
Nickel-Catalyzed 1,2-Diarylation of Alkenyl Carboxylates:  
A Gateway to 1,2,3-Trifunctionalized Building Blocks 

Joseph Derosa†‡, Taeho Kang†‡, Van T. Tran‡, Steven R. Wisniewski§, Malkanthi K. Karunananda‡, Tanner C. 
Jankins‡, Kane L. Xu‡, and Keary M. Engle‡* 
‡Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States 
§Chemical & Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States 
 Supporting Information Placeholder

ABSTRACT: A nickel-catalyzed conjunctive cross-coupling 
of alkenyl carboxylic acids, aryl iodides, and aryl/alkenyl bo-
ronic esters is reported. The reaction delivers the desired 1,2-
diarylated and 1,2-arylalkenylated products with excellent 
regiocontrol. To demonstrate the synthetic utility of the 
method, a representative product is prepared on gram scale 
and then diversified to eight 1,2,3-trifunctionalized building 
blocks using two-electron and one-electron logic. Using this 
method, three routes toward bioactive molecules are im-
proved in terms of yield and/or step count. This method rep-
resents the first example of catalytic 1,2-diarylation of an al-
kene directed by a native carboxylate functional group.  

   Alkene starting materials serve as ubiquitous chemical feed-
stocks that can be readily transformed in a variety of ways to 
build complex molecules.1 Transition-metal-catalyzed con-
junctive cross-coupling has garnered widespread interest in 
recent years as a powerful tool for installing two different 
groups across a C–C π-bond.2 Traditionally, 1,2-diarylation 
methods have been largely limited to conjugated alkene sub-
strates; in this case, after the key 1,2-migratory insertion event, 
the an electronically stabilized allyl or benzyl metal species is 
formed, from which β-H elimination is sluggish.3 In an effort 
to expand this mode of reactivity to unactivated, nonconjugat-
ed alkenes, our lab and other groups have employed an auxil-
iary-based chelation control strategy to stabilize the analogous 
alkyl metal intermediate as a metalacycle.4 Specifically, our 
laboratory has developed a suite of modular nickel-catalyzed 
alkene 1,2-difunctionalization reactions, in which reactivity 
and selectivity are facilitated by an 8-aminoquinoline (AQ) 
amide-based bidentate auxiliary through the presumed inter-
mediacy of 5- and 6-membered nickelacycles.4a, 5 Practically 
speaking, the necessity for installation and removal of the AQ-
directing group greatly diminishes the synthetic utility of such 
methods, requiring at least two concession steps (Scheme 
1A).  

Recently, we developed a nickel-catalyzed 1,2-diarylation re-
action with a diverse array of simple alkenyl amides using di-
methyl fumarate (DMFu) as ligand, which obviates the need 
for strong directing group and enables native amide groups to 
serve as efficient directors in conjunctive cross-coupling 
(Scheme 1B).6  We reasoned that the utility of this chemistry 
could be enhanced if other functional groups commonly en-
countered in synthesis could serve as directing groups.7 Given 
the versatility of carboxylic acids as diversifiable starting mate-
rials and their abundance as chemical feedstocks, we envi-
sioned that the development of a carboxylate-directed10 1,2-
diarylation of alkenes would be synthetically enabling. Hence, 
the goal of the present study was to demonstrate the feasibility 
of using free alkenyl carboxylic acid starting materials in nick-
el-catalyzed conjunctive cross-coupling (Scheme 1C).  

 
Scheme 1. Background and Synopsis of Current Work 

 
 
 
 

 

Table 1. Optimization of Reactiona 

A. Comparison of different approaches to directed alkene difunctionalization

B. Previous work: nickel-catalyzed 1,2-diarylation of simple alkenyl amides

C. This work: nickel-catalyzed 1,2-dicarbofunctionalization of alkenyl carboxylic acids
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aReaction conditions: 1a (0.1 mmol), 0.1 M s-BuOH. bPercentages represent 1H NMR yields using CH2Br2 as internal standard; n.d. = not detected. 
cValues in parentheses are isolated yields. d Reaction conditions: 15 mol% Ni(cod)2, 15 mol% dimethylfumarate, 1.5 equiv ArI, 1.5 equiv ArB(nep), 2 
equiv NaOH, 0.1 M i-BuOH at r.t. 
 
 
   To initiate our investigation, we elected to use 3-butenoic 
acid 1a as our standard substrate, with 4-iodotoluene and 
phenylboronic acid neopentyl glycol ester (PhB(nep)) as 
coupling partners, and Ni(cod)2 as the precatalyst (Table 1). 
After extensive optimization, we were able to identify “ligand-
free” conditions that delivered the desired product in 77% 
isolated yield (entry 1). Key findings were that sterically bulky 
secondary and tertiary alcohol solvents were beneficial, metal 
hydroxide bases (particularly with sodium as the counterca-
tion) led to enhanced reactivity, and neopentyl glycol boronic 
esters outperformed other organoboron nucleophiles. Under 
our previously published reaction conditions for simple 
alkenyl amide substrates, the desired product could be detect-
ed in only 15% yield with ~20% Mizoroki–Heck product and 
~10% hydroarylation product (entry 2). Interestingly, the use 
of commonly employed ancillary ligands such as bipyridine 
and triphenylphosphine resulted in only Mizoroki–Heck by-
products and Suzuki–Miyaura biaryl formation with trace 
amount of desired product (entries 3 and 4). Aryl bromides 
were found to be incompetent coupling partners (entry 5). 
The corresponding free boronic acid gave the product in low 
yield, while the pinacol boronic ester reacted in moderate 
yield (entries 6 and 7). Various Ni(II) precatalysts were inef-
fective (entry 10).  

   Having identified optimized reaction conditions, we next 
explored the scope and limitations of this methodology by 
testing other representative alkenyl carboxylate (Scheme 2). 
Given that previous methods in the literature employing 
monodentate N(sp2)- or O(sp2)-based directing groups are 
incompatible with internal alkenes, we were delighted to find 
that the present 1,2-diarylation reaction took place with both 
E- and Z-configured alkenes, giving the final products 3a and 
3b as single regio- and diastereoisomers, albeit in low yields. 
The reaction is highly sensitive to the alkene  substitution 
pattern and the distance between the carboxylate and the al-

kene, as 1,1-disubstituted, α-substituted, and γ,δ-unsaturated 
alkenes did not react well. 
 
Scheme 2. Preliminary Alkene Scopea 

 
aReactions performed on 0.1 mmol scale. Percentages represent 
isolated yields.  

 
 We moved on to examine the electrophile scope of the reac-
tion using PhB(nep) as the nucleophilic coupling partner 
(Table 2). Aryl iodides bearing electron-donating substituents 
in the para- and meta-positions reacted in good to excellent 
yields to deliver the desired products (2a–2j). Notably, aryl 
iodides containing –Cl and –NHAc groups were compatible 
in this reaction, allowing for potential downstream modifica-
tion (2d and 2f). Electron-withdrawing substituents resulted 
in diminished reactivity, but still delivered the desired prod-
ucts in moderate yields (2k and 2l). In general, heterocycle-
containing and sterically hindered aryl iodides, alkenyl iodide, 
and alkynyl iodide coupling partners were incompatible under 
the optimized reaction conditions.  
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Table 2. Electrophile and Nucleophile Scopea 

 

 aReactions performed on 0.1 mmol scale. Percentages represent isolated yields.  
 
   Next, we investigated the nucleophile scope of the reaction 
using 1-iodo-3,5-dimethoxybenzene as the electrophilic com-
ponent (Table 3). In general, a wide range of electron-rich and 
electron-poor ArB(nep) coupling partners performed well 
under optimized conditions, giving the desired products in 
good to excellent yield (2m–2v). Tethered alcohols and ke-
tones could be tolerated in excellent yields (2p and 2v). In 
order to expand the utility of this reaction platform, we won-
dered whether alkenyl B(nep) nucleophiles would be compat-

ible toward 1,2-alkenylarylation. Gratifyingly, several alkenyl 
coupling partners were competent, delivering the correspond-
ing 1,2-difunctionalized products in good to excellent yields 
(2w–2z). Notably, this reactivity allowed for the installation 
of styrenyl fragments that could be diversified downstream 
(2x), along with a vinyl cyclopropane motif (2z). Similar to 
the trend observed with aryl iodide coupling partners, hetero-
cycle-containing B(nep) coupling partners were found to be 
incompatible at this stage of development. 
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Scheme 3. Product Diversification  

 
a) 12M HCl (aq.), MeOH, reflux. b) Morpholine, HATU, pyridine, DCM, 25 ºC. c) LiAlH4, anhydrous THF, 0 ºC to 25 ºC. d) (i) DPPA, Et3N, t-
BuOH, 100 ºC; (ii) 6 M HCl. e) (i) TCNHPI, DIC, 10 mol% DMAP, 1,4-dioxane, 75 ºC; (ii) 20 mol% NiCl2•6H2O, 20 mol% bathophen, 
PhB(OH)2, Et3N, 1,4-dioxane/DMF, 75 ºC. f) (i) TCNHPI, DIC, 10 mol% DMAP, DCM, 25 ºC; (ii) 10 mol% Ni(acac)2•xH2O, 10 mol% bipy, 
alkenyl zinc reagent, DMF, 25 ºC. g) (i) NHPI, DIC, 10 mol% DMAP, DCM, 25 ºC; (ii) 30 mol% Cu(acac)2, B2Pin2, LiOH•H2O, MgCl2, 1,4-
dioxane/DMF, 25 ºC. h) (i) NHPI, DIC, 10 mol% DMAP, DCM, 25 ºC; (ii) 20 mol% Ni(ClO4)2 •6H2O, Zn, LiCl, methyl acrylate, MeCN, 25 ºC. 
 
   In an effort to showcase the synthetic versatility of carboxylic 
acid directing group, we conducted a series of diversifications 
on standard product 2a (Scheme 2), which could be readily 
prepared on gram scale. Using the classical two-electron reac-
tivity associated with carboxylic acid starting materials, we 
converted the difunctionalized products into the correspond-
ing ester, amide, alcohol, and amine (4a–4d), enabling access 
to valuable bioactive substructures (vide infra). Additionally, 
viewing the carboxylic acid through the lens of one-electron 
synthetic logic,8,9 we examined several decarboxylative cross-
coupling methods through the intermediacy of a redox-active 
ester. Indeed, decarboxylative arylation provided modular 
entry into 1,2,3-triarylpropane motifs (4e). Moreover, decar-
boxylative vinylation and borylation gave the corresponding 
products in moderate yield, effectively introducing functional 
handles for further modification (4f and 4g). Finally, decar-
boxylative Giese addition provided δ,ε-diarylated compound 
4h, the product of a formal double homologation.  
Scheme 4. Applications of 1,2-Diarylation Reactiona 

 

aReactions performed on 0.1 mmol scale. Percentages represent 
isolated yields.  
 

   To illustrate the utility of this carboxylate-directed alkene 
1,2-diarylation in synthesis, we tested the method in several 
real-world scenarios involving biologically active target com-
pounds containing a 1,2-diaryl motif (Scheme 4). Indeed, in 
the case of the IPR series of anti-tumor agents in breast cancer 
treatments, we could access the desired carboxylic acid inter-
mediate 2aa in a single step in 71% yield compared to four 
steps in 33% yield.11 Similarly, carboxylic acid intermediate 
2ab relevant to a family of fungicides was acquired in 70% in a 
single step.12 A third target, TRPV1 antagonist 2ad was syn-
thesized in a 2-step sequence involving our developed reaction 
and an interrupted Curtius rearrangement.13 In addition to 
reducing the step count, our method offers a new divergent 
platform for probing structure–activity relationships in future 
industrial campaigns. 

   To gain insight into the reaction mechanism, we carried out 
a series of preliminary kinetic experiments. First, we compared 
the initial reaction rates of a series of arylboronates and aryl 
iodides with systematically varied electronic characteristics. In 
our earlier work with monodentate amide directing groups6, 
we found that electron-rich aryl iodides led to faster reaction 
rates and there was no influence of aryl boronate electronic 
properties on rate. In contrast, in the present system we ob-
served no clear initial rate trends across either the aryl boro-
nate or aryl iodide series (Figure 1).14  
 
Figure 1. Hammett analysis of coupling partners in 1,2-
Diarylation Reaction. 
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The lack of clear electronic influence of both coupling part-
ners eliminates many possibilities regarding the identity of the 
turnover-limiting step. One possibility is that the turnover-
limiting step changes as a function of the aryl group electron-
ics. Alternatively, a step not involving either of the two aryl 
groups could be turnover-limiting, such as substrate binding 
or product dissociation. Additional details on this and other 
aspects of the reaction mechanism are currently under investi-
gation in our lab. 
   In conclusion, we have demonstrated that a simple carbox-
ylate group can be used to direct nickel-catalyzed 1,2-
diarylation of nonconjugated alkenes using aryl iodides and 
aryl boronates in the absence of an ancillary ligand. These 
products can be further manipulated to yield a wide range of 
valuable building blocks that would be difficult to synthesize 
using existing methods.  
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