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Radical heterocyclization and heterocyclization cascades

triggered by electron transfer to amide-type carbonyls

Huan-Ming Huang and David J. Procter*®

Abstract: Radical heterocyclizations triggered by electron transfer to
amide-type carbonyls using Sml,-H,O provides straightforward
access to bicyclic heterocyclic scaffolds containing bridgehead
nitrogens. Furthermore, the first radical heterocyclization cascades
triggered by reduction of amide-type carbonyls deliver novel,

complex tetracyclic architectures containing five contiguous
stereocenters with excellent diastereocontrol.
Polycyclic, heterocycle-containing architectures possessing

bridgehead nitrogen atoms are found widely in natural and
unnatural compounds of biological significance, including nucleic
acids, drug molecules and natural products (Figure 1)."
Developing expedient new methods to construct such systems is
an important goal in synthetic and medicinal chemistry.”) For
example, recent advances in the one-step construction of
polycyclic systems possessing bridgehead nitrogens include the
[4+2]/[3+2] cycloaddition cascades of Boger,” the Rh(ll)-
catalyzed cyclization/[3+2] cycloaddition cascades of Padwa'”
and Zhai,”” and Movassaghi’s double intramolecular trapping of
iminium ions."™ Perhaps due to the challenge associated with
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Scheme 1. (A) Ketyl radical cyclizations mediated by Sml,. (B) This work:
Sml,-mediated heterocyclization and heterocyclization cascades triggered by
ET reduction of amide-type carbonyls.

Substrate 1a, possessing an alkene radical trap attached
via nitrogen, was readily synthesised in one step from
commercial barbituric acid and 4-phenyl-but-3-en-1-ol. After
careful optimization (see Supporting Information),"” slow
addition of Sml; (3 equivalents over 1 hour) to 1a and water (100
equiv) gave heterocyclization/dehydration product 2a in 78%

isolated yield.

Various substituents, including fluoro (2c and 2e), methyl
(2d), methoxy (2f and 2i), chloro (2g), bromo (2h),
trifluoromethyl (2j), thienyl (2k) and naphthyl (2I), were

compatible with the radical heterocyclization and products were
obtained in good to excellent isolated yield (Table 1). Larger
alkyl groups at C2 of the barbituric acid unit were also tolerated:
2b was obtained in 50% isolated yield. A larger scale
experiment (2 mmol, 0.84 g of 1a) gave the product 2a in 70%
yield after 2 h (0.56 g). Treatment of 1a with D,O in combination



with Sml, gave the labeled product 2a-D in 65% isolated yield,
thus confirming that the process is terminated by protonation of
a benzylic organosamarium.

Table 1. Scope of the radical heterocyclization to form bicyclic enamines
containing bridgehead nitrogens 220
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Table 2. Scope of the radical hete clization to form bicyclic hemiaminals

containing bridgehead nitrogens 220
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Scheme 2. Proposed mechanism for the radical heterocyclizations.

The bicyclic hemiaminal products are versatile building
blocks for synthesis:'” treatment of 2m with Et;SiH and
BF3;*OEt, gave 1,2-addition product 6 (90% yield) while
exposure of 2m to allylTMS and BF;*OEt, gave 1,4-addition
product 7 (82% yield) (Scheme 3).



1,2-addition Ph 1,4-addition
. allylTMS
Et;SiH
BF4+OEt, OH =~ BFyOEY
N
CH,Cl, Py Me CH,Cl,
—78°C toRT (0] N o -78°C toRT
R
2m Ph
[R' = CH,CH,CCPh]
) Me
j\ Me
(0] N o
R
6, 90% 7, 82%

Scheme 3. Manipulation of bicyclic hemiaminal 2m.

Cyclization cascades have the potential to convert simple
starting materials to complex polycyclic molecular frameworks in
one step.”™ Barbiturate 8a was synthesized in three
straightforward steps from diethyl 2,2-diallylmalonate and was
used to explore the feasibility of a radical hetero- then
carbocyclization cascade to construct complex, polycyclic
hemiaminals containing bridgehead nitrogens (cf. Scheme 1B).
Exposure of 8a to Sml,-H,O gave tetracyclic hemiaminal 9a,
containing five contiguous stereocenters in 58% isolated yield
with high diastereocontrol (>95:5 dr) (Table 3). Assessing the
scope of the process, a wide variety of substituents including
bromo (9b), methoxy (9c and 9f), trifluoromethyl (9d), chloro (9e
and 9g), naphthyl (9h) and benzo[b]thiophenyl (9i) were
tolerated and products were obtained in moderate to good
isolated yield and with universally high diastereocontrol. Final
8j bearing a methyl substituent on the cyclopentene
underwent cascade heterocyclization to give 9j possessi
contiguous stereocenters. The structure of 9a was confirmed by
X-ray crystallographic analysis.""®
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[a] Reaction conditions: To the substrate (0.1 mmol, in THF) under N, was
added H,O (100 equiv), followed by slow addition of Sml, in THF (4 equiv)
over 1 h. The reaction was quenched after 1 h. [b] Isolated yields. [c]
Diastereoisomeric mixture at highlighted stereocenter. [d] Based on recovered
starting material. [e] Dehydrated product was isolated. TMS = trimethylsilyl.
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Scheme 4. Proposed mechanism for the radical heterocyclization cascade.

The cinnamyl protecting group in the radical
heterocyclization product 9l could be removed to give the
corresponding N-H tetracyclic hemiaminal 13 in 55% isolated
yield (Wacker oxidation®" followed by elimination) (Scheme 5A).
Finally, upon treatment of 8a with the more reducing Smlz-H,O-
LiBr system,?® polycyclic amine 14 was obtained in 40%
isolated yield with high diastereocontrol (Scheme 5B). Thus, the
cascade cyclization of 8a can be selectively switched to form
either hemiaminal 9a or amine 14 simply through the choice of
LiBr as an additive under otherwise identical reaction conditions.
The structure of 14 was confirmed by X-ray crystallographic
analysis!™® and arises from a sequence involving radical
heterocyclization cascade, acyl iminium ion formation and

reduction.
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