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Abstract

A novel Pd-catalyzed cascade alkoxycarbonylative macrolactonization to construct THP/THF-

containing bridged macrolactones in one step from alkendiols is described. Products with various

ring sizes and substituents were obtained. Challenging macrolactones involving tertiary alcohols

were synthesized smoothly as well. Mechanistically, experimental evidence to support a trans-

oxypalladation step has been provided. The method was applied to the synthesis of potent

anticancer 9-demethylneopeltolide.
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Macrocyclic structural motifs are widely prevalent in many approved drug molecules,

natural products and other molecules with important function.[1] Among them,

tetrahydropyran (THP) and tetrahydrofuran (THF)-containing macrolides are a diverse

group of natural products with a wide range of biological activity.[2] For example,

neopeltolide (1),[3] lyngbyaloside B (2),[4] and exiguolide (3)[5] have shown potent

anticancer activity (Figure 1). Neopeltolide also exhibits potent antifungal activity against

pathogenic yeast Candida albicans. Exiguolide specifically inhibits fertilization of sea

urchin gametes.

The core structural skeletons of THP/THF-containing natural macrolides can be represented

as generic structure 4 (Figure 1). Various strategies have been developed to prepare such

structural motifs. Currently, most of the them are synthesized from seco-acid precursors via

various macrolactonizations.[6] Most of the commonly used macrolactonization methods

require multiple steps to prepare the corresponding seco-acids including tedious masking

and unmasking of the carboxylic acid and/or alcohol, more than stoichiometric amount of

reagents to activate the carboxylic acid and/or alcohol, and relatively harsh reaction

conditions to promote the macrolactonization. While other methods such as ring-closing

metathesis,[7] macrocyclic Prins-type cyclizations,[8] dual macrolactonization/pyran-
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hemiketal formation via acylketene intermediate[9] and transannular oxa-Michael

cyclizations[10] have been used recently to make several THP-containing macrolides, highly

efficient and catalytic methods are still needed. We envisioned the possibility of

synthesizing both the THP/THF ring and the macrolactone ring in one step from relatively

simple alkendiols (cf. 5→4, Figure 1) by developing Pd-catalyzed alkoxycarbonylative

macrolactonizations. Pd-catalyzed alkoxycarboxylation, the venerable Semmelhack reaction,

has been widely used to make THP/THF-containing esters as well as small sized

lactones.[11] However, to date, Pd-catalyzed alkoxycarbonylative macrolactonization to form

products such as 4 has not been reported. Pd-catalyzed carbonylative macrocyclization has

been rarely studied as well.[12] We were hoping to trap the reactive acyl-palladium species

derived from a sequence of Wacker-type oxypalladation and CO migratory insertion by a

tethered remote alcohol to afford the desired THP/THF-containing bridged macrolactone.

The proposed process requires only a catalytic amount of palladium catalyst. Since olefins

are relatively inert and compatible in most of the reaction conditions, tedious masking and

unmasking practices could be avoided. In addition, no carboxylic acid synthesis and its

further activation are required. We were also hoping that the palladium metal center might

serve as a template through coordination to bring the remote nucleophilic alcohol and the

electrophilic acyl species into proximity and therefore facilitate the macrolactonization by

compensating the entropic disadvantage. Herein, we report a novel Pd-catalyzed cascade

alkoxycarbonylative macrolactonization to synthesize various THP/THF-containing bridged

macrolactones including 9-demethylneopeltolide (1a).

Our exploration started with the commonly used Semmelhack reaction conditions and the

Lambert carbonylation conditions.[13] After investigating several reaction parameters, we

found that various THP/THF-containing macrolactones could be obtained using Pd(OAc)2

(0.1 equiv) as catalyst and CuCl2 (3.0 equiv) as oxidant under carbon monoxide atmosphere

(balloon) in 1,2-dichloroethane (DCE, 0.002 M) at room temperature with slow addition of

the starting alkendiols. As the macrolactone ring changes from 13- to 18-membered ring

(7a–h), there is no significant change in the reaction yield and cis-2,6-disubstituted THP-

containing macrolactones were produced as the predominant products. The reaction

condition is compatible with ketal group (7g). Both internal cis and trans double bonds are

tolerated as well (7j–k). Notably, para- and meta-cyclophanes were synthesized in 7l and

7m, respectively. A 23-membered macrolactone ring was formed in the case of 7l, which

represents the largest ring size we have explored so far. The structure of cis-7m was

unambiguously assigned by X-ray crystallography.[14] Epimeric substrates 6n and 6o
underwent the cascade reaction and gave products 7n and 7o in 79% and 61% yield

respectively. While cis-THP product is slightly favored in the case of 7o (dr. 2/1), trans-

THP product dominates in the case of 7n (dr. 1/3.3). Product 7p was obtained in 77% yield,

surprisingly, with almost no diastereoselectivity. THF-containing macrolactones were

formed in good yield as well (7q–r) but with poor diastereoselectivity. The reaction tolerates

sterically hindered alcohol next to an all-carbon quaternary center (7q).

Since the new stereocenter is formed in the oxypalladation step, we wondered the details of

this step in our case. trans-Oxypalladation has been proposed for the Semmelhack

reaction.[11,15] Recently, elegant studies from several groups[16] including those of Stoltz,
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Hayashi, Wolfe and Henry have shown that, in the Wacker-type reaction, both cis- and

trans-oxypalladation pathways are feasible. Similar phenomena have been observed in the

related aminopalladation reactions.[17] Thus, substrate 8 with a cis-double bond was

prepared and subjected to the carbonylative macrolactonization conditions. Products 9 and

10 were obtained in 51% yield with 8.3/1 diastereoselectivity favoring cis product 9
(Scheme 1). The relative configuration of 9 was assigned based on NOE studies. The

stereochemical outcome at the α-carbon (asterisked) of 9 supports a trans-oxypalladation

process via a chair-like transition state (cf. 8→A→B→9). The minor product was

tentatively assigned as 10 based on transition state C, which is less favored than A due to

strong steric repulsions. Since CuCl2 was used as oxidant, at this stage, we cannot exclude

the formation of acyl chlorides for the macrolactonization.[13,18]

We then wondered whether the Pd-catalyzed alkoxycarbonylative macrolactonization would

provide challenging tertiary macrolactones, which are common structural feature of many

natural products such as lyngbyaloside B (2). Macrolactonization involving the OH group of

a tertiary alcohol presents a great synthetic challenge and has not been well studied.[9,19] We

evaluated tertiary alcohol substrates 11a–d. All of them underwent the cascade cyclization

smoothly and gave the desired tertiary macrolactones in good yield and diastereoselectivity.

We then tested the effectiveness of the Pd-catalyzed alkoxycarbonylative macrolactonization

for synthesizing 9-demethylneopeltolide,[20] a simplified neopeltolide [8a–b,21] analog but

with similar inhibitory activity against P388 murine leukemia cells (IC50 = 0.813 nM). In

order to evaluate the Pd-catalyzed alkoxycarbonylative macrolactonization in different

stereo-settings and generate stereoisomers of 9-demethylneopeltolide, we prepared epimers

13a and 13b (see Supporting Information for their synthesis). Both 13a and 13b underwent

the desired cyclization and products 14a and 14b were produced, respectively, in good yield

and excellent cis-selectivity. Compound 14b was then converted to 9-demethylneopeltolide

(1a) uneventfully through a sequence of ketal removal, reduction and Mitsunobu reaction

with the known acid 16 [22] (see Supporting Information for its structure).

In summary, we have developed an efficient Pd-catalyzed cascade alkoxycarbonylative

macrolactonization to construct THP/THF-containing macrolactones with different ring

sizes and substituents. Challenging macrolactones involving tertiary alcohols were

synthesized efficiently as well. Mechanistically, experiments have been conducted to

support a Wacker-type trans-oxypalladation step. The application of this method was

demonstrated in the synthesis of 9-demethylneopeltolide.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Selected THP-containing macrolides and our synthetic strategy.
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Scheme 1.
A mechanistic study of the oxypalladation step.
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Scheme 2.
Alkoxycarbonylative macrolactonization of tertiary alcohols.
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Scheme 3.
Alkoxycarbonylative macrolactonization of 13a and 13b and synthesis of 9-

demethylneopeltolide (1a). Reagents and conditions: a) HCl (0.5 N), MeOH; then HCl (1

N), THF, RT; b) NaBH4 (3.9 equiv), MeOH, 0 °C, 74% from 14b; c) PPh3 (3.8 equiv),

DIAD (3.8 equiv), 16 (4.0 equiv), benzene, RT, 56%; DIAD = diisopropyl azodicarboxylate.
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Table 1

Substrate scope

[a]
Isolated yield with cis/trans ratio in parenthesis.
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