ARTHRITIS & RHEUMATISM

Vol. 65, No. 2, February 2013, pp 291-302
DOI 10.1002/art.37739

© 2013, American College of Rheumatology

Arthritis & Rheumatism

An Official Journal of the American College of Rheumatology
www arthritisrheum.org and wileyonlinelibrary.com

REVIEW

Central Pain Mechanisms in the Rheumatic Diseases

Future Directions

Kristine Phillips and Daniel J. Clauw

Introduction

Pain is a prominent component of many rheu-
matologic conditions and is the result of a complex
physiologic interaction of central and peripheral ner-
vous system signaling that results in a highly individual-
ized symptom complex. Pain is frequently categorized
as acute or chronic (generally >3 months’ duration).
Chronic pain is not simply acute pain that has lasted
longer; it is more likely to be influenced by input from
the central nervous system, whereas acute pain is often
attributable primarily to inflammation and/or damage in
peripheral structures (i.e., nociceptive input).

The prominent role of central factors in chronic
pain is highlighted by the fact that there is currently no
chronic pain condition in which the degree of tissue
inflammation or damage alone (e.g., as measured by
radiographs, magnetic resonance imaging [MRI], or
endoscopy) accurately predicts the presence or the se-
verity of pain. Central factors alter pain processing by
setting the “gain,” such that when peripheral input is
present, it is processed against a background of central
factors that can enhance or diminish the experience of
pain. There are very large interindividual differences in
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these central nervous system factors that influence pain
perception, such that some individuals with significant
peripheral nociceptive input (e.g., from joint damage or
inflammation) will feel little or no pain, whereas others
are very pain sensitive, and they can experience pain
with minimal or no identifiable abnormal peripheral
nociceptive input. This emerging knowledge has impor-
tant implications for pain management in individuals
with chronic rheumatologic disorders.

Pain in rheumatologic disorders

Although most patients seen by rheumatologists
have pain as their presenting complaint, most rheuma-
tologists have little formal training about contemporary
theories regarding pain processing or pain manage-
ment. Because of this, educating rheumatologists and
others involved in the care of individuals with musculo-
skeletal pain has become a priority. The American
College of Rheumatology Pain Management Task Force
highlighted this in an initiative to increase awareness and
call for organized research and education concerning
chronic pain (1). Chronic pain may encompass pathol-
ogy of the joint, skin, muscles, or peripheral nerves
associated with rheumatologic diseases. A better under-
standing of chronic pain mechanisms will help us under-
stand individual differences in pain among patients
with rheumatic diseases, and this will in turn allow for a
more targeted approach to treatment (i.e., personalized
analgesia) (2).

The concept of centralized pain

The term “central pain” was originally used to
describe the condition in individuals who developed pain
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following a stroke or spinal cord lesion. In this case,
“central” refers to the fact that the lesion leading to pain
occurred within the central nervous system (CNS). More
recently, however, the term has been expanded to de-
scribe any CNS dysfunction or pathologic condition that
may be contributing to the development or maintenance
of chronic pain (3), which includes, but is not limited to,
important contributions from psychosocial aspects of
pain perception. Another term that has often been used
to describe this same phenomenon is “central sensitiza-
tion.” The term central sensitization was originally used
to describe a state in which the spinal cord amplifies
afferent signals out of proportion to peripheral tissue
changes. This term has the same problem as the term
“central pain” because it originally referred to a specific
mechanism, representing only one potential cause of
augmented CNS pain processing (4).

For clarity, we will use terms such as central
augmentation or amplification to refer more broadly to
central mechanisms that enhance the perception or
modulation of pain differentially between individuals.
We will use the term centralization of pain to refer to a
common process that seems to occur to a vulnerable
subset of individuals with any chronic pain state, wherein
pain primarily due to peripheral nociceptive input is
subsequently amplified by central factors, such that both
peripheral and central factors are then contributing to
the individual’s perception of pain. This latter phenom-
enon is particularly important for rheumatologists to
identify because these are individuals in whom our
commonly used peripherally directed therapies (e.g.,
disease-modifying antirheumatic drugs [DMARDs], sur-
gery) are unlikely to be effective as sole therapies.

Centralized pain was originally thought to be
confined to individuals with rare structural causes of
pain or those with idiopathic or functional pain syn-
dromes, such as fibromyalgia (FM), headache, irritable
bowel syndrome (IBS), temporomandibular joint dis-
order (TMJD), and interstitial cystitis (5). These pain
syndromes have been shown to be very familial/genetic
(e.g., the risk of developing FM is 8-fold higher in first-
degree relatives of patients with FM) and to coaggregate
in families (3,6). Twin studies also support a strong
familial basis for pain as well as for this cluster of
coaggregating symptoms (7,8). Even if these individuals
are initially thought to have new onset of a regional pain
syndrome, closer questioning often reveals that they
have had many different regions of chronic pain over
the course of their lifetime or even at present (9). Thus,
taking both a personal history of chronic pain and a
family history of chronic pain is a clinical pearl that can
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be helpful in identifying individuals who have (or are at
risk of developing) prominent centralization of pain.

Another marker of “central” pain is the occur-
rence of multifocal pain in conjunction with other cen-
trally mediated symptoms, such as fatigue, insomnia,
memory difficulties, and mood disturbances (10,11).
One of the simplest ways to identify individuals whose
pain has become centralized is to suspect that this has
occurred when those with chronic pain have several of
these other symptoms as comorbidities (3,12). Regard-
ing the clustering of co-occurring somatic symptoms, as
well as the higher than expected rates of mood disorders,
the leading pathophysiologic theory concerning these
central pain states is that centrally acting neurotrans-
mitters that are known to be abnormal and likely to play
a role in causing the pain in these conditions (e.g., low
norepinephrine, GABA, or serotonin levels and high
glutamate or substance P levels) also play prominent
roles in controlling sleep, mood, alertness, etc. (3,13).
This hypothesis is best supported by the fact that when
centrally acting analgesics, such as selective serotonin
and norepinephrine reuptake inhibitors (SSNRIs), ga-
bapentinoids, tricyclics, or y-hydroxybutyrate, are effec-
tive in a given patient with chronic pain, these drugs
typically lead to improvements in one or more of these
other symptom domains besides pain (14-16).

In addition to the study of symptom domains in
central pain states, significant advances have been made
in our understanding of the pathogenesis of chronic
pain. The hallmark biologic finding common to these
“centrally driven” conditions is that most individuals
have a diffuse CNS hyperalgesic state that is identifiable
by quantitative sensory testing and can be corroborated
by functional neuroimaging (6,17-19). Data from quan-
titative sensory testing and functional neuroimaging
studies suggest wide individual variations in pain and
sensory sensitivity that adhere to a bell-shaped distri-
bution across a wide variety of chronic pain states, with
a subset of individuals displaying hyperalgesia or aug-
mented CNS activity across pain states (3,6,18,20,21).
Some of the discrete conditions originally identified
as being central pain states because of the presence of
diffuse hyperalgesia and a lack of obvious, ongoing
peripheral nociceptive input include FM, IBS, TMJD,
tension headache, interstitial cystitis, and vulvodynia
(22-29).

The baseline presence of hyperalgesia and/or the
absence of descending analgesic activity has not only
been shown to be present in individuals with these
centralized pain states, but has also been shown to be an
important risk factor for a number of adverse pain
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outcomes, including predicting the subsequent intensity
of an acute painful experience, the analgesic require-
ments following surgery, and the subsequent develop-
ment of chronic pain (30-32). This latter phenomenon
was first demonstrated in a study by Diatchenko and
colleagues (33), who performed a longitudinal study of
202 young, pain-free women whose cases they followed
for 2 years, with the outcome of interest being the
development of new-onset TMJD. An individual’s pain
threshold at baseline (i.e., while asymptomatic) was a
strong predictor of the development of TMJD, since any
individual on the “hyperalgesic side” of a bell-shaped
curve of pain sensitivity at baseline was found to be
nearly 3 times as likely to develop TMJD as an individual
in the bottom half of pain sensitivity.

This study was among the first to highlight the
strong role that certain genes play in turning up the
“gain” on pain processing (6,33,34) and in identifying
one cause of a “chronic pain—prone phenotype.” Hyper-
sensitivity of nonpainful stimuli in sensitized pain pa-
tients is a hallmark of chronic pain. The early genetic
data were consistent with those of studies performed
by Zubieta et al (35), who several years earlier, had
shown that catechol-O-methyltransferase (COMT) poly-
morphisms predicted pain thresholds (as measured both
by quantitative sensory testing and by functional neuro-
imaging) in healthy individuals. The same COMT gene
risk allele has subsequently been shown to be more
common in conditions such as FM and to exert a rela-
tively large effect in experimental pain sensitivity in
humans, as well as responsiveness to and side effects
from commonly used analgesics (35-39). Just as we
know of tremendous variability in pain sensitivity be-
tween strains of rodents, there similarly is great variabil-
ity in pain sensitivity in humans (40). At least 5 sets of
genes are associated with an individual’s pain sensitivity
and increase their likelihood of developing one or more
chronic pain states. These include COMT (an estrogen-
sensitive enzyme that may play a more prominent role
in females), GTP cyclohydroxylase, types 2 and 3 adren-
ergic receptors, a P2X, receptor pore, and sodium or
potassium channel genes (35,41-46). While some genes
have been consistently shown to confer a higher risk of
pain sensitivity or the development of chronic pain,
this is a rapidly evolving area, and not all studies have
demonstrated the same associations (41,47-49).

Kato and colleagues (8), using a large Swedish
twin registry, performed a series of studies that first
showed the comorbidities with chronic widespread pain,
and then later, they examined a number of these central
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or “functional” pain syndromes and the relationship of
these symptoms to those of depression and anxiety.
Those studies clearly demonstrated that functional so-
matic syndromes, such as FM, CFS, IBS, and headache,
have latent traits (e.g., multifocal pain, fatigue, memory
and sleep difficulties) that are different from, but over-
lap somewhat with, psychiatric conditions such as anxi-
ety and depression. These findings are also consistent
with the results of functional neuroimaging studies. For
example, individuals with FM alone primarily have in-
creased activity in the regions of the brain that code for
the sensory intensity of stimuli (e.g., the primary and
secondary somatosensory cortices, posterior insula, thal-
amus), whereas the FM patients with comorbid depres-
sion also have increased activation in brain regions
coding for the affective processing of pain, such as the
amygdala and anterior insula (50). The notion that there
are 2 overlapping sets of traits, one being pain and
sensory amplification and the other being mood and
affect, is also supported by genetic studies of idiopathic
pain syndromes (6). Twin studies have also been useful
in helping tease out potential underlying mechanisms
versus “epiphenomena.” Those investigators suggested
that there is evidence of a problem with biologic sensory
amplification in the affected twins (51).

As with most illnesses that may have a familial or
genetic underpinning, environmental factors may play a
prominent role in triggering the development of FM and
other centralized pain states. Environmental “stressors”
temporally associated with the development of wide-
spread pain include early life trauma, physical trauma
(especially involving the trunk), and certain infections,
such as hepatitis C virus, Epstein-Barr virus, parvovirus,
Lyme disease, and emotional stress. The disorder is also
associated with other regional pain conditions or auto-
immune disorders (52-54). Of note, each of these “stres-
sors” only triggers the development of fibromyalgia and/
or chronic fatigue syndrome in ~5-10% of individuals
who are exposed; the overwhelming majority of indi-
viduals who experience these same infections or other
stressful events regain their baseline state of health.

In fact, emerging evidence from a number of
different areas in the study of pain suggests that the
same characteristics that are often attributable to FM
patients in fact more broadly represents a “pain-prone
phenotype.” As shown in Figure 1, female sex, early life
trauma, a personal or family history of chronic pain, a
personal history of other centrally mediated symptoms
(insomnia, fatigue, memory problems, mood distur-
bances), and cognitions such as catastrophizing have all
been shown to be present in subsets of individuals with
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= Early life trauma

distress, memory difficulties)
= Cognitions such as catastrophizing

“Central” Pain Prone Phenotype

= Family history of chronic pain and mood disturbances
= Personal history of chronic centrally-mediated symptoms (multifocal pain
with neuropathic descriptors, fatigue, sleep disturbances, psychological

= Lower mechanical pain threshold and descending analgesic activity

Exposure to “stressors” or acute, peripheral
nociceptive input

Psychological and
behavioral response to
pain or stressor

New or different region
of chronic pain

Figure 1. Development of expanded pain regions in patients prone to experiencing central pain.

any chronic pain state and to predict which individuals
are more likely to transition from acute pain to chronic
pain.

Functional neuroimaging studies, especially those
using functional MRI, also corroborate the findings of
quantitative sensory testing for diffuse hyperalgesia/pain
augmentation by demonstrating that individuals with
central pain states have increased neuronal activity in
pain-processing regions of the brain when they are
exposed to stimuli that healthy individuals find in-
nocuous (29,55-57). Several meta-analyses of func-
tional MRI studies have summarized the brain regions
that show activation when experimental pain is applied
to human subjects, and these generally are consistent
with the findings of single-photon—-emission computed
tomography (SPECT) and positron emission tomography
(PET) studies noted above. The main components of
this pain-processing matrix are the primary and second-
ary somatosensory cortex, the insular cortex, the ante-
rior and midcingulate cortex, the posterior cingulate
gyrus, and the thalamus; that is, the pain system involves
somatosensory, limbic, and associative brain structures
(58,59). Within a single brain region, such as the insula,
the posterior insula is more involved in sensory process-
ing and the anterior more involved in affective process-
ing, and even the left-to-right balance of insular activity
may be associated with the emotional valence of pain (60).

Many potential mechanisms can cause aug-
mented central pain processing. The two receiving the

most attention and study have been increased wind-up
and diminished descending analgesia or conditioned
pain modulation. Wind-up is a perceived increase in
pain intensity when a stimulus is repeated above a
certain rate and is mediated by C fibers. Descending
analgesia is a function of descending neural pathways
that form a pain-modulating circuit. The integrity and
magnitude of this conditioned pain modulation (CPM),
or diffuse noxious inhibitory control (DNIC), system
can be tested by using 2 separate painful stimuli and
observing the fact that experiencing the first painful
stimulus can reduce the perceived intensity of the sec-
ond one. While both wind-up and CPM can be tested
experimentally, data thus far suggest that the study of
descending endogenous analgesic pathways holds the
most promise for successfully identifying those with
central predominance to their pain. For example, atten-
uated descending analgesic activity (experimentally ob-
served as reduced DNIC or CPM) is seen in 10-20% of
controls, but this deficit is demonstrated in ~60-80% of
individuals with conditions such as FM or IBS (61-66).
Neither diffuse hyperalgesia nor reduced DNIC/CPM
(deficiencies in descending analgesic activity) is gener-
ally seen in individuals with psychiatric disorders such as
depression (50,67).

An analogy of an increased “volume control” or
“gain” setting on pain and sensory processing is sup-
ported by studies from a variety of sources. Elevated
levels of neurotransmitters that tend to be pronocicep-
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Figure 2. Influences of the central nervous system (CNS) on pain and sensory processing. Recent studies have demonstrated that an individual’s
“set point” or “volume control setting” for pain is determined by a variety of factors, including the levels of neurotransmitters shown on the left,
which facilitate pain transmission (turn up the gain or the volume control), or the neurotransmitters shown on the right, which reduce pain
transmission. Thus, high levels of the neurotransmitters on the left or low levels of those on the right would be capable of causing the diffuse
hyperalgesia (increased volume control) that is seen in a variety of chronic pain states. EAA = excitatory amino acid; 5-HT,, = 5-hydroxytryptamine

H,,; GABA = +y-aminobutyric acid.

tive (those shown on the left side of Figure 2) or reduced
levels of neurotransmitters that inhibit pain trans-
mission (those shown on the right side of Figure 2) have
a tendency to increase the volume control, and drugs
that block the neurotransmitters shown on the left
Figure 2 or augment the activity of those shown on the
right will typically be found to be effective treatments,
at least for a subset of individuals with this spectrum of
illness. As noted, there is evidence of increases in the
CSF levels of substance P, glutamate, nerve growth
factor, and brain-derived neurotrophic factor, and low
levels of the metabolites of serotonin, norepinephrine,
dopamine, and GABA can lead to an “increase in the
volume control” and augmented pain and sensory proc-
essing (68-72). The only neurotransmitter system that
has thus far been studied and not found to be inconsis-
tent in a direction that would cause augmented pain
transmission is the endogenous opioid system. This
may be one reason why opioid drugs do not work well in
the treatment of FM and related centralized pain con-
ditions (73,74).

Potential role of peripheral factors in central pain
states

Immunologic cascades play a role in the mainte-
nance of central sensitivity and chronic pain, which is
enhanced through the release of proinflammatory cyto-
kines by CNS glial cells; thus, the traditional paradigm
regarding inflammatory versus noninflammatory pain
may gradually become less dichotomous. As may be
expected in any complex biologic system, a delicate
apparatus of checks and balances is at work in the spinal
transmission of pain. Furthermore, studies suggest that
maintenance of central augmentation requires persistent
noxious peripheral input, even in syndromes such as IBS
and FM, which are characterized by the absence of well-
defined, localized, pain-causing lesions (75). In fact, a
recent study of 68 fibromyalgia patients with myofascial
pain syndromes and 56 fibromyalgia patients with re-
gional joint pain showed that peripheral trigger point
injections and hydroelectrophoresis ameliorate fibromy-
algia pain and increase pain thresholds at sites distant
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from the therapeutic interventions, providing further
evidence that painful peripheral stimuli contribute to the
perpetuation of central augmentation interventions (76).

The role of centralized pain in classic rheumatic
diseases

Rheumatologists have known for some time that
as many as 15-30% of individuals with classic auto-
immune or rheumatic disorders also have comorbid FM,
which was once referred to as “secondary FM” (77).
These rates are much higher than the prevalence of FM
in the general population (2%), suggesting that pain
and/or stress accompanying chronic rheumatic diseases
is one way that conditions such as FM can be triggered.
Triggering of a centralized pain state can also be seen
with certain types of trauma, such as motor vehicle
collisions, by infections such as Borrelia burgdorferi in
Lyme disease or Epstein-Barr virus, and following sur-
gery or deployment in war (78-81). This suggests that
many biologic stressors, especially those accompanied
by acute pain, are capable of triggering centralization or
chronic pain.

Wolfe coined the term “fibromyalgianess” to con-
note the fact that regardless of whether individuals with
rheumatic disorders have FM as a “categorical” diagno-
sis (i.e., yes or no) or whether this construct is measured
as a continuous variable, the more general construct of
FM is highly associated with levels of pain and disability
across all rheumatic disorders (82,83). Fibromyalgia
(dichotomous diagnosis) and fibromyalgianess (mea-
sured as a continuous variable) directly affect traditional
measures of disease activity and severity, and have
implications for clinical practice (84). Partial fulfillment
of the 2010 revised criteria for FM may prove useful in
discerning patients who are at risk of developing chronic
pain but do not meet diagnostic criteria for FM. The
degree of fibromyalgianess also influences objective and
subjective responses to therapy with biologic and non-
biologic DMARDs in RA and predicts worse pain and
functional status following total joint arthroplasty and
back surgery.

Osteoarthritis (OA). Historically, the “disease”
of OA has been viewed primarily as damage to the
cartilage and bone. As such, the magnitude of damage or
inflammation of these structures should predict symp-
toms. Population-based studies suggest otherwise; 30—
50% of individuals with moderate-to-severe radio-
graphic changes of OA are asymptomatic, and ~10% of
individuals with moderate-to-severe knee pain have nor-
mal findings on radiography (85,86). Psychological fac-

PHILLIPS AND CLAUW

tors do account for some of this variance in pain and
other symptoms, but only to a small degree (87,88). The
fact that central factors may play a pivotal role in OA
helps to explain the fact that comorbid somatic symp-
toms known to be associated with central pain condi-
tions (e.g., fatigue, sleep problems) are very common in
OA and are not explained by a purely “peripheral”
model of this disorder (89-91).

Moreover, for some time, there have been small
studies suggesting that OA patients display diffuse hy-
peralgesia to mechanical or heat stimuli (92). Kosek and
Ordeberg (93) demonstrated that individuals with OA of
the hip had reduced descending analgesic activity, which
partially normalized following hip arthroplasty, suggest-
ing that the central factors were being at least partly
driven by peripheral nociceptive input. Since then, larger
and more comprehensive studies have been performed,
showing that groups of individuals with OA have lower
overall thresholds for pain than do controls and have
less efficient descending analgesic activity (92,94). Most
recently, Gwilym and colleagues (20,95) used both ex-
perimental pain testing and more sophisticated func-
tional neuroimaging procedures to show evidence of
augmented CNS processing of pain in 20 OA patients
and then showed in a separate study that atrophy of the
thalamus was seen at baseline in OA and improved
following arthroplasty. Finally, recent randomized con-
trolled trials have demonstrated that compounds that
alter pain neurotransmitters centrally, such as serotonin
and norepinephrine (e.g., duloxetine, tricyclics), are
efficacious in OA (96,97).

This does not at all mean that peripheral factors
are unimportant in OA. A recent study by Neogi and
colleagues (98) elegantly demonstrated that in individu-
als with asymmetric knee OA, the pain levels in each
knee strongly related to joint space narrowing in the
affected knee. The aggregate data instead suggest that in
some individuals, central factors are superimposed upon
the more traditional peripheral factors (targeted by
nonsteroidal antiinflammatory drugs [NSAIDs], for ex-
ample) leading to the need for a broader and more
flexible approach to diagnosis and treatment.

Systemic lupus erythematosus (SLE). For some
time, it has been suspected that FM is a common
comorbid condition in SLE and confounds both the
diagnosis and treatment of SLE (99-101). For example,
just as with other rheumatic disorders, neither the
degree of inflammation nor the degree of damage is
highly associated with pain, fatigue, function, or other
symptoms of SLE (102-104). Instead, the presence or
absence of comorbid FM (which occurs in ~20% of
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patients with SLE as well as other autoimmune disor-
ders) is often the largest predictor of pain, fatigue, and
function in patients with SLE (77,105). FM and pheno-
typical features of centralized pain are more related to
quality of life measures than to disease activity per se
(106). As individual domains, the presence of FM in
SLE is most closely associated with fatigue, sleep distur-
bances, psychiatric disturbances, and work disability
(107-109).

Additional studies are needed to explore the role
that the “centralization-prone phenotype™ plays in pre-
dicting which SLE patients will eventually develop co-
morbid FM or centralization of their pain. There has
been very little quantitative sensory testing performed to
date in SLE. Hyperalgesia, as crudely measured by a
tender point count, is an uncommon finding in groups of
SLE patients and is related to measures of health status
and disease activity (110). Only a single published study
has used functional neuroimaging in SLE. Areas of CNS
hypoperfusion noted in patients with SLE overlapped
with those seen in patients with FM alone, as well as in
patients with SLE and FM in combination (111).

Rheumatoid arthritis (RA). In contrast to FM
and OA, RA is characterized by systemic inflammation.
Although inflammation contributes to pain in RA, it
may not be the only factor. For many patients, pain does
not improve upon treatment with antiinflammatory
DMARD:s (82). Although few studies have specifically
examined the role of central pain—processing mecha-
nisms in RA, studies using dolorimetry to assess pain
thresholds suggest that these other pathways may in-
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clude deficits in central pain processing. Early, small
studies suggested that groups of RA patients displayed
deficits in central pain processing, including impaired
descending analgesic activity (112,113). Wolfe et al (82)
showed that fibromyalgia is very prevalent in RA pa-
tients, and there is increased morbidity in patients who
have both RA and FM as compared to those who have
FM alone (114,115). It is important to remember that
centralization of pain may also have an impact on tra-
ditional measures of disease activity, such as the Disease
Activity Score in 28 joints. Lee and colleagues (116)
recently showed that in RA, the relationships between
inflammation, psychosocial factors, and peripheral and
central pain processing are intricately entwined. In their
study of 59 female patients with RA, they demonstrated
that C-reactive protein levels were inversely associated
with pain thresholds at joint, but not nonjoint, sites,
consistent with peripheral sensitization (116). In that
study, sleep disturbances were associated with pain
thresholds at both joint and nonjoint sites, indicating
that central mechanisms (i.e., central sensitization) likely
underlie the link between overall pain sensitivity and
sleep problems.

Future directions

Current and future studies in the rheumatic
diseases can be leveraged to take advantage of both
“primary” and “secondary” manifestations of FM and
centralized pain, both to learn more about FM and to
learn more about the pathogenesis and underpinnings

Clinical Characteristics of Central Pain

* Pain in many different body regions

* Higher personal lifetime history of chronic pain

*  Multiple somatic symptoms (e.g., fatigue, memory difficulties, sleep

problems, mood disturbance)

* Sensory stimuli sensitivity (e.g., bright light, loud noises, odors, other

sensations in internal organs enhanced)

* More commaon in women

* Strong family history of chronic pain

* Pain triggered or exacerbated by stressors

* Generally normal physical examination except for diffuse tenderness and

nonspecific neurological signs

Figure 3. Characteristics of patients with rheumatologic diseases that may have contributions from central pain mechanisms.
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of chronic pain more generally. Subsets of individuals
in the population are more susceptible to developing
chronic pain and somatic symptoms following exposure
to sustained peripheral nociception and stress, and
the clinical and biologic features of these susceptible
individuals are reminiscent of those in patients with
subclinical FM, which has been characterized as a
“centralization-prone phenotype,” as outlined in Figure
3. When these individuals are exposed to the ongoing
pain and stress associated with a chronic rheumatic
disease, full-blown FM may be triggered in susceptible
individuals. Patients with OA, RA, or SLE whose pain
has already become “centralized” may show higher
levels of pain intensity and disease activity for the same
degree of inflammation or structural damage and may
be less responsive to classic, peripherally directed phar-
macologic (DMARDs) and nonpharmacologic (surgery)
therapies (19,117).

There is significant support for this idea, espe-
cially given recent evidence of prominent CNS contri-
butions to pain in conditions such as OA, RA, and low
back pain (20,29,44,82,97,118). Across the rheumatic
disorders, individuals with higher degrees of fibromyal-
gianess may preferentially respond to “centrally acting”
drugs (e.g. tricyclics, SSNRIs, gabapentinoids), whereas
those without evidence of centralization of their pain
will preferentially respond to drug classes historically
believed to work better on peripheral/nociceptive pain
(e.g., NSAIDs, opioids, DMARDs, surgery). Support
for these hypotheses would tremendously advance our
ability to offer personalized analgesia in routine clinical
practice.

The overall direction of chronic pain research is a
paradigm shift in the diagnosis and treatment of pain in
individuals with rheumatic disorders. Instead of consid-
ering pain and other symptoms associated with OA, RA,
and SLE to be primarily due to peripheral damage or
inflammation (i.e., nociception), the appropriate “pheno-
typing” (recognition of patients with traits and states
associated with the risk of developing chronic pain) of
patients with chronic pain can identify subsets of indi-
viduals with these disorders that have prominent CNS
contributions to their symptoms. Individuals with these
diseases will likely respond differentially to DMARDs
and nondrug therapies (such as surgical procedures per-
formed for pain). Since arthroplasty and other surgical
procedures performed to relieve chronic pain are very
expensive procedures and since it is acknowledged that
20-40% of individuals receiving such procedures con-
tinue to have significant knee pain at 1-2 years (119), a
tremendous opportunity exists for developing para-
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digms by which to identify good (or poor) candidates for
these or other “analgesic surgeries,” rather than subject-
ing individuals to a procedure from which they would be
unlikely to derive any benefit. The same holds true for
many other procedures performed to treat pain, as well
as for the use of biologic immunosuppressive agents in
patients with persistent pain but equivocal evidence of
ongoing inflammation.

While there is knowledge to be gained from prior
studies in other centrally mediated syndromes, rheuma-
tologists should lead the way in developing and field-
testing new phenotyping or identification measures for
patients with rheumatologic diseases that will allow us to
infer which underlying mechanisms are causing an indi-
vidual’s pain, so that treatment(s) can be appropriately
directed. The pain field has moved well past the point
where we can consider all individuals with RA, SLE,
OA—or any chronic pain state, for that matter—to have
the same underlying mechanism of pain and other
somatic symptoms they experience. All of these symp-
toms are experienced in the brain. So, as a field, we need
to better understand the brain in order to better treat
our patients’ pain.

Identifying subsets of OA, SLE, and RA patients
with prominent CNS factors might also help explain a
longstanding conundrum in our fundamental under-
standing of these disorders. Disease models in OA, RA,
and SLE are incomplete because peripherally based
models do not explain a tremendous amount of variance
in pain, fatigue, sleep, memory problems, and functional
disability that is not accounted for by peripheral factors
alone. For example, although the pathologic focus in
OA is the joint and surrounding structures, multifocal
pain in areas not affected by OA is common in patients
with knee OA (120). Similarly, other somatic symptoms
not explainable by a purely peripheral problem are often
seen. For example, studies show fatigue to be a promi-
nent problem in individuals with knee OA, and in many
individuals, it is a more functionally limiting symptom
than the pain (121). The current peripherally based
theories regarding the pathogenesis of OA, SLE, and
RA simply do not explain why these other somatic
symptoms are so common and are often refractory to
standard, peripherally based therapies.

Conclusions

Chronic pain is an important component of
many rheumatic diseases. One current limitation is the
ability to identify patients in routine clinical settings who
have greater contributions from centrally mediated



CENTRAL PAIN MECHANISMS IN THE RHEUMATIC DISEASES

mechanisms. Practical evidence-based strategies need to
be developed that will more readily identify these pa-
tients at the point of care as well as in the context of
randomized clinical trials that include pain as an out-
come measure. Centrally targeted therapies have the
potential to change the treatment of chronic pain in
many diseases. Several classes of centrally acting agents
(e.g., tricyclics, SSNRIs, gabapentinoids) may prove to
be more effective in individuals with rheumatic disorders
who have a central pain overlay than classes of drugs
that are typically more effective for peripherally based
nociceptive pain states (e.g., NSAIDs), but additional
studies are needed to prove this. Newly developed pain
cohort studies should identify these subsets of RA, SLE,
and OA patients who are preferentially predisposed to
respond to these centrally, in addition to peripherally
acting treatments, including nonpharmacologic therapy.
There are few published results examining the role of
combination therapy in chronic pain, but it is likely that
such regimens will improve outcomes to the extent that
they are influenced by multiple distinct mechanisms.
These future studies will direct the development of new
therapeutic options for millions of individuals with pain-
ful rheumatic disorders.

AUTHOR CONTRIBUTIONS

Drs. Phillips and Clauw drafted the article, revised it critically
for important intellectual content, and approved the final version to be
published.

REFERENCES

1. American College of Rheumatology Pain Management Task
Force. Report of the American College of Rheumatology Pain
Management Task Force. Arthritis Care Res 2010;62:590-9.

2. Clauw DJ, Witter J. Pain and rheumatology: thinking outside the
joint [editorial]. Arthritis Rheum 2009;60:321-4.

3. Williams DA, Clauw DJ. Understanding fibromyalgia: lessons
from the broader pain research community. J Pain 2009;10:
777-91.

4. Woolf CJ, Thompson SW. The induction and maintenance of
central sensitization is dependent on N-methyl-D-aspartic acid
receptor activation: implications for the treatment of post-injury
pain hypersensitivity states. Pain 1991;44:293-9.

5. Clauw DJ, Schmidt M, Radulovic D, Singer A, Katz P, Bresette
J. The relationship between fibromyalgia and interstitial cystitis.
J Psychiatr Res 1997;31:125-31.

6. Diatchenko L, Nackley AG, Slade GD, Fillingim RB, Maixner W.
Idiopathic pain disorders—pathways of vulnerability. Pain 2006;
123:226-30.

7. Kato K, Sullivan PF, Evengard B, Pedersen NL. Importance of
genetic influences on chronic widespread pain. Arthritis Rheum
2006;54:1682-6.

8. Kato K, Sullivan PF, Evengard B, Pedersen NL. A population-
based twin study of functional somatic syndromes. Psychol Med
2009;39:497-505.

9. Warren JW, Howard FM, Cross RK, Good JL, Weissman MM,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

299

Wesselmann U, et al. Antecedent nonbladder syndromes in case-
control study of interstitial cystitis/painful bladder syndrome.
Urology 2009;73:52-7.

Fukuda K, Dobbins JG, Wilson LJ, Dunn RA, Wilcox K,
Smallwood D. An epidemiologic study of fatigue with relevance
for the chronic fatigue syndrome. J Psychiatr Res 1997;31:19-29.
Fukuda K, Nisenbaum R, Stewart G, Thompson WW, Robin L,
Washko RM, et al. Chronic multisymptom illness affecting Air
Force veterans of the Gulf War. JAMA 1998;280:981-8.

Aaron LA, Burke MM, Buchwald D. Overlapping conditions
among patients with chronic fatigue syndrome, fibromyalgia, and
temporomandibular disorder. Arch Intern Med 2000;160:221-7.
Bannister K, Bee LA, Dickenson AH. Preclinical and early
clinical investigations related to monoaminergic pain modulation.
Neurotherapeutics 2009;6:703-12.

Fishbain DA, Detke MJ, Wernicke J, Chappell AS, Kajdasz DK.
The relationship between antidepressant and analgesic re-
sponses: findings from six placebo-controlled trials assessing the
efficacy of duloxetine in patients with major depressive disorder.
Curr Med Res Opin 2008;24:3105-15.

Tzellos TG, Toulis KA, Goulis DG, Papazisis G, Zampeli VA,
Vakfari A, et al. Gabapentin and pregabalin in the treatment
of fibromyalgia: a systematic review and a meta-analysis. J Clin
Pharm Ther 2010;35:639-56.

Russell 1J, Holman AJ, Swick TJ, Alvarez-Horine S, Wang YG,
Guinta D. Sodium oxybate reduces pain, fatigue, and sleep dis-
turbance and improves functionality in fibromyalgia: results from
a 14-week, randomized, double-blind, placebo-controlled study.
Pain 2011;152:1007-17.

Clauw DJ. Fibromyalgia: an overview. Am J Med 2009;122:
S3-13.

Tracey I, Bushnell MC. How neuroimaging studies have chal-
lenged us to rethink: is chronic pain a disease? J Pain 2009;10:
1113-20.

Woolf CJ. Central sensitization: implications for the diagnosis
and treatment of pain. Pain 2011;152:S2-15.

Gwilym SE, Keltner JR, Warnaby CE, Carr AJ, Chizh B, Chessell
I, et al. Psychophysical and functional imaging evidence support-
ing the presence of central sensitization in a cohort of osteo-
arthritis patients. Arthritis Rheum 2009;61:1226-34.

Coghill RC, McHaffie JG, Yen YF. Neural correlates of inter-
individual differences in the subjective experience of pain. Proc
Natl Acad Sci U S A 2003;100:8538-42.

Kashima K, Rahman OI, Sakoda S, Shiba R. Increased pain
sensitivity of the upper extremities of TMD patients with myalgia
to experimentally-evoked noxious stimulation: possibility of wors-
ened endogenous opioid systems. Cranio 1999;17:241-6.
Maixner W, Fillingim R, Booker D, Sigurdsson A. Sensitivity of
patients with painful temporomandibular disorders to experimen-
tally evoked pain. Pain 1995;63:341-51.

Leffler AS, Hansson P, Kosek E. Somatosensory perception in a
remote pain-free area and function of diffuse noxious inhibitory
controls (DNIC) in patients suffering from long-term trapezius
myalgia. Eur J Pain 2002;6:149-59.

Whitehead WE, Holtkotter B, Enck P, Hoelzl R, Holmes KD,
Anthony J, et al. Tolerance for rectosigmoid distention in irrita-
ble bowel syndrome. Gastroenterology 1990;98:1187-92.

Gibson SJ, Littlejohn GO, Gorman MM, Helme RD, Granges G.
Altered heat pain thresholds and cerebral event-related poten-
tials following painful CO, laser stimulation in subjects with
fibromyalgia syndrome. Pain 1994;58:185-93.

Kosek E, Ekholm J, Hansson P. Increased pressure pain sensi-
bility in fibromyalgia patients is located deep to the skin but not
restricted to muscle tissue [published erratum appears in Pain
1996;64:605]. Pain 1995;63:335-9.

Giesecke J, Reed BD, Haefner HK, Giesecke T, Clauw DJ,
Gracely RH. Quantitative sensory testing in vulvodynia patients



300

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

and increased peripheral pressure pain sensitivity. Obstet Gyne-
col 2004;104:126-33.

Giesecke T, Gracely RH, Grant MA, Nachemson A, Petzke F,
Williams DA, et al. Evidence of augmented central pain process-
ing in idiopathic chronic low back pain. Arthritis Rheum 2004;
50:613-23.

Granot M, Weissman-Fogel I, Crispel Y, Pud D, Granovsky Y,
Sprecher E, et al. Determinants of endogenous analgesia magni-
tude in a diffuse noxious inhibitory control (DNIC) paradigm: do
conditioning stimulus painfulness, gender and personality vari-
ables matter? Pain 2008;136:142-9.

Yarnitsky D, Crispel Y, Eisenberg E, Granovsky Y, Ben-Nun A,
Sprecher E, et al. Prediction of chronic post-operative pain:
pre-operative DNIC testing identifies patients at risk. Pain 2008;
138:22-8.

Arendt-Nielsen L, Yarnitsky D. Experimental and clinical appli-
cations of quantitative sensory testing applied to skin, muscles
and viscera. J Pain 2009;10:556-72.

Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A,
Belfer I, et al. Genetic basis for individual variations in pain
perception and the development of a chronic pain condition.
Hum Mol Genet 2005;14:135-43.

Diatchenko L, Nackley AG, Slade GD, Bhalang K, Belfer I,
Max MB, et al. Catechol-O-methyltransferase gene polymor-
phisms are associated with multiple pain-evoking stimuli. Pain
2006;125:216-24.

Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y,
et al. COMT Val'>*Met genotype affects u-opioid neurotrans-
mitter responses to a pain stressor. Science 2003;299:1240-3.
Hosak L. Role of the COMT gene Vall58Met polymorphism in
mental disorders: a review. Eur Psychiatry 2007;22:276-81.
Jensen KB, Lonsdorf TB, Schalling M, Kosek E, Ingvar M.
Increased sensitivity to thermal pain following a single opiate
dose is influenced by the COMT Val'*®Met polymorphism.
PL0oSOne 2009;4:¢6016.

Zubieta JK, Ketter TA, Bueller JA, Xu Y, Kilbourn MR, Young
EA, et al. Regulation of human affective responses by anterior
cingulate and limbic u-opioid neurotransmission. Arch Gen
Psychiatry 2003;60:1145-53.

Vargas-Alarcon G, Fragoso JM, Cruz-Robles D, Vargas A,
Vargas A, Lao-Villadoniga JI, et al. Catechol-O-methyltransferase
gene haplotypes in Mexican and Spanish patients with fibromy-
algia. Arthritis ResTher 2007;9:R110.

Mogil JS, Yu L, Basbaum Al. Pain genes? Natural variation and
transgenic mutants. Annu Rev Neurosci 2000;23:777-811.

Van Meurs JB, Uitterlinden AG, Stolk L, Kerkhof HJ, Hofman
A, Pols HA, et al. A functional polymorphism in the catechol-O-
methyltransferase gene is associated with osteoarthritis-related
pain. Arthritis Rheum 2009;60:628-9.

McLean SA, Diatchenko L, Lee YM, Swor RA, Domeier RM,
Jones JS, et al. Catechol O-methyltransferase haplotype predicts
immediate musculoskeletal neck pain and psychological symp-
toms after motor vehicle collision. J Pain 2011;12:101-7.
Costigan M, Belfer I, Griffin RS, Dai F, Barrett LB, Coppola G,
et al. Multiple chronic pain states are associated with a common
amino acid-changing allele in KCNS1. Brain 2010;133:2519-27.
Tegeder I, Costigan M, Griffin RS, Abele A, Belfer I, Schmidt H,
et al. GTP cyclohydrolase and tetrahydrobiopterin regulate pain
sensitivity and persistence. Nat Med 2006;12:1269-77.

Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP,
Egerton J, et al. The voltage-gated sodium channel Na,1.9 is an
effector of peripheral inflammatory pain hypersensitivity. J Neu-
rosci 2006;26:12852-60.

Sorge RE, Trang T, Dorfman R, Smith SB, Beggs S, Ritchie J,
et al. Genetically determined P2X7 receptor pore formation
regulates variability in chronic pain sensitivity. Nat Med 2012;18:
595-9.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

PHILLIPS AND CLAUW

Hocking LJ, Smith BH, Jones GT, Reid DM, Strachan DP,
Macfarlane GJ. Genetic variation in the $2-adrenergic receptor
but not catecholamine-O-methyltransferase predisposes to chronic
pain: results from the 1958 British Birth Cohort Study. Pain
2010;149:143-51.

Nicholl BI, Holliday KL, Macfarlane GJ, Thomson W, Davies
KA, O'Neill TW, et al, European Male Ageing Study Group. No
evidence for a role of the catechol-O-methyltransferase pain
sensitivity haplotypes in chronic widespread pain. Ann Rheum
Dis 2010;69:2009-12.

Smith SB, Maixner DW, Greenspan JD, Dubner R, Fillingim RB,
Ohrbach R, et al. Potential genetic risk factors for chronic TMD:
genetic associations from the OPPERA case control study. J Pain
2011;12:T92-101.

Giesecke T, Gracely RH, Williams DA, Geisser ME, Petzke FW,
Clauw DJ. The relationship between depression, clinical pain,
and experimental pain in a chronic pain cohort. Arthritis Rheum
2005;52:1577-84.

Armitage R, Landis C, Hoffmann R, Lentz M, Watson N,
Goldberg J, et al. Power spectral analysis of sleep EEG in twins
discordant for chronic fatigue syndrome. J Psychosom Res 2009;
66:51-7.

Buskila D, Neumann L, Vaisberg G, Alkalay D, Wolfe F.
Increased rates of fibromyalgia following cervical spine injury: a
controlled study of 161 cases of traumatic injury. Arthritis Rheum
1997;40:446-52.

Clauw DJ, Chrousos GP. Chronic pain and fatigue syndromes:
overlapping clinical and neuroendocrine features and potential
pathogenic mechanisms. Neuroimmunomodulation 1997;4:134-53.
Ablin K, Clauw DJ. From fibrositis to functional somatic syn-
dromes to a bell-shaped curve of pain and sensory sensitivity:
evolution of a clinical construct. Rheum Dis Clin North Am
2009;35:233-51.

Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic
resonance imaging evidence of augmented pain processing in
fibromyalgia. Arthritis Rheum 2002;46:1333-43.

Naliboff BD, Derbyshire SW, Munakata J, Berman S, Mandel-
kern M, Chang L, et al. Cerebral activation in patients with
irritable bowel syndrome and control subjects during recto-
sigmoid stimulation. Psychosom Med 2001;63:365-75.

Cook DB, Lange G, Ciccone DS, Liu WC, Steffener J, Natelson
BH. Functional imaging of pain in patients with primary fibro-
myalgia. J Rheumatol 2004;31:364-78.

Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of
brain responses to pain: a review and meta-analysis (2000).
Neurophysiol Clin 2000;30:263-88.

Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human
brain mechanisms of pain perception and regulation in health
and disease. Eur J Pain 2005;9:463-84.

Craig AD. Interoception: the sense of the physiological condition
of the body. Curr Opin Neurobiol 2003;13:500-5.

Le Bars D, Villanueva L, Bouhassira D, Willer JC. Diffuse
noxious inhibitory controls (DNIC) in animals and in man. Patol
Fiziol Eksp Ter 1992;55-65.

Edwards RR, Ness TJ, Weigent DA, Fillingim RB. Individual
differences in diffuse noxious inhibitory controls (DNIC): asso-
ciation with clinical variables. Pain 2003;106:427-37.

Pud D, Granovsky Y, Yarnitsky D. The methodology of experi-
mentally induced diffuse noxious inhibitory control (DNIC)-like
effect in humans. Pain 2009;144:16-9.

Julien N, Goffaux P, Arsenault P, Marchand S. Widespread pain
in fibromyalgia is related to a deficit of endogenous pain inhibi-
tion. Pain 2005;114:295-302.

Kosek E, Hansson P. Modulatory influence on somatosensory
perception from vibration and heterotopic noxious conditioning
stimulation (HNCS) in fibromyalgia patients and healthy sub-
jects. Pain 1997;70:41-51.



CENTRAL PAIN MECHANISMS IN THE RHEUMATIC DISEASES

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Wilder-Smith CH, Robert-Yap J. Abnormal endogenous pain
modulation and somatic and visceral hypersensitivity in female
patients with irritable bowel syndrome. World J Gastroenterol
2007;13:3699-704.

Normand E, Potvin S, Gaumond I, Cloutier G, Corbin JF,
Marchand S. Pain inhibition is deficient in chronic widespread
pain but normal in major depressive disorder. J Clin Psychiatry
2011;72:219-24.

Foerster BR, Petrou M, Edden RA, Sundgren PC, Schmidt-
Wilcke T, Lowe SE, et al. Reduced insular y-aminobutyric acid in
fibromyalgia. Arthritis Rheum 2012;64:579-83.

Sarchielli P, Di Filippo M, Nardi K, Calabresi P. Sensitization,
glutamate, and the link between migraine and fibromyalgia. Curr
Pain Headache Rep 2007;11:343-51.

Sarchielli P, Mancini ML, Floridi A, Coppola F, Rossi C, Nardi
K, et al. Increased levels of neurotrophins are not specific for
chronic migraine: evidence from primary fibromyalgia syndrome.
J Pain 2007;8:737-45.

Russell 1J, Vaeroy H, Javors M, Nyberg F. Cerebrospinal fluid
biogenic amine metabolites in fibromyalgia/fibrositis syndrome
and rheumatoid arthritis. Arthritis Rheum 1992;35:550-6.
Russell 1J, Orr MD, Littman B, Vipraio GA, Alboukrek D,
Michalek JE, et al. Elevated cerebrospinal fluid levels of sub-
stance P in patients with the fibromyalgia syndrome. Arthritis
Rheum 1994;37:1593-601.

Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH,
Zubieta JK. Decreased central p-opioid receptor availability in
fibromyalgia. J Neurosci 2007;27:10000-6.

Baraniuk JN, Whalen G, Cunningham J, Clauw DJ. Cerebrospi-
nal fluid levels of opioid peptides in fibromyalgia and chronic low
back pain. BMC Musculoskelet Disord 2004;5:48.

Staud R, Nagel S, Robinson ME, Price DD. Enhanced central
pain processing of fibromyalgia patients is maintained by muscle
afferent input: a randomized, double-blind, placebo-controlled
study. Pain 2009;145:96-104.

Affaitati G, Costantini R, Fabrizio A, Lapenna D, Tafuri E,
Giamberardino MA. Effects of treatment of peripheral pain
generators in fibromyalgia patients. Eur J Pain 2011;15:61-9.
Clauw DJ, Katz P. The overlap between fibromyalgia and inflam-
matory rheumatic disease: when and why does it occur? J Clin
Rheumatol 1995;1:335-42.

Hassett AL, Clauw DJ. The role of stress in rheumatic diseases.
Arthritis Res Ther 2010;12:123.

Clauw D. The health consequences of the first Gulf war. BMJ
2003;327:1357-8.

Clauw DJ, Engel CC Jr, Aronowitz R, Jones E, Kipen HM,
Kroenke K, et al. Unexplained symptoms after terrorism and war:
an expert consensus statement. J Occup Environ Med 2003;45:
1040-8.

Buskila D, Atzeni F, Sarzi-Puttini P. Etiology of fibromyalgia:
the possible role of infection and vaccination. Autoimmun Rev
2008;8:41-3.

Wolfe F, Hauser W, Hassett AL, Katz RS, Walitt BT. The
development of fibromyalgia. I. Examination of rates and predic-
tors in patients with rheumatoid arthritis (RA). Pain 2011;152:
291-9.

Wolfe F. Fibromyalgianess [editorial]. Arthritis Rheum 2009;61:
715-6.

Arnold LM, Clauw DJ, Dunegan LJ, Turk DC, Barrow K,
Bateman L, et al, FibroCollective. A framework for fibromyalgia
management for primary care providers. Mayo Clin Proc 2012;
87:488-96.

Creamer P, Hochberg MC. Why does osteoarthritis of the knee
hurt—sometimes? Br J Rheumatol 1997;36:726-8.

Hannan MT, Felson DT, Pincus T. Analysis of the discordance
between radiographic changes and knee pain in osteoarthritis of
the knee. J Rheumatol 2000;27:1513-7.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

301

Creamer P, Hochberg MC. The relationship between psycho-
social variables and pain reporting in osteoarthritis of the knee
[review]. Arthritis Care Res 1998;11:60-5.

Creamer P, Lethbridge-Cejku M, Costa P, Tobin JD, Herbst JH,
Hochberg MC. The relationship of anxiety and depression with
self-reported knee pain in the community: data from the Balti-
more Longitudinal Study of Aging. Arthritis Care Res 1999;12:
3-7.

Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Rheum Dis
Clin North Am 2008;34:515-29.

Allen KD, Renner JB, DeVellis B, Helmick CG, Jordan JM.
Osteoarthritis and sleep: the Johnston County Osteoarthritis
Project. J Rheumatol 2008;35:1102-7.

Mease PJ, Hanna S, Frakes EP, Altman RD. Pain mechanisms in
osteoarthritis: understanding the role of central pain and current
approaches to its treatment. J Rheumatol 2011;38:1546-51.

Lee YC, Nassikas NJ, Clauw DJ. The role of the central nervous
system in the generation and maintenance of chronic pain in
rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthritis
Res Ther 2011;13:211.

Kosek E, Ordeberg G. Lack of pressure pain modulation by
heterotopic noxious conditioning stimulation in patients with
painful osteoarthritis before, but not following, surgical pain
relief. Pain 2000;88:69-78.

Arendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine
P, Simonsen OH, et al. Sensitization in patients with painful knee
osteoarthritis. Pain 2010;149:573-81.

Gwilym SE, Filippini N, Douaud G, Carr AJ, Tracey 1. Thalamic
atrophy associated with painful osteoarthritis of the hip is revers-
ible after arthroplasty: a longitudinal voxel-based morphometric
study. Arthritis Rheum 2010;62:2930-40.

Fishbain D. Evidence-based data on pain relief with antidepres-
sants. Ann Med 2000;32:305-16.

Chappell AS, Ossanna MJ, Liu-Seifert H, Iyengar S, Skljarevski
V, Li LC, et al. Duloxetine, a centrally acting analgesic, in the
treatment of patients with osteoarthritis knee pain: a 13-week,
randomized, placebo-controlled trial. Pain 2009;146:253-60.
Neogi T, Felson D, Niu J, Nevitt M, Lewis CE, Aliabadi P, et al.
Association between radiographic features of knee osteoarthritis
and pain: results from two cohort studies. BMJ 2009;339:b2844.
Middleton GD, McFarlin JE, Lipsky PE. The prevalence and
clinical impact of fibromyalgia in systemic lupus erythematosus.
Arthritis Rheum 1994;37:1181-8.

Morand EF, Miller MH, Whittingham S, Littlejohn GO. Fibro-
myalgia syndrome and disease activity in systemic lupus erythem-
atosus. Lupus 1994;3:187-91.

Friend R, Bennett RM. Distinguishing fibromyalgia from rheu-
matoid arthritis and systemic lupus in clinical questionnaires: an
analysis of the revised Fibromyalgia Impact Questionnaire (FIQR)
and its variant, the Symptom Impact Questionnaire (SIQR),
along with pain locations. Arthritis Res Ther 2011;13:R58.
Urowitz MB, Gladman DD. Measures of disease activity and
damage in SLE. Baillieres Clin Rheumatol 1998;12:405-13.
Wang B, Gladman DD, Urowitz MB. Fatigue in lupus is not
correlated with disease activity. J Rheumatol 1998;25:892-5.
Neville C, Clarke AE, Joseph L, Belisle P, Ferland D, Fortin PR.
Learning from discordance in patient and physician global assess-
ments of systemic lupus erythematosus disease activity. J Rheu-
matol 2000;27:675-9.

Gladman DD, Urowitz MB, Gough J, MacKinnon A. Fibromy-
algia is a major contributor to quality of life in lupus. J Rheuma-
tol 1997;24:2145-8.

Kiani AN, Petri M. Quality-of-life measurements versus disease
activity in systemic lupus erythematosus. Curr Rheumatol Rep
2010;12:250-8.

Baker K, Pope J, Fortin P, Silverman E, Peschken C. Work
disability in systemic lupus erythematosus is prevalent and asso-



302

108.

109.

110.

111.

112.

113.

ciated with socio-demographic and disease related factors. Lupus
2009;18:1281-8.

Chandrasekhara PK, Jayachandran NV, Rajasekhar L, Thomas J,
Narsimulu G. The prevalence and associations of sleep distur-
bances in patients with systemic lupus erythematosus. Mod
Rheumatol 2009;19:407-15.

Taboni A, Ibanez D, Gladman DD, Urowitz MB, Moldofsky H.
Fatigue in systemic lupus erythematosus: contributions of disor-
dered sleep, sleepiness, and depression. J Rheumatol 2006;33:
2453-7.

Akkasilpa S, Goldman D, Magder LS, Petri M. Number of
fibromyalgia tender points is associated with health status in
patients with systemic lupus erythematosus. J Rheumatol 2005;
32:48-50.

Chen JJ, Wang JY, Chang YM, Su SY, Chang CT, Sun SS, et al.
Regional cerebral blood flow between primary and concomitant
fibromyalgia patients: a possible way to differentiate concomitant
fibromyalgia from the primary disease. Scand J Rheumatol
2007;36:226-32.

Hummel T, Schiessl C, Wendler J, Kobal G. Peripheral and
central nervous changes in patients with rheumatoid arthritis in
response to repetitive painful stimulation. Int J Psychophysiol
2000;37:177-83.

Gerecz-Simon EM, Tunks ER, Heale JA, Kean WF, Buchanan
WW. Measurement of pain threshold in patients with rheumatoid
arthritis, osteoarthritis, ankylosing spondylitis, and healthy con-
trols. Clin Rheumatol 1989;8:467-74.

114.

115.

116.

117.

118.

119.

120.

121.

PHILLIPS AND CLAUW

Wolfe F, Michaud K. Severe rheumatoid arthritis (RA), worse
outcomes, comorbid illness, and sociodemographic disadvantage
characterize RA patients with fibromyalgia. ] Rheumatol 2004;
31:695-700.

Wolfe F, Michaud K. Outcome and predictor relationships in
fibromyalgia and rheumatoid arthritis: evidence concerning the
continuum versus discrete disorder hypothesis. J Rheumatol
2009;36:831-6.

Lee YC, Chibnik LB, Lu B, Wasan AD, Edwards RR, Fossel AH,
et al. The relationship between disease activity, sleep, psychiatric
distress and pain sensitivity in rheumatoid arthritis: a cross-
sectional study. Arthritis Res Ther 2009;11:R160.

Kroenke K, Krebs EE, Bair MJ. Pharmacotherapy of chronic
pain: a synthesis of recommendations from systematic reviews.
Gen Hosp Psychiatry 2009;31:206-19.

Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and
pain comorbidity: a literature review. Arch Intern Med 2003;163:
2433-45.

O’Brien S, Bennett D, Doran E, Beverland DE. Comparison of
hip and knee arthroplasty outcomes at early and intermediate
follow-up. Orthopedics 2009;32:168.

Chan KW, Ngai HY, Ip KK, Lam KH, Lai WW. Co-morbidities
of patients with knee osteoarthritis. Hong Kong Med J 2009;15:
168-72.

Murphy SL, Smith DM, Clauw DJ, Alexander NB. The impact of
momentary pain and fatigue on physical activity in women with
osteoarthritis. Arthritis Rheum 2008;59:849-56.



