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Abstract
A novel stereochemical substrate probe was used to assess the factors that affect the
stereochemical course of nucleopalladation (cis vs. trans) in the context of an enantioselective
Wacker-type reaction. We demonstrate that the enantioselectivity correlates directly with the
nucleopalladation pathway, and both the neutral-donor and anionic ligands on palladium are
capable of controlling selectivity for cis or trans nucleopalladation.
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Palladium(II)-catalyzed oxidative functionalization of alkenes has been the focus of intense
interest for decades, and Wacker-type cyclizations,[1] which enable synthesis of diverse
heterocycles, are a prominent class of these reactions.[2] Substantial effort has been directed
toward enantioselective applications, but successful examples (e.g., ≥ 90% ee) remain rare
and often exhibit limited substrate scope.[3,4] A key challenge associated with these
reactions is the possibility of cis- or trans-nucleopalladation (NP) of the alkene, because the
formation of diastereomeric intermediates from these pathways could have significant
consequences for the development of enantioselective transformations (Scheme 1).[3]

Examples of both cis- and trans-NP pathways in catalytic reactions have been
documented,[5,6] but only three enantioselective variants of these reactions have been
characterized with respect to the stereochemical course of nucleopalladation. All three
examples exhibited a preference for cis-NP.[4f,k,n] The possible impact of the stereochemical
course of nucleopalladation on the enantioselectivity of a given asymmetric Wacker-type
reaction has not been established. Here, we present a mechanistic investigation of the factors
that affect the stereochemical course of nucleopalladation in the context of a recently
discovered catalyst system for the enantioselective cyclization of γ-alkenyl tosylamides.
Implementation of a novel stereochemical probe demonstrates that both the chiral neutral
donor ligand and the anionic ligands on the palladium center are capable of controlling the
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stereochemical pathway for amidopalladation (AP), but only the trans-AP pathway exhibits
high enantioselectivity. These data provide the first direct correlation between
nucleopalladation stereoselectivity and the enantioselectivity of the transformation in
question. Such insights highlight valuable considerations for the development of
enantioselective reactions that involve nucleopalladation of an alkene.

Recently, we showed that a PdII catalyst with a chiral pyridine-oxazoline (pyrox) ligand
enables preparation of pyrrolidines in excellent yield and enantioselectivity (Eq. 1).[4p,7]

Based on several closely related precedents, we predicted that the PdII/pyrox catalyst system
would favor a cis-amidopalladation (cis-AP) mechanism.[8–11] For example, the isotopically
labeled substrate 3-D-4 has been used to assess the mechanism of several different PdII

catalyst systems for the aerobic, oxidative amidation of alkenes,[5d] and Pd(OAc)2/pyridine
and Pd(TFA)2/(−)-sparteine were among the catalyst systems shown to afford products
exclusively arising from cis-AP of the alkene.[12] In the enantioselective cyclization of γ-
alkenyl tosylamides, the identity of the anionic ligand was found to have a significant impact
on the reaction outcome. Replacing Pd(pyrox)(TFA)2 with Pd(pyrox)(OAc)2 gave
significantly diminished yield and enantioselectivity under otherwise identical conditions
(Eq. 1). The disparity of these results raised the possibility that the reactions with these
catalysts might involve different AP pathways.

(1)

Our initial attempt to probe the AP pathway for the enantioselective reaction involved the
use of substrate 3-D-4 under the previously optimized conditions. However, a mixture of all
four of the possible bicyclic pyrrolidines was obtained in 61% yield, favoring the trans-AP
products in approximately 3:1 ratio relative to cis-AP products (Scheme 2). This result was
unexpected for two reasons: first, the cis-AP pathway was anticipated to be dominant for
these conditions, and second, it seemed unlikely that a highly enantioselective reaction
would involve simultaneous operation of both cis- and trans-AP pathways. Analysis of the
product mixture by chiral HPLC revealed poor kinetic resolution; products 3-D-5 and 5 were
formed in 13% ee, and products 3-D-6 and 2-D-6 were formed in 56% ee. The relevance of
these results was not entirely clear, in part, because the cyclic alkene in 3-D-4 could
influence the stereochemical course of the AP step and may not be a good model for acyclic
alkenes that undergo highly enantioselective cyclization.[4p]

To circumvent the complications associated with the use of 3-D-4 as a mechanistic probe,
we prepared a novel acyclic deuterated substrate probe, 6-D-1, which is a chiral analog of
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substrate 1 (Scheme 3).[13] Analysis of the products formed by oxidative cyclization of 6-
D-1 is more involved than the analysis of products derived from substrate 3-D-4 because
both the absolute configuration of the product and the loss or retention of the deuterium
atom must be accounted for (the four products A–D differ only in the absolute configuration
of the stereogenic center and/or the presence or absence of the styrenyl deuterium atom at
C6, Scheme 3A). Reliable results with 6-D-1 are possible because trans-styrenyl products
are obtained with high selectivity over the cis isomers, and very little deuterium scrambling
(≤ 5 %) occurs.[14]

Three independent analytical measurements were used to establish the yield of products A–
D from the reaction of 6-D-1 under various conditions. First, the H/D ratio at C6 in the four
styrenyl products was obtained by 1H NMR spectroscopy. This quantity established the
relationship (a+d) = x(b+c), where a, b, c and d represent the percent composition of the
species A–D, and x = H/D at C6. Second, the enantiomeric ratio of the products was
obtained by chiral HPLC analysis. This quantity established the relationship (a+c) = y(b+d),
where y = [(R)-products/(S)-products]. Third, the two sets of enantiomeric products were
separated by chiral HPLC, and the H/D ratio of the enantiomerically pure products was
obtained by 1H NMR spectroscopy.[15] This quantity established the a:c and b:d ratios.
With these data in hand and accounting for full mass balance (a+b+c+d = 100), it was
possible to solve a system of four equations and four unknowns to determine the quantities
a, b, c, and d, from which the trans-AP:cis-AP selectivity was obtained from the ratio (a+b):
(c+d) (Scheme 3B).[16]

Substrate 6-D-1 was subjected to the optimized chiral catalyst conditions, and the reaction
proceeded in excellent yield and enantioselectivity (90% yield and 96% ee), consistent with
the reactivity of 1 reported previously (cf. Eq. 1).[4p] 1H NMR spectroscopic analysis of the
initial product mixture revealed a 93:7 preference for the protio products (Scheme 4).
Because we had previously determined that the (S)-configuration of pyrox ligand 3 favors
formation of the (R)-configuration of the pyrrolidine, the initial 1H NMR and chiral HPLC
analysis were enough to conclude that product A was the major species and the trans-AP
pathway was heavily favored over the cis pathway. The product ratio was established more
definitively with 1H NMR analysis of the purified major enantiomer species A and C. The
three measurements show that these reactions exhibit a very high selectivity for a trans-AP
pathway (trans:cis-AP = 91:9). The correlation between the high enantioselectivity and high
trans:cis-AP selectivity obtained from substrate 6-D-1 may be contrasted to the poor
enantioselectivity and poor trans:cis-AP selectivity observed with substrate 3-D-4 (cf.
Scheme 2).[17,18]

These results established the utility of substrate probe 6-D-1 and the protocol for product
analysis to correlate the enantioselectivity with the AP pathway of the oxidative cyclization
reaction. We then turned our attention to the Pd(pyrox)(OAc)2-catalyzed reaction, which
proceeds with much lower enantioselectivity under conditions identical to the Pd(pyrox)
(TFA)2-catalyzed reaction. The reactivity of 6-D-1 with Pd[(S)-3](OAc)2 as the catalyst was
tested and, consistent with our prior results, the reaction proceeded in only 48% yield and
20% ee. 1H NMR analysis of the initial product mixture revealed a 48:52 H:D ratio.
Following separation of the two enantiomeric products by chiral HPLC, analysis of the (R)-
configured products revealed a 14:86 H:D ratio, while the purified (S)-configured products
displayed a 96:4 H:D ratio (Scheme 5). Incorporation of the data from either of these two
measurements into the system of four equations led to similar product ratios for species A,
B, C and D, and the results show that the reaction strongly favored a cis-AP pathway
(trans:cis-AP = 10:90), with a 9:1:51:39 ratio for A:B:C:D. While the overall reaction
exhibited low enantioselectivity, consideration of the minor products A and B, which arose
from trans-AP of the alkene, revealed that the trans-AP pathway was quite enantioselective
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(e.r. = 9:1). Thus, with this substrate and pyrox-PdII catalyst system, the trans-AP pathway
proceeds with high enantioselectivity while the cis-AP pathway exhibits low
enantioselectivity. These observations represent the first direct assessment of the
enantioselectivity of two different NP pathways for otherwise identical reactions.

The results of the reactions with the chiral ligands are summarized in Table 1, entries 1 and
2. In an effort to separate the influence of the neutral-donor and anionic ligands on the
stereochemical course of the AP step, we investigated the oxidative cyclization of 6-D-1
with Pd(OAc)2 and Pd(TFA)2 in the absence of an ancillary neutral-donor ligand. The
results show that both PdII sources favor cis-AP of the alkene (Table 1, entries 3 and 4; see
also Schemes S7–S8). The selectivity is considerably higher with Pd(OAc)2; only trace
quantities of the trans-AP-derived product are detected by NMR/HPLC analysis. With
Pd(TFA)2, the trans:cis-AP selectivity is 1:6, suggesting that while the TFA ligand is
intrinsically more compatible with the trans-AP mechanism, it still favors cis-AP. Taken
together, the data in Table 1 demonstrate that the pyrox ligand plays an important role in
enforcing the trans-AP pathway with Pd(TFA)2 as the PdII source. Previous efforts to
understand the factors that influence trans vs. cis-AP selectivity have implicated the
carboxylate ligand as a Brønsted base to mediate Pd–amidate formation in the cis-AP
pathway.[5d,19] The present findings reveal that only with the combined presence of a
trifluoroacetate anionic ligand and the pyrox neutral-donor ligand is a trans-AP pathway,
initiated by substitution of TFA by the substrate alkene, favored over the cis-AP pathway
involving formation of a Pd–amidate.

In summary, the design, synthesis and implementation of a novel chiral substrate probe (6-
D-1) has enabled key insights into the relationship between the NP pathway and the
enantioselectivity of a catalytic transformation. The ability of an ancillary neutral-donor
ligand to alter the stereochemical course of NP only when a suitable anionic ligand is
present highlights the challenges associated with the discovery of efficient catalysts for the
asymmetric Wacker-type oxidation of alkenes. Ideally, the factors that affect the NP
stereochemistry should be considered in conjunction with the exploration of chiral ancillary
ligands in the future development of enantioselective reactions.
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Scheme 1.
Stereochemical pathways for alkene nucleopalladation.
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Scheme 2.
Cyclization of substrate 3-D-4 with chiral catalyst.
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Scheme 3.
(A) Mechanistic pathways for the reaction of 6-D-1 and (B) mathematical relationships used
to determine the yields of products A–D.
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Scheme 4.
Experimental data and trans:cis-AP selectivity obtained from oxidative cyclization of
substrate 6-D-1 with the optimized chiral catalyst conditions.
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Scheme 5.
Experimental data and trans:cis-AP selectivity obtained from oxidative cyclization of
substrate 6-D-1 with a Pd(pyrox)(OAc)2 catalyst system (refer to Scheme 4 for depiction of
the reaction).
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