root and hairy root cultures) and even large-scale fermentation of 

suspended cells were successfully established over the last 40 years [10–21]. Thus, 

technically the in-vitro production should be feasible. However, the employment of callus and 

suspension cultures of medicinal plants often encountered the problem of very low or 

insufficient product yields. Apparently, the genes encoding the proteins necessary for 

biosynthesis, transport and storage of SM are not adequately expressed in most 

undifferentiated cell cultures [22]. There are a few notable exceptions with ginsenosides in 

Panax ginseng, shikonin in Lithospermum erythrorhizon, berberine in Coptis japonica, 

rosmarinic acid in Coleus blumei, anthraquinones in Morinda citrofolia or paclitaxel in Taxus 

sp. [21, 23]. More encouragingly, root and hairy root cultures, which are differentiated tissues, 

show excellent product yields for those SM that are produced in roots (which is unfortunately 
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not the case for all SM) [21, 23, 24]. However, the large-scale fermentation of roots and hairy 

roots still is a challenge, although bioreactors have been developed for a sustainable in vitro 

cultivation [22–24]. 

((Figure 1)) 

An alternative to the production of valuable plant drugs in plant cells was discussed 

already more than 30 years ago but even more so these days [25–39]. Once the genes are 

known that encode the enzymes of a biosynthetic pathway, it should be possible to 

functionally express these genes in a microbial system, such as bacteria or yeasts, and let them 

do the production (Fig. 1). As a first step, it could be shown in 1989 that Escherichia coli 

transformed with the plant gene encoding phenylalanine ammonium lyase (PAL) would 

convert phenylalanine into cinnamic acid, an important intermediate in the biosynthesis of 

flavonoids and some phenylpropanoids [39]. As a prerequisite for the production of complex 

natural products we need to isolate and characterize all the genes involved in the synthesis and 

storage of SM and then find a way to co-express them concomitantly in a microbial system. 

The search for the genes of plant secondary metabolism turned out to be very difficult and 

slow, because the genes of a biosynthetic pathway are usually not clustered as in bacteria, but 

apparently well dispersed over the plant genome. Secondly, mutants to select the genes were 

also not available. Therefore, each individual enzyme of a pathway had to be isolated 

beforehand, sequenced and then the genes could be isolated by employing corresponding 

primers for PCR or cDNA synthesis. Once such a gene became known it was usually much 

easier to find homologous genes in other plants. In the last 20 years, an impressive number of 

genes of secondary metabolism has been isolated (see next Sections). Several of the genes 

could be expressed in recombinant microorganisms and plants (reviewed in [25–39]). Most 

excitingly, researchers were successful to functionally co-express two or even more genes of a 

pathway. Thus, through metabolic engineering it was possible to produce a few selected 

benzylisoquinoline alkaloids and key intermediates of artemisinin or taxane biosynthesis in 
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recombinant E. coli or Saccharomyces cerevisiae [28, 33–35]. Although these processes are 

still incomplete and not yet commercial, they are important steps forward to the in vitro 

production of SM. 

This review will mainly focus on the progress made in finding the genes involved in alkaloid 

biosynthesis and in expressing these genes in recombinant systems. Alkaloids were selected 

as this group contains many candidates of medical importance and are therefore especially 

interesting for biotechnology. The few success stories that have been reported so far on the in-

vitro production of alkaloids will be discussed in more detail as well as an outlook for the 

future developments in this challenging field of biotechnology. 

For the purpose of this review the weekly updated database Biosis Previews® (Thomson 

Scientific, Inc.) was searched systematically for relevant publications using the names of 

enzymes involved in alkaloid biosynthesis, of substrates or products as keywords. With the 

goal of giving a comprehensive summary of any progress made in metabolic engineering, 

literature was cited only, if a gene had been both cloned and functionally characterized, e.g. in 

a heterologous system. 

 

2 Biosynthesis of alkaloids 

 

The enzymes that catalyze the biosynthesis of SM are usually substrate-specific, whereas 

enzymes of breakdown or turnover (such as esterases, glycosidases) have a much broader 

substrate spectrum. The nitrogen atom in alkaloids derives from amino acids in most cases 

(except steroidal alkaloids) with phenylalanine, tyrosine, tryptophan, lysine, and ornithine 

being a precursor most often involved. In a first reaction, the amino acids are decarboxylated 

by decarboxylases with phenylethylamine, dopamine, tryptamine, cadaverine, and putrescine 

as the corresponding amines. Further reactions often involve the reaction of the amino group 

of the amine with an aldehyde function in the same or a second molecule. Aldehydes and 
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amines are known to spontaneously form a Schiff’s base under physiological conditions. 

Other reactions include ring closure, oxidation or reductions of double bonds, the addition of 

functional groups (hydroxyl-, methyl, methylene dioxy groups) and the further modifications 

of OH-groups (esterification, glycosylation, methoxylation) (reviewed in [40–46]). A scheme 

of the pathways leading to major groups of alkaloids is illustrated in Fig. 2. 

((Figure 2)) 

The search for the enzymes involved in the biosynthesis of alkaloids is an ongoing 

process and so far has been successful (at least partially) for a number of alkaloidal groups, 

such as morphinane-, protoberberine-, monoterpene indole-, Taxus-, ergot-, purine-, tropane-, 

Nicotiana-, pyrrolizidine and furanoquinoline alkaloids (see reviews [40–55]). However, 

considering the high structural diversity of alkaloids and other SM, much work still needs to 

be done until the picture is complete. Pathways have usually been explored in a few plants 

that produce a certain type of SM and it is silently assumed that pathways are identical in all 

plants that produce such compounds. This assumption still needs to be tested, but it is likely 

that different organisms evolved different solutions for the same task. 

 

3 Genes of alkaloid biosynthesis 

 

Once the enzymes had been isolated and purified, they could be sequenced and using the 

genetic code, primers for PCR and cDNA synthesis could be deduced. With some luck full-

length cDNA clones could be generated encoding specific enzymes in a particular 

biosynthetic pathway. The corresponding genes could then be characterized and expressed in 

recombinant systems. This topic will be explored in more detail for major alkaloid groups and 

the relevant newer literature is summarized in the following. Earlier and recent work has been 

summarized in [40–55]. 
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3.1 Benzylisoquinoline alkaloids 

 

Benzylisoquinoline alkaloids form one of the major groups with several drugs of medical 

importance, such as morphine, thebaine, codeine, papaverine, berberine or sanguinarine. The 

biosynthesis of benzylisoquinoline alkaloids, which include structural types such as 

tetrahydroisoquinoline, morphinan, protoberberine, benzophenanthridine and aporphine 

alkaloids (Fig. 3) has been reviewed recently [47, 48, 51, 55–57]. The pathway leading to 

tetrahydroisoquinoline, morphinane, and protoberberine alkaloids has been elucidated almost 

completely by now and most of the responsible genes have been cloned and characterized 

(Table 1). For a few enzymes X-ray data are available, such as berberine bridge enzyme 

(BBE) [58, 59] and norcoclaurine synthase [60]. 

((Figure 3)) ((Table 1)) 

 

3.2 Monoterpene indole alkaloids 

 

Monoterpene indole alkaloids are especially abundant in Apocynaceae and contain several 

drugs of medicinal importance, such as the dimeric vinblastine and vincristine from 

Catharanthus roseus (important anticancer drugs), reserpine, ajmaline, ajmalicine, strychnine 

and yohimbine. Recent reviews of the biosynthesis of monoterpene indole alkaloids, which 

combine tryptamine and a monoterpene (secologanin) in their skeleton, have recently been 

published [47, 52, 55, 87, 88]. Strictosidine synthase (STR) is the key enzyme of this pathway 

and has been studied by many groups. It was the first alkaloid gene to be cloned in 1988 by T. 

Kutchan and M. Zenk [89]. The pathway leading to a few complex monoterpene indole-

alkaloids (ajmalicine, serpentine, ajmaline, tabersonine, vindoline, catharanthine, and dimeric 

vinblastine) has been elucidated partially by now (Fig. 4) and several of the responsible genes 
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have been cloned and characterized (Table 2). For a few enzymes X-ray data are available, 

such as STR [90], strictosidine beta-D-glucosidase (SGD) [91, 92] and vinorine synthase 

[110, 122] from Rauvolfia serpentina. 

((Figure 4)) ((Table 2)) 

 

3.3 Ergot alkaloids 
 

Claviceps purpureus and other fungi produce indole alkaloids of the ergot alkaloid type with 

pronounced activities in neuronal signal transduction (such as found in LSD, ergotamine, 

ergometrine). Ergot alkaloids have also been detected in a few plants of the family 

Convolvulaceae. It could be shown recently, that the ergot alkaloid production in Ipomoea is 

due to an endophytic fungus that lives in symbiosis with its host plant [113]. The biosynthesis 

of the lysergic acid skeleton starts from tryptamine to which a unit of active isoprene is added. 

The corresponding 4-dimethylallyltryptophan synthase or 7-dimethylallyltryptophan synthase 

have been cloned, characterized (Table 3) and heterogeneously expressed in E. coli [114, 

115]. 

((Table 3)) 

 

3.4 Purine alkaloids 
 

Purine alkaloids, such as caffeine, theobromine and theophylline mediate the known 

stimulating bioactivities of coffee and tea (inhibition of phosphodiesterase, adenosine receptor 

antagonist) [4, 7]. The biosynthesis of purine alkaloids, such as caffeine, starts with 

xanthosine as a precursor. The pathway to xanthosine is assumed to follow the general 

pathway to purines, which is required for the purine bases adenine and guanine of DNA. The 

modifications of xanthosine are relatively simple and involve consecutive N-methylations 
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with SAM as a methyl donor [40, 41, 123–125]. The responsible genes have been cloned and 

characterized (Table 4). 

((Table 4)) 

 

3.5 Paclitaxel (Taxol®) 
 

Paclitaxel is a complex diterpene alkaloid, which has been introduced as a powerful 

anticancer drug (Taxol®) during the last 20 years [130]. Originally isolated from the bark of 

the Pacific yew tree (Taxus brevifolia), the production of this important drug was not 

sustainable at first. Later it was found that leaves from other Taxus species could be used to 

isolate taxanes in a more sustainable way: The taxanes can be converted into paclitaxel in a 

semisynthetic process [40, 41, 130]. Nevertheless, researchers have started programs for the 

chemical and biotechnological production of paclitaxel or its precursors. Several steps in the 

biosynthesis of taxanes have been elucidated [40, 41, 46] (Fig. 5) and some of the 

corresponding genes have been isolated and characterized (Table 5). 

((Figure 5)) ((Table 5)) 

 

3.6 Tropane alkaloids and nicotine 
 

Hyoscyamine and scopolamine are tropane alkaloids of medical importance since they are 

antagonist of the muscarinic acetylcholine receptor [4, 7, 40, 41]. Nicotine is a major alkaloid 

of tobacco; it is an agonist at the nicotinic acetylcholine receptor [4, 7, 40, 41] and had been 

used as a natural insecticide for many years [151]. The biosynthetic pathway leading to 

tropane alkaloids (including the polyhydroxyalkaloids of the calystegine type) and nicotine 

has been intensely studied and the initial steps have been elucidated (Fig. 6), but the 

corresponding synthase genes are still enigmatic. In nicotine biosynthesis two pathways can 
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lead to the intermediary putrescine: (i) via ornithine decarboxylation and (ii) from ornithine to 

arginine and after decarboxylation (ADC) via agmatine. Several genes have been isolated, 

expressed and characterized (Table 6). 

((Figure 6)) ((Table 6)) 

 

3.7 Pyrrolizidine alkaloids 
 

Pyrrolizidine alkaloids (PA), which occur in most taxa of the Boraginaceae and several 

Asteraceae, are of general toxicological importance, since most PA have mutagenic and even 

carcinogenic properties [40, 41]. Only one enzyme (homospermidine synthase) of PA 

biosynthesis and the corresponding gene have been isolated and characterized so far (Fig. 2 

and Table 7) [177, 178]. When overexpressed in tobacco cells, an overproduction of 

homospermidine was observed [179]. 

((Table 7)) 

 

3.8 Acridone alkaloids 
 

Acridone alkaloids are common in Rutaceae and use anthranilate as a key intermediate 

(Fig. 2). So far, two enzymes plus corresponding genes have been characterized (Table 8). 

The key enzyme acridone synthase has high sequence similarity to chalcone synthase (a key 

enzyme in the formation of flavonoids); only three amino acids differ between both enzymes 

[180]. 

((Table 8)) 

 

3.9 Betalains 
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Betalains are nitrogen-containing red-orange or yellow colored SM (and therefore alkaloids), 

which replace anthocyanins in some taxonomic groups (e.g. Caryophyllales) as flower 

pigments. They also occur in some fungi. A few steps of their biosynthesis have been 

elucidated in detail (Table 9). 

((Table 9)) 

 

4 Metabolic engineering and alkaloid production in recombinant systems 

 

The enzymes mentioned in Section 3 were characterized either as proteins purified from plant 

sources, or after the corresponding genes had been expressed in recombinant bacteria or 

yeasts in order to have enough material. Usually the focus of such work was not the functional 

expression of these genes in terms of metabolic engineering. A few experiments have been 

reported in which a single key enzyme was cloned in a heterologous system, usually another 

plant species, such as tobacco, and a change in the profile of primary and secondary 

metabolites was recorded. Sometimes the recombinant plants were fed with the appropriate 

precursor and it was analyzed if a biotransformation took place. 

Ultimately, it will be necessary to transform plants or microbes with a series of genes 

or complete pathways and co-express them in order to produce a given compound in a 

recombinant system (Fig. 1). For the synthesis of antibiotics, such an approach has been 

shown to be feasible [190, 191]. However, here the situation is somehow easier, as the genes 

come in a cassette already and contain all the appropriate signal elements. In this Section, the 

progress in the line of metabolic engineering of natural products from plants will be 

discussed. 

 

4.1 Benzylisoquinoline alkaloids 
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In terms of metabolic engineering two alkaloid genes from Coptis japonica (6OMT and 

4’OMT) were overexpressed in another alkaloid plant, Eschscholzia californica. 

Consequently, the alkaloid content was elevated 7.5 times [192]. When berberine bridge 

enzyme was knocked down by RNAi in Eschscholzia californica, an enhanced reticuline 

accumulation was observed [193]. In another approach salutaridinol 7-O-acetyltransferase in 

opium poppy was overexpressed or suppressed by RNAi [194]. 

When multiple genes in the BIA pathway were functionally co-expressed in yeast and 

E. coli the production of simple benzyliosquinoline alkaloids such as reticuline and related 

alkaloids [195], or reticuline, magnoflorine, and scoulerine was demonstrated [33]. These 

findings are especially encouraging because they are a proof of concept that the production of 

complex alkaloids is possible by using recombinant microorganisms. However, this approach 

is not optimal yet, since the production was not carried out in a single recombinant system 

with some steps done in E. coli, some in vitro and others through transformations in yeast. 

 

4.2. Monoterpene indole alkaloids (MIA) 
 
Metabolic engineering with genes of the MIA pathway in homologous and heterologous cell 

culture systems has been carried out with tryptophan decarboxylase and strictosidine 

synthase. The different experiments and results have been summarized in Table 10. The 

production of MIA in recombinant microorganisms is more complicated than that of BIA 

since the biosynthesis of the terpenoid precursor, secologanin is complex and the 

corresponding biosynthesis genes are not available. 

((Table 10)) 

 

4.3 Purine alkaloids 
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When tobacco plants were transformed with the genes of caffeine biosynthesis, such as XMT, 

MXMT and DXMT a caffeine production was recorded; it has been argued that such a 

transformation could be interesting for crop plants, because caffeine apparently functions as a 

natural pest repellent [205]. The down-regulation of the genes of caffeine biosynthesis 

produced coffee plants without caffeine; this approach is interesting for the production of 

decaffeinated coffee [206]. 

4.4 Paclitaxel 
 

Because of the importance of paclitaxel as an anticancer drug, research with regard of 

metabolic engineering of the taxane pathway was quite active during the last 10 years [29, 

30]. The key enzyme taxadiene synthase, which converts geranyl-geranyl diphosphate into the 

diterpene skeleton, could be functionally expressed and taxadiene was detected in Arabidopsis 

thaliana [207], in transgenic tomato with carotenoid deficiency [208] and in the moss 

Physcomitrella patens [209]. 

A few groups were already successful in co-expressing several genes of paclitaxel 

biosynthesis in recombinant microbes: The expression of isopentenyl diphosphate isomerase, 

geranylgeranyl diphosphate synthase and taxadiane synthase in E. coli made it possible to 

synthesize taxadiene from isopentenyl diphosphate both in cell-free extracts and in 

recombinant bacteria [28, 31]. The co-expression of reductase and oxygenase enhances the 

formation of hydroxylated taxanes in recombinant yeast cells [210]. A significant step in the 

same direction was reported from the Croteau lab [28], which functionally expressed eight 

genes of taxane biosynthesis in yeast and could demonstrate a formation of taxadiene-5α-

acetoxy-10β-ol from precursors of primary metabolism. However, a cytochrome p450 

hydroxylation step seems to be a bottleneck in the present process [28]. 
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5 Conclusions and outlook 

 
Research towards the production of valuable alkaloids has seen much progress during the last 

two decades [38, 211, 212], but we are still not at a stage where these results can be used 

directly in the biotech industry. The proofs of concept obtained with isoquinoline alkaloids 

and taxanes are very encouraging but also show the problems that have to be overcome. It 

should be mentioned that similar approaches have been done with pathways leading to mono- 

and sesquiterpenes (several terpene synthases have been isolated and functionally expressed) 

[25, 26, 34, 35, 38, 211–213]. Research in the biosynthesis of flavonoids and related 

polyphenols has the longest tradition so far and many papers show the impact of metabolic 

engineering and practical applications [26, 27, 32, 37, 38, 211, 212]. 

In the long run, once the expression cassettes for different pathways have been established, 

these systems are likely to be used for the production of valuable drugs in fermented 

microorganisms, for the biotransformation of critical steps in a chemical synthesis or when 

transferred into crop plants for the enhancement of resistance against microbes and/or 

herbivores. 
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Figure 1. Some strategies for the production of secondary metabolites. 

 

Figure 2. Overview of biosynthetic pathways of major groups of alkaloids. 

 

Figure 3. Biosynthesis of benzylisoquinoline alkaloids. (A) Pathway from tyrosine to S-

reticuline; (B) pathway from reticuline to protoberberine alkaloids; (C) pathway from 

reticuline to morphinan alkaloids, (D) pathway from scoulerine to benzophenanthridine 

alkaloids. 

 

Figure 4. Biosynthesis of monoterpene indole alkaloids. (A) Pathway from tryptophan to 

ajmalicine; (B) pathway from strictosidine to ajmalin; (C) pathway from strictosidine to 

vinblastine. 

 

Figure 5. Biosynthesis of paclitaxel. 

 

Figure 6. Biosynthetic pathway from ornithine to tropane alkaloids. 
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Table 1. Cloned genes and characterized enzymes involved in the biosynthesis of 

benzylisoquinoline alkaloids (see also [42–46, 48, 50, 54] for earlier publications). *, These 

plants do not produce benzylisoquinoline alkaloids. 

 

Enzyme Plant Reference 

Tyrosine decarboxylase (TYDC) Papaver somniferum, Oryza sativa*, 

Thalictrum flavum, Arabidopsis thaliana* 

[61-64]  

Norcoclaurine synthase (NCS) Thalictrum flavum, Coptis japonica [65, 66]  

Norcoclaurine 6-O-

methyltransferase (6OMT) 

Thalictrum tuberosum, Thalictrum flavum, 

Coptis japonica, Papaver somniferum,  

[63, 67-

70]  

Coclaurine N-methyltransferase 

(CNMT) 

Thalictrum flavum, Papaver somniferum, 

Coptis japonica 

[63,69,71]  

Berbamunine synthase (Cyp80A1) Berberis stolonifera [72]  

N-methylcoclaurine 3’-hydroxylase 

(Cyp80B) 

Thalictrum flavum, Eschscholzia 

californica 

[63, 73-

75] 

3-Hydroxy-N-methylcoclaurine 4-

O-Methyltransferase (4’OMT) 

Thalictrum flavum, Coptis japonica, 

Papaver somniferum 

[63, 68, 

69]  

Reticuline 7-O-methyltransferase 

(7OMT) 

Papaver somniferum [70] 

Berberine bridge enzyme (BBE) Thalictrum flavum, Eschscholzia 

californica, Papaver somniferum 

[63, 

76,77] 

Cheilanthifoline synthase 

(Cyp719A5) 

Eschscholzia californica [78] 

Stylopine synthase (Cyp719A2, 3) Eschscholzia californica [79] 

Page 41 of 67

Wiley-VCH

Biotechnology Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 42 

Tetrahydroprotoberberine N-

methyltransferase (TNMT) 

Papaver somniferum [56] 

Cyp719A1 Thalictrum flavum, Coptis japonica [63, 80] 

Scoulerine 9-O-methyltransferase 

(SOMT) 

Thalictrum flavum, Coptis japonica [63, 81]  

Columbamine O-methyltransferase 

(CoOMT) 

Coptis japonica [82] 

Salutaridine reductase (SalR) Papaver somniferum [83] 

Salutaridinol 7-O-acetyltransferase 

(SalAT) 

Papaver somniferum [84] 

Codeinone reductase (COR) Papaver somniferum [85] 

Cyp80G2 Coptis japonica [86] 
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Table 2. Cloned genes and characterized enzymes involved in the biosynthesis of 

monoterpene indole alkaloids. *, Not an alkaloidal plant. 

 

Enzyme Plant Reference 

Tryptophan decarboxylase 

(TDC) 

Oryza sativa*, Catharanthus roseus, 

Camptotheca acuminata, Ophiorrhiza 

pumila  

[62, 93-95] 

Geraniol 10-hydroxylase 

(G10H or Cyp76B6) 

Catharanthus roseus  [96] 

Cyp72A1 Catharanthus roseus  [97] 

Loganic acid O-methyltransferase 

(LAMT) 

Catharanthus roseus  [98] 

Strictosidine synthase 

(STR) 

Rauvolfia serpentina, Ophiorrhiza pumila, 

Catharanthus roseus, Rauvolfia mannii, 

Rauvolfia verticillata 

[89, 95, 99-

101] 

Strictosidine beta-D-glucosidase 

(SGD) 

Catharanthus roseus, Rauvolfia 

serpentina  

[102, 103]  

Tabersonine 16-hydroxylase 

(T16H or Cyp71D12) 

Catharanthus roseus  [104] 

16-Hydroxytabersonine-16-O-

methyltransferase (16OMT) 

Catharanthus roseus  [105] 

Desacetoxyvindoline-4-

hydroxylase (D4H) 

Catharanthus roseus  [106] 

Deacetylvindoline 4-O-

acetyltransferase (DAT) 

Catharanthus roseus  [107]  
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Minovincinine-19-O-

acetyltransferase (MAT) 

Catharanthus roseus  [108] 

Polyneuridine aldehyde esterase 

(PNAE) 

Rauvolfia serpentina  [109]  

Vinorine synthase (VS) Rauvolfia serpentina  [110, 122] 

Acetylajmalan esterase (AAE) Rauvolfia serpentina [87] 

Raucaffricine-O-beta-D-

glucosidase 

Rauvolfia serpentina  [111] 

Perakine reductase (PR) Rauvolfia serpentina  [112] 
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Table 3. Cloned and characterized enzymes involved in the biosynthesis of ergot alkaloids 

Enzyme Fungus Reference 

4-Dimethylallyltryptophan 

synthase 

Claviceps purpurea, Neotyphodium sp., 

Aspergillus fumigatus, Malbranchea 

aurantiaca 

[116-119] 

7-Dimethylallyltryptophan 

synthase 

Aspergillus fumigatus [120] 

4-Dimethylallyltryptophan N-

methyltransferase 

Aspergillus fumigatus [121]  

Brevianamide F 

prenyltransferase 

Aspergillus fumigatus [113] 
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Table 4. Cloned and characterized enzymes involved in the biosynthesis of purine alkaloids 

Enzyme Plant Reference 

Xanthosine 7-N-

methyltransferase (XMT) or 7-

methylxanthosine synthase 

(XRS) 

Coffea arabica [126, 127] 

Caffeine synthase (CS) Camellia sinensis, Coffea arabica [124, 126, 128] 

7-Methylxanthine 

methyltransferase (MXMT) 

Coffea arabica [127, 129] 

Dimethylxanthosine 

methyltransferase (DXMT) 

Coffea arabica [127] 
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Table 5. Cloned and characterized enzymes involved in the biosynthesis of paclitaxel 

 

Enzyme Plant Reference 

Taxa-4(5), 11(12)-diene synthase Taxus brevifolia, T. chinensis, T. 

media  

[131-133] 

Geranylgeranyl diphosphate synthase Taxus canadensis [134] 

Taxane 2α-O-benzoyltransferase Taxus cuspidata [135] 

10-Deacetylbaccatin III-10-O-

acetyltransferase 

Taxus cuspidata, T. media [136, 137] 

Taxa-4(20),11(12)-dien-5alpha-ol-O-

acetyl transferase 

Taxus sp. [138] 

Taxane 13α-hydroxylase Taxus sp. [139] 

Taxane 10β-hydroxylase Taxus sp., T. media [140, 141] 

Taxoid 14β-hydroxylase Taxus sp. [142] 

Taxoid 2α-hydroxylase Taxus sp. [143] 

Taxoid 7β-hydroxylase Taxus sp. [144] 

Taxadiene 5α-hydroxylase Taxus sp. [145] 

C-13 phenylpropanoid side chain-CoA 

acetyl transferase 

Taxus sp. [146] 

C13-side-chain N-benzoyl transferase Taxus sp. [147] 

Phenylalanine ammonium mutase Taxus cuspidata, T. chinensis [148, 149] 

Taxadiene 5α-ol-O-acetyltransferase Taxus sp. [150] 
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Table 6. Cloned and characterized enzymes involved in the biosynthesis of tropane alkaloids 

and nicotine 

Enzyme Plant Reference 

Ornithine decarboxylase 

(ODC) 

Datura stramonium, Nicotiana glutinosa, 

N. tabacum, Capsicum annuum 

[152-155] 

Putrescine N-methyltransferase 

(PMT) 

Nicotiana tabacum, Atropa belladonna, 

Hyoscyamus niger, Anisodus tanguticus, 

Solanum spec, Calystegia sepium, Datura 

spec., Physalis divaricarpa, Anisodus 

acutangulus 

[156-161] 

N-methylputrescine oxidase 

(MPO) 

Nicotiana tabacum [162, 163] 

Tropinone reductase I 

(TRI) 

Hyoscyamus niger, Datura stramonium, 

Solanum tuberosum 

[164-166] 

Tropinone reductase II 

(TRII) 

Hyoscyamus niger, Datura stramonium, 

Solanum tuberosum 

[164, 165, 

167] 

Cyp80F1 Hyoscyamus niger [168] 

Hyoscyamine 6β-hydroxylase 

(H6H) 

Hyoscyamus niger, Atropa belladonna, 

Anisodus tanguticus, A. acutangulus, 

Brugmansia candida, Atropa beatica 

[169-174] 

Nicotine N-demethylase 

(NND) 

Nicotiana tabacum  [175]  

Arginine decarboxylase 

(ADC) 

Nicotiana tabacum [176] 
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Table 7. Cloned and characterized enzymes involved in the biosynthesis of pyrrolizidine 

alkaloids 

 

Enzyme Plant Reference 

Homospermidine synthase 

(HSS) 

Boraginaceae (Heliotropium, 

Cynoglossum, Symphytum), Asteraceae 

(Eupatorium, Senecio, Petasites), 

Convolvulaceae (Ipomoea hederifolia), 

Solanaceae (Nicotiana tabacum), 

Fabaceae (Crotalaria), Orchidaceae 

(Phalaenopsis) 

[178] 
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Table 8. Cloned and characterized enzymes involved in the biosynthesis of acridone alkaloids 

Enzyme Plant Reference 

Acridone synthase Ruta graveolens, 

Huperzia serrata 

[181, 182] 

Anthranilate N-

methyltransferase 

Ruta graveolens [183] 
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Table 9. Cloned and characterized enzymes involved in the biosynthesis of betalains 

Enzyme Plant Reference 

DOPA 4,5-dioxygenase Amanita muscaria, 

Portulacca 

grandiflora, P. 

americana,  

[184-187] 

Polyphenol oxidase Phytolacca 

americana 

[188] 

Betanidin 5-O-

glucosyltransferase 

Dorotheanthus 

bellidiformis 

[189] 
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Table 10. Expression of tryptophan decarboxylase and strictosidine synthase; metabolic 

engineering of the monoterpene indole alkaloid biosynthesis 

 

Enzyme Source Transgenic 

plant 

Goal/remark Ref. 

Tryptophan 

decarboxylase 

Catharanthus 

roseus  

Brassica 

napus 

Reduction of tryptophan 

derived glucosinolates  

[196] 

 Catharanthus 

roseus 

Nicotina 

tabacum 

Investigation of influence of 

subcellular localization on 

enzyme activity and 

tryptamine accumulation 

[197] 

 Camptotheca 

acuminata 

Populus sp. Study of tryptamine 

accumulation and effect on 

insect pests 

[198] 

 Catharanthus 

roseus 

Catharanthus 

roseus 

Stimulation of tryptamine 

production but no change of 

MIA content 

[199] 

Tryptophan 

decarboxylase 

+ strictosodine 

synthase 

Catharanthus 

roseus  

Nicotina 

tabacum 

Plasmid construct with both 

genes 

[200] 

 Catharanthus 

roseus  

Cinchona 

officinalis 

Functional expression of TDC 

and STR; enhanced levels of 

strictosidine and Cinchona 

alkaloids in hairy root cultures 

[201] 
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 Catharanthus 

roseus 

Catharanthus 

roseus 

Over-expression of TDC and 

STR with stimulation of MIA 

synthesis 

[202, 

203] 

 Catharanthus 

roseus  

Nicotina 

tabacum  

Functional expression of TDC 

and STR in tobacco cell 

cultures and strictosidine 

production after feeding od 

secologanin 

[204] 

Page 53 of 67

Wiley-VCH

Biotechnology Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 54 

((Biographical Material)) 

 
Holger Schäfer (Dr. rer. nat.) studied biology at the University of Darmstadt and obtained his 

doctorate in 2000 at the University of Heidelberg. He is working as a research assistant at the 

Institute of Pharmacy and Molecular Biotechnology, Heidelberg, Germany. His research 

interests are in molecular biology with a focus on the recombinant production of proteins and 

natural products. 

 

Michael Wink (Dr. rer. nat.) is a professor of Pharmaceutical Biology at Heidelberg 

University and director at the Institute of Pharmacy and Molecular Biotechnology, 

Heidelberg, Germany. He received his research training in biology and chemistry at the 

Universities of Bonn, Braunschweig and Munich. In 1988 he became a professor at the 

University of Mainz and in 1989 at Heidelberg University. His research interests range from 

plant natural products (identification, biochemistry, pharmacology, biotechnology), medicinal 

and toxic plants to evolution (phylogeny and phylogeography). He is author of more than 15 

books or monographs and author/coauthor of more than 450 refereed publications. 

Page 54 of 67

Wiley-VCH

Biotechnology Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Plants

Genetic engineering

Cell & organ culture

-Isolated genes of biosynthetic

pathways

-coexpression in bacteria

or yeast

Fermentation

in bioreactors

Downstream

processing PRODUCT

AcO OHO

HO
O

O
AcO

O

R

NH

O

OH

O

taxol

HO

HO

N

CH3

O

morphine

Page 55 of 67

Wiley-VCH

Biotechnology Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 2. Overview of biosynthetic pathways of major groups of alkaloids  
271x183mm (300 x 300 DPI)  
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Figure 3. Biosynthesis of benzylisoquinoline alkaloids 
A. Pathway from tyrosine to S-reticuline; B. pathway from reticuline to to protoberberine alkaloids; 

C. pathway from reticuline to morphinan alkaloids, D. pathway from scoulerine to 
benzophenanthridine alkaloids. 
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Figure 4. Biosynthesis of monoterpene indole alkaloids 
A. Pathway from tryptophan to ajmalicine; B. pathway from strictosidine to ajmalin C. pathway from 

strictosidine to vinblastine 
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Figure 4. Biosynthesis of monoterpene indole alkaloids 
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Figure 5. Biosynthesis of paclitaxel  
266x177mm (300 x 300 DPI)  
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Figure 6. Biosynthetic pathway from ornithine to tropane alkaloids  
178x261mm (300 x 300 DPI)  
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