

BNL-113193-2016-JA

CO2 Hydrogenation over Oxide-Supported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity

Shyam Kattel, Weiting Yu, Xiaofang Yang, Binhang Yan, Yanqiang Huang, Weiming Wan, Ping Liu, and Jingguang G. Chen

Submitted to ANGEWANDTE CHEMIE-INTERNATIONAL EDITION

July 2016

Chemistry Department

Brookhaven National Laboratory

U.S. Department of Energy USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE- SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

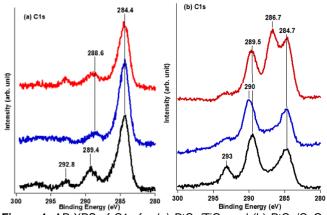
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CO₂ Hydrogenation on Oxide-supported PtCo Catalysts: Finetuning Selectivity using Oxide Supports

Shyam Kattel,^{[a],#} Weiting Yu,^{[b],#} Xiaofang Yang,^[a] Binhang Yan,^[a] Yanqiang Huang,^[c] Weiming Wan,^[b] Ping Liu,^{*[a]} and Jingguang G. Chen^{*[a,b]}

Abstract: Fine-tuning of catalytic activity and selectivity has been one of the grand challenges in catalysis. Here, we report that by simply varying oxide supports the selectivity of metal/oxide catalysts can be finely tuned. Using CO_2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO_2 , ZrO_2 , and TiO₂) as a case study, our combined experiment-theory study indicates that the variation from TiO₂ to CeO_2 or ZrO_2 introduces a selective strengthening in bindings of the C,O-bound and O-bound species at the PtCo-oxide interface, leading to a different product selectivity. These results reveal mechanistic insights in fine-tuning the catalytic performance of metal-oxide catalysts.


Catalyst performances strongly depend on the binding properties. Following the Sabatier principle,^[1] a good catalyst should bind the reaction intermediates strongly enough to activate the reactants, and weakly enough to desorb the products. Various approaches have been applied to optimize the structure of a catalyst and to tune the binding properties and therefore catalytic activities. Typically, a linear scaling response is observed for the binding energies of various adsorbates upon, for instance, varying the local structures of a catalyst or the composition to form mono- or bi-metallic alloys across the Periodic Table.^[2] As a result, the catalytic activity toward a reaction can be enhanced via accelerating the activity-limiting steps along the reaction pathway;^[3] however it makes the control of product selectivity relatively more difficult, which often requires the non-linear tuning in binding energies of different adsorbate species.

Here, we report one of the possibilities to move away from the linear scaling by taking advantages of the strong metal-oxide interaction to selectively modify the binding energies of adsorbates. The special synergy between metals and oxides can introduce large electronic perturbations in the metals, ^[4] provide heterogeneous sites^[3d, 5] or induce variation in the structure or phase on the supported metal particles,^[6] which directly affects the bonding properties and correspondingly the catalytic performances. Carbon dioxide (CO₂) hydrogenation on PtCo bimetallic catalysts supported on different reducible oxides (CeO₂, ZrO₂, and TiO₂) was taken as a case study. By using different oxide supports, the binding of metal-oxide interface to various reaction intermediates varies; however the response is very different depending on the species. Such non-linear response enables the significant tuning in the selectivity of metal-oxide catalysts; in contrast much smaller effect is observed for the overall activity. The combination of Ambient Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Density Functional Theory (DFT) calculations for model catalysts and Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), and Extended X-ray Absorption Fine Structure (EXAFS) for the

- [a] Dr. S. Kattel, Dr. X. Yang, Dr. B. Yan, Dr. P. Liu, Dr. J. G. Chen Chemistry Department, Brookhaven National Laboratory 2 Center St., Upton, NY 11973 (USA) E-mail: pingliu3@bnl.gov
- [b] Dr. W. Yu, W. Wan, Prof. Dr. J. G. Chen Department of Chemical Engineering, Columbia University 1500 W. 120th St., New York, NY 10027 (USA) E-mail: jgchen@columbia.edu
- [c] Y. Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Science Dalian, China, 116023
- [#] Dr. S. Kattel and Dr. W. Yu contributed equally to this work. Supporting information for this article is given via a link at the end of the document.

corresponding powder catalysts allows us to reveal mechanistic insights in fine-tuning the catalytic performance of metal-oxide catalysts.

The catalytic conversion of CO₂ for the production of methane $(CH_4)^{[6c, 7]}$, methanol $(CH_3OH)^{[3d, 8]}$, and carbon monoxide $(CO)^{[6c, 9]}$ has gained tremendous interest in recent years. CH₄ from CO₂ conversion is not profitable considering the high shale gas reserve and its low volumetric energy density. The CH₃OH synthesis is well studied, but the current market demand for CH₃OH would only reduce 0.1% of the global CO₂ emission if all CH₃OH is produced using CO₂.^[10] Thus, one of the most desirable routes for CO₂ conversion is to produce CO, the feedstock for the Fischer-Tropsch process to produce chemicals and fuels. Achieving a high selectivity to the desired CO product rather than CH₄ and CH₃OH is critical, yet challenging for practical applications.

Figure 1. AP-XPS of C1s for (a) $PtCo/TiO_2$ and (b) $PtCo/CeO_2$ after the exposure of 100 mTorr CO_2 and 600 mTorr H₂ (black: 30 °C, blue: heating to 250 °C, red: heating to 250 °C and then cooling down to 30 °C).

Metal-based catalysts on oxide supports are active for the catalytic conversion of CO₂. Cu-based catalysts have been found to be active to covert CO₂ and hydrogen to CH₃OH,^[8a, 11] while Pt-, Au- and Ag-based catalysts promote CO₂ conversion to CO.^[12] In the present study, we demonstrate an example of fine-tuning the selectivity of PtCo catalysts by using oxides, where PtCo/TiO₂ catalyst is effective in converting CO₂ and H₂ to CO and PtCo/CeO₂ and PtCo/ZrO₂ catalysts are found to be selective to CH₄. Because PtCo/CeO₂ and PtCo/ZrO₂ show similar behavior (see SI), either PtCo/TiO₂.

Because CO₂ does not adsorb strongly on single crystal under ultrahigh vacuum conditions, AP-XPS surfaces measurements on PtCo/TiO₂(110) and PtCo/CeO₂(110) model surfaces were performed to identify possible reaction intermediates for CO_2 reduction by H_2 . The C1s peaks of surface species at 292.8 eV for PtCo/TiO₂(110) (Figure 1a) and 293 eV for PtCo/CeO₂(110) (Figure 1b) denote gas phase CO₂. The features at 289.4 eV in Figure 1a and 289.5 eV in Figure 1b are attributed to the formation of carbonate (*CO₃) or formate (*HCOO)/carboxyl (*HOCO) species on both surfaces. These surface intermediates have been identified by AP-XPS on the $CeO_x/Cu(111)$ surface after exposure to CO_2 at ambient pressures. $^{[3d,\ 13]}$ The peaks around 284.4 eV in Figure 1a and 284.7 eV in Figure 1b indicate the presence of carbon on both surfaces. Upon heating to 250 °C and cooling down to room temperature, there is a peak around 286.7 eV for PtCo/CeO₂(110) but not for PtCo/TiO₂(110). This peak

corresponds to the formation of methoxy (*CH₃O), suggesting that CO_2 hydrogenation may follow different reaction pathways on the PtCo/TiO₂(110) and PtCo/CeO₂(110) surfaces, which will be confirmed using supported powder catalysts.

Table 1. Particle size, coordination number (CN), CO chemisorption, steady-state CO_2 conversion, turnover frequency (TOF) and CO/CH₄ ratio on PtCo/TiO₂, PtCo/CeO₂ and PtCo/ZrO₂ catalysts.

Catalysts	PtCo/TiO ₂	PtCo/CeO ₂	PtCo/ZrO ₂
Particle size (nm)	2.3±0.5	2.7±1.0	2.3±0.7
CN (Pt-Pt)	4.2 ± 0.6	5.1 ± 1.3	4.3 ± 2.1
CN (Pt-Co)	1.7 ± 0.5	2.7 ± 0.6	2.3 ± 1.6
CO chemisorption (µmol/g)	18.7	36.4	39.4
CO ₂ conversion (%)	8.2	9.1	7.8
TOF (min⁻¹)	35.3	20.1	16.0
CO/CH ₄ ratio	85	12	8.5

The TEM results in Tables 1 and Figure S1 show that the size distributions for the three catalysts are fairly similar. In addition, the formation of the Pt-Co bimetallic bond is detected in all catalysts according to EXAFS measurements (Tables 1, Table S2 and Figure S2). CO_2 hydrogenation was evaluated in a flow reactor at 300 °C, with the activity being presented using both conversion and turnover frequency (TOF) by normalizing with the CO uptake value from each catalyst. One can see in Table 1 that the conversion of CO_2 over the three catalysts is very close, indicating that the selectivity can be significantly varied while maintaining similar conversion. The ratio of CO/CH₄ over PtCo/TiO₂ catalyst is 85, far higher than that over PtCo/CeO₂ (12) and PtCo/ZrO₂ (8.5), revealing that PtCo/TiO₂ selectively produces CO, while the other two supports favor the production of CH₄.

A batch reactor equipped with an FTIR spectrometer was used to monitor surface intermediates and gas-phase composition during the reaction. The FTIR spectra after the reaction of CO₂ and hydrogen on the PtCo/CeO₂ and PtCo/TiO₂ powder catalysts (Figure S3) are consistent with the findings from the AP-XPS study on the model surfaces (Figure 1). The 1373 cm⁻¹ and 1610 cm⁻¹ modes are assigned to the symmetric and antisymmetric OCO vibrations (Table S3), respectively, of formate-like species, suggesting the existence of HCOO*/HOCO* surface intermediates over both catalysts. In addition, on PtCo/CeO2 vibrational features (peaks at 1420 cm⁻¹ and 2869 cm⁻¹) indicative of the $\delta(CH_3)$ and $v_s(CH_3)$ mode (Table S3) in *CH₃O^[14] also appeared, revealing the presence of the *CH₃O intermediate.

The FTIR spectra of some of the characteristic vibrational modes were also employed to identify the gas-phase reaction products. The vibrational modes v(C=O) at 2358 cm⁻¹, v(C=O) at 2170 cm⁻¹ and v(C-H) at 3016 cm⁻¹ were used to monitor the presence of CO₂, CO and CH₄, respectively. On PtCo/TiO₂, besides the sharp CO₂ peak, CO is also detected as a product (Figure 2a). On PtCo/CeO₂, vibrational peaks indicative of the formation of CH₄ are also observed in addition to CO.

The verification of surface reaction intermediates was also carried out by reacting CH₃OH and formic acid (HCOOH) into the batch reactor at the same conditions as CO₂ hydrogenation to monitor and compare the reaction products. As shown in Figure 2b, the reaction products are almost identical on both PtCo/CeO₂ and PtCo/TiO₂ catalysts. CO and CO₂ were produced from both CH₃OH and HCOOH, indicating that *HCOO is the likely reaction intermediate on both PtCo/CeO₂ and PtCo/TiO₂ catalysts. CH₄ is produced only from CH₃OH,

suggesting that the surface *CH₃O intermediate is the likely precursor for the formation of CH₄. However, the conversion of CH₃OH to CH₄ occurs on both surfaces. Accordingly, the role that the TiO₂ support in preventing the formation of *CH₃O and therefore CH₄ on PtCo/TiO₂ must relate to the steps before *CH₃O formation.

Overall, the experimental results on CeO₂ and TiO₂ supported PtCo powder catalysts indicate that different reaction intermediates lead to the difference in the CO/CH₄ selectivity in the flow reactor. The CO/CH₄ selectivity on PtCo/TiO₂ is much higher than that on PtCo/CeO₂ (Table 1). On PtCo/TiO₂, *HCOO is formed as the intermediate, which may eventually produce CO. On PtCo/CeO₂, besides the route via *HCOO, a pathway via *CH₃O intermediate runs in parallel, which likely leads to the formation of CH₄. Yet, at this stage the origin of oxide supports in tuning the selectivity is still unclear. It requires better understanding of the detailed reaction network and the active sites, which is extremely difficult to obtain merely using the experimental techniques. Therefore, DFT calculations were performed to determine the mechanisms for CO₂ hydrogenation at the metal-oxide interfaces.

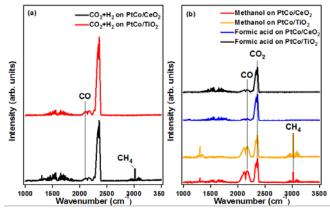
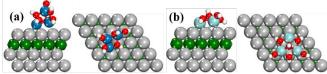



Figure 2. FTIR spectra during the reaction of (a) CO_2 reduction by H_2 and (b) formic acid and methanol on $PtCo/CeO_2$ and $PtCo/TiO_2$ catalysts.

The Pt-terminated surface structure has been predicted by DFT as the thermodynamically stable structure and detected in surface science experiments over model Co/Pt(111) surfaces[15] and Co/Pt thin films^[16] for clean surfaces and in the presence of hydrogen. Figure S4 shows the DRIFTS measurements of CO adsorption over supported PtCo/ZrO2. The relatively intense vibrational peaks of linearly-adsorbed CO of the bimetallic PtCo/ZrO₂ catalyst are much more similar to those of Pt/ZrO₂ than those of Co/ZrO₂, consistent with a Pt-terminated bimetallic surface. The PtCo-oxide interface was modeled by depositing a small oxide cluster on the PtCo(111) support, where a Pt_{1M}/Co_{1M}/Pt(111) near-surface model was used and the hydroxylation of oxides under hydrogen-rich environment was also considered (Figure 3). Such inverse model has been previously shown as a reasonable model to describe the catalytic properties of metal/oxide catalysts under CO_2 hydrogenation conditions.^[3d, 8a, 17] Due to the deficiency of standard DFT in describing CeO_x, as discussed in more detail in SI,^[18] PtCo/TiO₂ and PtCo/ZrO₂ were used in the current theoretical study as the representative catalysts selective to CO and CH₄, respectively.

The reaction network for CO_2 hydrogenation typically includes the reverse-water-gas-shift followed by CO hydrogenation (RWGS + CO-Hydro) pathways (Figure S5) and formate pathways.^[19] Our results show that the binding geometries of the reaction intermediates are similar on both PtCo/TiO₂ and PtCo/ZrO₂ (Figures S6 and S7). In general, C-bound species prefer Pt sites via a η^1 -C_{Pt} bonding, while O-bound species prefer the reduced $M^{\delta +}$ cation sites in metal oxides via a η^1 -O_M^{\delta+} configuration. In the case of species bound through both C and O (C,O-bound species, e.g. *CO₂, *HOCO, *CO, *CHO, *CHOH, *CH₂O and *CH₂OH), the metal-oxide interfacial sites are favored via a η^2 -C_{Pt}O_M^{\delta+} configuration. Thus the metal-oxide interface is likely to play an important role in activating chemically inert CO₂ and further facilitating its subsequent conversion.^[3d, 8a]

CO and CH₄ production on PtCo/TiO₂ prefers undergoing the RWGS + CO-Hydro pathways, as shown in Figure 4a. The adsorption of CO₂ leads to the formation of carboxylate (CO₂^{δ -}) due to the strong binding at the PtCo-TiO₂ interface, where the O-C-O bond is bent in an n^2 -C_{Pt}O_{Ti}^{δ +} configuration (Figure S5b). Such binding motif favors the hydrogenation to *HOCO (Figure S5c) with a reaction energy (ΔE) of -0.56 eV and a small activation energy (Ea) of 0.23 eV, where the transition only involves one O-H bond formation with a small distortion in the geometry of *CO₂; in contrast, *CO₂ hydrogenation to *HCOO is kinetically and thermodynamically less favorable ($\Delta E = -0.25 \text{ eV}$, $E_a = 0.51 \text{ eV}$). The produced *HOCO then dissociates and forms *CO and *OH (Δ E= -0.26 eV, E_a= 0.93 eV), where *OH is hydrogenated to form $*H_2O$ (E_a= 0.43 eV), while *CO either desorbs or undergoes further hydrogenation reactions. It is found that *CO hydrogenation to *CHO is exothermic by only -0.05 eV. The corresponding Ea (1.40 eV) is comparable to BE of CO (-1.51 eV, Table S4). However, under the reaction conditions, the entropy contribution significantly lowers the barrier for *CO desorption by 1.28 eV at 300 °C, and the desorption barrier is much lower than that for the hydrogenation to *CHO. Thus, corroborating our experimental finding (Table 1), the DFT results show that CO(g) is the main product from CO₂ hydrogenation on PtCo/TiO₂.

Figure 3. Side and top views of DFT-optimized structures for model hydroxylated $Ti_3O_6/PtCo(111)$ (a) and $Zr_3O_6/PtCo(111)$ (b) surfaces. Pt: light grey, Co: green, Zr: light blue, Ti: dark blue, H: white.

The minor products come from the formed *CHO, which can be hydrogenated to either *CH₂O or *CHOH. Figure 4a shows that the two steps are competitive with the difference in E_a of only 0.06 eV (0.82 eV vs. 0.88 eV). *CHOH is the precursor for C-O bond cleavage to form *CH + *OH (Δ E= -0.42 eV, $E_a = 0.47$ eV). *CH then undergoes three exothermic hydrogenation reactions to form CH₄, where the highest barrier is observed for $*H + *CH_3 \rightarrow *CH_4 + *$ (E_a= 0.48 eV). The produced *CH₂O is further hydrogenated to produce *CH₂OH (E_a = 0.49 eV), which dissociates to *CH₂ and *OH (ΔE = 0.10 eV and E_a = 0.86 eV) and leads to the production of *CH₄ eventually. In comparison the formation of $*CH_3O$ (E_a= 0.60 eV) less favorable. The DFT results agree well with the is experiments on PtCo/TiO₂ model and powder catalysts, where *CH₃O intermediate and therefore CH₃OH(g) is not observed during the CO₂ hydrogenation. Therefore, the minor product for CO_2 hydrogenation on PtCo/TiO₂ is $CH_4(g)$, consistent with the experimental results (Table 1).

In comparison, $PtCo/ZrO_2$ selectively strengthens the bindings of the C,O-bound and O-bound species at the interface

via O-Zr^{δ +} bonds (Table S4 and Figure S7), while for the Cbound species, the BE via Pt-C interaction is the same as that on TiO₂/PtCo(111). According to the calculated partial density of states (PDOS, Figure S8), the promoted O-Zr⁸ interaction is associated with more electronic d-states near the Fermi level than that of $\text{Ti}^{\delta +}.$ Thus, although the CO_2 hydrogenation follows the same pathways in both cases, differences in reaction and activation energies are clearly observed (Figure 4b). Compared to PtCo/TiO₂, *CO₂ hydrogenation to *HOCO ($\Delta E = -0.39 \text{ eV}$, E_a = 0.11 eV), *HOCO dissociation to *CO and *OH (Δ E= -0.75 eV, $E_a= 0.70 \text{ eV}$), as well as *CO hydrogenation to *CHO ($\Delta E= -0.48$ eV, $E_a = 0.98$ eV) are more energetically favorable; in contrast *CO desorption is more difficult due to the stronger CO BE (-2.00 eV). In this case, even including the entropy contribution, *CO hydrogenation is compatible with *CO desorption (Gibbs free energy = 0.72 eV at 573K). Therefore, CO is only the minor product from PtCo/ZrO₂ while the major product should come from *CO hydrogenation, such as CH₄ and or CH₃OH.

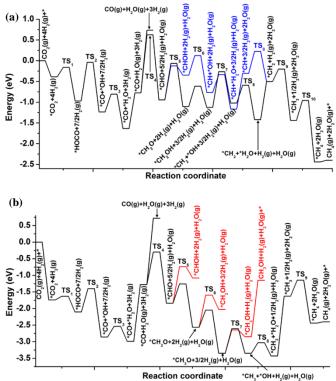


Figure 4. Potential energy diagrams for the CO, and CH₄ synthesis via the RWGS + CO-Hydro pathways on model hydroxylated Ti_3O_6 /PtCo(111) (a) and Zr_3O_6 /PtCo(111) (b) surfaces.

Furthermore, *CHO at the PtCo/ZrO₂ interface is preferentially hydrogenated to *CH₂O (Δ E= -0.74 eV, E_a= 0.58 eV), rather than *CHOH (Δ E= 0.76 eV, E_a= 1.10 eV) (Figure 4b). The sequential hydrogenation of *CH₂O results in *CH₃O formation (Δ E= -0.72 eV, E_a= 0.52 eV) in contrast to the endothermic formation of *CH₂OH (Δ E = 0.54 eV, E_a = 0.97 eV). This is in good agreement with the experimental detection of the *CH₃O intermediate on the PtCo/ZrO₂ model surface (Figure 1) and powder catalyst (Figure S3). *CH₃O hydrogenation to *CH₃OH (Δ E = 0.50 eV, E_a = 0.70 eV) and to *CH₃ and *OH (Δ E = 0.01 eV, E_a = 0.74 eV) are likely competitive; however, due to the favorable binding at PtCo-ZrO₂, desorption of *CH₃OH is not stable and prefers dissociation to *CH₃O (E_a=

0.20 eV) rather than desorption (E_a = 0.70 eV). In contrast, *CH₃ hydrogenation to form *CH₄ is much easier (ΔE = -0.95, E_a = 0.48 eV). Therefore, as observed experimentally (Table 1), the DFT calculations predict that CH₄ is the major product resulting from the hydrogenation of *CO on PtCo/ZrO₂. Finally, the most difficult step, likely activity-controlling step, along the reaction pathways (Figure 4) varies from *HOCO dissociation on PtCo/TiO₂ to *CO hydrogenation to *HCO on PtCo/ZrO₂; however, values of the corresponding barriers are similar (0.93 eV vs. 0.98 eV). Accordingly, a small decrease in TOF is expected, which agrees well with our measurement in Table 1.

In summary, our combined experiment-theory study shows that changing the oxide support from TiO₂ to CeO₂ or ZrO₂ provides the possibility to tune the selectivity of bimetallic PtCo catalysts for CO₂ hydrogenation; in contrast much smaller effect is observed for the overall activity. CeO2 or ZrO2 supported PtCo catalysts display high selectivity to CH₄, while CO is preferred by using the TiO_2 support. According to the AP-XPS for model surfaces and FTIR spectra for powder catalysts, the difference in selectivity is likely associated with the variation in dominant reaction pathways, where *HCOO/*HOCO is observed as the reaction intermediates on PtCo/TiO2, while both *HCOO/*HOCO and *CH₃O are observed on PtCo/CeO₂ or PtCo/ZrO₂. The DFT study well describes the experimental observations and indicates that the metal-oxide interface promotes the heterogeneity of active sites and enables moving away from the linear scaling of adsorbate binding energies. The bindings of the C,O-bound and O-bound species are tuned selectively at the interface, rather than the C-bound species. The variation of support from TiO₂ to ZrO₂ does not affect the dominant RWGS + CO hydrogenation pathways; however, the CO production is hindered and the CO hydrogenation to CH4 is turned on over ZrO2. Our study highlights that the synergy between metal and oxide at the metal-oxide interface plays an important role in tuning the selectivity of CO₂ hydrogenation reaction on oxide supported PtCo bimetallic catalysts. More importantly, it confirms the possibility in fine-tuning the catalytic selectivity through the metal-oxide interfaces.

Experimental Section

The catalysts were prepared by the incipient wetness impregnation method with an aqueous solution of the respective metal precursors $((NH_3)_4Pt(NO_3)_2$ and $Co(NO_3)_2$ *6H₂O from Alfa Aesar). The metal loadings (wt%) of the PtCo bimetallic catalysts were 1.7% Pt and 1.5% Co. After impregnation, the samples were dried at 60 °C overnight and calcined in air at 290 °C for 2 hours. The PtCo bimetallic catalyst was selected because it showed better CO₂ conversion activity than the corresponding monometallic catalysts.^[3e]

The DFT calculations were performed using the Vienna Ab-Initio Simulation Package (VASP) code.^[20] Electron-ion interactions were treated by the projector augmented wave (PAW) method. The exchange and correlation energy was described using the generalized gradient approximation with the Perdew-Wang (PW91) functional. Cutoff energy of 400 eV and a 3 x 3 x 1 Monkhorst-Pack k points were used. Further details of the theoretical models and experimental synthesis/characterization are provided in the Supporting Information.

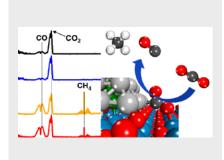
Acknowledgements

This material was based upon work supported under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science. The DFT calculations were performed using computational resources at the Center for Functional Nanomaterials, a user facility at BNL, supported by US Department of Energy and the National Energy Research Scientific Computing Center (NERSC) supported

by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Keywords: CO_2 hydrogenation • bimetallic • metal-oxide • $CO • CH_4$

- [1] P. Sabatier, *La catalyse en chimie organique*, Librairie Polytechnique, Paris et Liège **1920**.
- [2] a) F. Calle-Vallejo, J. Tymoczko, V. Colic, Q. H. Vu, M. D. Pohl, K. Morgenstern, D. Loffreda, P. Sautet, W. Schuhmann, A. S. Bandarenka, *Science* **2015**, *350*, 185-189; b) J. K. Norskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, *Nat. Chem.* **2009**, *1*, 37-46.
- [3] a) D. J. Stacchiola, S. D. Senanayake, P. Liu, J. A. Rodriguez, *Chem. Rev.* 2013, *113*, 4373-4390; b) E. A. Monyoncho, S. Ntais, N. Brazeau, J.-J. Wu, C.-L. Sun, E. A. Baranova, *ChemElectroChem* 2016, *3*, 218-227; c) G. R. Jenness, J. R. Schmidt, ACS Catal. 2013, *3*, 2881-2890; d) J. Graciani, K. Mudiyanselage, F. Xu, A. E. Baber, J. Evans, S. D. Senanayake, D. J. Stacchiola, P. Liu, J. Hrbek, J. F. Sanz, J. A. Rodriguez, *Science* 2014, *345*, 546-550; e) M. D. Porosoff, J. G. G. Chen, J. *Catal.* 2013, *301*, 30-37; f) Y. Hartadi, D. Widmann, R. J. Behm, *ChemSusChem* 2015, *8*, 456-465.
- [4] a) K. Mudiyanselage, S. D. Senanayake, L. Feria, S. Kundu, A. E. Baber, J. Graciani, A. B. Vidal, S. Agnoli, J. Evans, R. Chang, S. Axnanda, Z. Liu, J. F. Sanz, P. Liu, J. A. Rodriguez, D. J. Stacchiola, Angew. Chem. Int. Ed. 2013, 52, 5101-5105; b) A. Bruix, J. A. Rodriguez, P. J. Ramírez, S. D. Senanayake, J. Evans, J. B. Park, D. Stacchiola, P. Liu, J. Hrbek, F. Illas, J. Am. Chem. Soc. 2012, 134, 8968-8974; c) F. Calaza, C. Stiehler, Y. Fujimori, M. Sterrer, S. Beeg, M. Ruiz-Oses, N. Nilius, M. Heyde, T. Parviainen, K. Honkala, H. Häkkinen, H.-J. Freund, Angew. Chem. Int. Ed. 2015, 54, 12484-12487; d) J. Y. Park, L. R. Baker, G. A. Somorjai, Chem. Rev. 2015, 115, 2781-2817.
- [5] J. Saavedra, H. A. Doan, C. J. Pursell, L. C. Grabow, B. D. Chandler, *Science* **2014**, 345, 1599-1602.
- [6] a) M. G. Willinger, W. Zhang, O. Bondarchuk, S. Shaikhutdinov, H.-J. Freund, R. Schlögl, *Angew. Chem. Int. Ed.* **2014**, 53, 5998-6001; b) L. Yu, Y. Liu, F. Yang, J. Evans, J. A. Rodriguez, P. Liu, *J. Phys. Chem. C* **2015**, *119*, 16614-16622; c) J. C. Matsubu, V. N. Yang, P. Christopher, *J. Am. Chem. Soc.* **2015**, *137*, 3076-3084.
- [7] a) M. A. A. Aziz, A. A. Jalil, S. Triwahyono, A. Ahmad, *Green Chem.* 2015, *17*, 2647-2663; b) G. Melaet, W. T. Ralston, C.-S. Li, S. Alayoglu, K. An, N. Musselwhite, B. Kalkan, G. A. Somorjai, *J. Am. Chem. Soc.* 2014, *136*, 2260-2263.
- [8] a) X. F. Yang, S. Kattel, S. D. Senanayake, J. A. Boscoboinik, X. W. Nie, J. Graciani, J. A. Rodriguez, P. Liu, D. J. Stacchiola, J. G. G. Chen, *J. Am. Chem. Soc.* **2015**, 137, 10104-10107; b) C. Liu, B. Yang, E. Tyo, S. Seifert, J. DeBartolo, B. von Issendorff, P. Zapol, S. Vajda, L. A. Curtiss, *J. Am. Chem. Soc.* **2015**, 137, 8676-8679.
- [9] a) M. D. Porosoff, X. F. Yang, J. A. Boscoboinik, J. G. Chen, Angew. Chem. Int. Ed. 2014, 53, 6705-6709; b) H.-K. Lim, H. Shin, W. A. Goddard, Y. J. Hwang, B. K. Min, H. Kim, J. Am. Chem. Soc. 2014, 136, 11355-11361; c) C. Costentin, S. Drouet, M. Robert, J.-M. Savéant, Science 2012, 338, 90-94.
- [10] W.-H. Cheng, Acc. Chem. Res. 1999, 32, 685-691.
- [11] a) L. C. Grabow, M. Mavrikakis, Acs Catal. 2011, 1, 365-384; b)
 Y. Yang, J. Evans, J. A. Rodriguez, M. G. White, P. Liu, Phys. Chem. Chem. Phys. 2010, 12, 9909-9917.
- [12] a) W. L. Zhu, Y. J. Zhang, H. Y. Zhang, H. F. Lv, Q. Li, R. Michalsky, A. A. Peterson, S. H. Sun, *J. Am. Chem. Soc.* 2014, 136, 16132-16135; b) Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. G. Chen, F. Jiao, *Nat. Commun.* 2014, *5*, 3242; c) S. Back, M. S. Yeom, Y. Jung, *Acs Catal.* 2015, *5*, 5089-5096.
- [13] X. Deng, A. Verdaguer, T. Herranz, C. Weis, H. Bluhm, M. Salmeron, *Langmuir* **2008**, *24*, 9474-9478.
- [14] T. G. Kelly, A. L. Stottlemyer, H. Ren, J. G. Chen, J. Phys. Chem. C 2011, 115, 6644-6650.


- [15] C.A. Menning, H.H. Hwu, J.G. Chen, J. Phys. Chem. B 2006, 110, 15471-15477.
- [16] C.A. Menning, J.G. Chen, J. Power Sources 2010, 195, 3140-3144

- [17] T. Lunkenbein, J. Schumann, M. Behrens, R. Schlögl, M. G. Willinger, *Angew. Chem. Int. Ed.* 2015, *54*, 4544-4548.
 [18] D. Lu, P. Liu, *J. Chem. Phys.* 2014, *140*, 084101.
 [19] P. Liu, Y. Yang, M. G. White, *Surf. Sci. Rep.* 2013, *68*, 233-272.
 [20] a) G. Kresse, J. Furthmuller, *Comp. Mater .Sci.* 1996, *6*, 15-50; b) G. Kresse, J. Furthmuller, *Phys. Rev. B* 1996, *54*, 11169-11186.

Entry for the Table of Contents (Please choose one layout)

COMMUNICATION

The selectivity of \mbox{CO}_2 hydrogenation reaction of Metal-Oxide catalysts can be tuned by varying oxide supports.

Shyam Kattel,[#] Weiting Yu,[#] Xiaofang Yang, Binhang Yan, Yanqiang Huang, Weiming Wan, Ping Liu*, Jingguang G. Chen*

Page No. – Page No. CO₂ Hydrogenation on Oxide-supported PtCo Catalysts: Fine-tuning Selectivity using Oxide supports