Ingew Chem Int Ed Engl. Author manuscript; available in PMC 2012 October 24 Published in final edited form as: Angew Chem Int Ed Engl. 2011 October 24; 50(44): 10327-10329. doi:10.1002/anie.201104305. ## Capture and Visualization of Hydrogen Sulfide via A Fluorescent Probe** Chunrong Liu, Jia Pan, Sheng Li, Yu Zhao, Lisa Y. Wu, Clifford E. Berkman, A. Richard Whorton, and Ming $Xian^*$ Department of Chemistry Washington State University Pullman, WA 99164, USA Department of Pharmacology & Cancer Biology Duke University Medical Center Durham, NC 27710, USA ## **Keywords** hydrogen sulfide; fluorescence; aromatic compd.; acylation Hydrogen sulfide (H₂S) has been known as a toxic pollutant for years. However, this molecule has been recently recognized as the third gaseous transmitter (the other two are nitric oxide and carbon monoxide). [1-3] The production of H₂S in mammalian systems has been attributed to at least three endogenous enzymes: [4-7] cystathionine β -synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfur-transferase (MPST). These enzymes use cysteine or cysteine derivatives as substrates and convert them into H₂S within different organs and tissues. In addition to these enzymatic pathways, there are also a range of comparably simple chemical events which may liberate H₂S from the intracellular pool of `labile' sulfur, for instance from the `sulfane sulfur' pool (compounds containing sulfur atoms bound only to other sulfur atoms).^[8] The production of endogenous H₂S and exogenous administration of H₂S have been demonstrated to exert protective effects in many pathologies. For example, H₂S has been shown to relax vascular smooth muscle, induce vasodilation of isolated blood vessels, and reduce blood pressure. H₂S can also inhibit leukocyte adherence in mesenteric microcirculation during vascular inflammation in rats, suggesting H₂S is a potent anti-inflammatory molecule. Additionally, it has become evident that H₂S is a potent antioxidant and, under chronic conditions, can up-regulate antioxidant defense. Despite the rising interest in H₂S research, fundamental questions regarding regulation of its production, its mechanism of action, and its destruction remain. A critical debate in the field involves the biologically relevant levels of H₂S as current reports varying over 10⁵-fold concentration range. [9–12] Obviously, accurate and reliable measurement of H₂S concentrations in biological samples is needed and can provide useful information to understand the function of H₂S. Currently the major methods for H₂S detection are colorimetric and electrochemical assays, gas chromatography, and sulfide precipitation.^[12–16] These methods often require complicate sample processing. Given the high reactivity of H₂S, these methods can yield variable results. [9-12] Fluorescence based assays could be useful in this field due to the high sensitivity and convenience. However, fluorescence method for H₂S detection, especially for real-time detection in biological ^{**}We thank Prof. Jeanne McHale for her help with fluorescence measurement. This work is supported in part by NIH (R01GM088226 to M.X.). ^{*}Fax: (+01) 509-335-8867 mxian@wsu.edu. samples, is still very limited so far.^[17–19] Here, we report a reaction-based fluorescent turn-on strategy for the detection of H₂S. We envisioned that H₂S is a reactive nucleophile in biological systems which can participate in nucleophilic substitution. In order to selectively detect H₂S, the key is to differentiate H₂S from other biological nucleophiles, especially thiols such as cysteine and glutathione. Theoretically, H₂S can be considered as a non-substituted thiol. It can undergo nucleophilic reaction two times, while other thiols like cysteine are mono-substituted thiols which can only undergo nucleophilic reaction one time. Based on this property, we expected that compounds containing bis-electrophilic enters could be useful reagents for H₂S detection. As shown in Scheme 1, H₂S should react with the most electrophilic component of a fluorescent probe like A to form a free SH containing intermediate A1. If another electrophile is presented at suitable position, like the ester group shown in A1, the SH group should undergo a spontaneous cyclization to release the fluorophore and form product **B**. This strategy not only can capture H₂S as a stable and analyzable product **B**, but also will allow us to visualize H₂S-related signal via convenient and sensitive fluorescence measurement. We envisioned that substrate A could also react with biological thiols like cysteine. However, the product A2 should not undergo the cyclization to release the fluorophore. Therefore, the fluorescent signal should be selective only for H₂S. With this idea in mind, we designed a reactive disulfide-containing probe (compound 1). This compound was prepared from thiosalicylic acid 2 in two steps using the procedure shown in Scheme 2. The fluorescence property of this probe was tested in aqueous PBS buffer solution (pH 7.4). Compound 1 (fluorescence q uantum yield: Φ = 0.003) adopted a closed lactone conformation and exhibited no absorption features in the visible region (supporting information). We found that probe 1 reacted rapidly with H₂S to generate fluorophore 6 (Φ = 0.392) and benzodithiolone 7 in good yields (Scheme 3). In these experiments, NaHS was used as the equivalent of H₂S. It is known that in aqueous state under the physiological pH of 7.4, the major form of H₂S exists as HS⁻; the ratio of Hs⁻/H₂S is ~3:1. [9] As shown in Figure 1, the reaction of $\bf 1$ with H_2S yielded significant fluorescence signal. Control experiments using cysteine or glutathione did not lead to any fluorescence increase. As expected, when H_2S and thiols like GSH co-existed, we still observed strong fluorescence. These results demonstrated that $\bf 1$ was a selective fluorescent probe for H_2S . The turn-on responses of 1 to H_2S and other biological thiols were also measured by a spectrofluorometer. As indicated in Figure 2, the fluorescence intensity of 1 increased dramatically (50~60 fold) if H_2S was presented in the solution (even when H_2S and other thiols were presented together). In addition, the maximum intensity was reached in 1 hour, which suggested the reaction was fast. To demonstrate the efficiency of probe 1 in the measurement of H_2S concentration, 1 was treated with H_2S under a series of different concentrations in order to obtain a standard curve of emission intensity versus H_2S concentration. The concentration of compound 1 was maintained at 100 μM , while the concentrations of NaHS varied from 0 to 10 μM . As shown in figure 3, the fluorescent signal was indeed linearly related to the concentration of NaHS in such concentration range. These results demonstrated that probe 1 could detect H_2S both qualitatively and quantitatively. Next, we used plasma to investigate the potential of probe 1 for use in the detection of H_2S in complex systems. Bovine plasma containing NaHS at different concentrations (0, 50, 100, and 500 μ M) were prepared first. These concentrations were within the range of those which have been used to elicit physiological responses of H_2S (10–600 μ M). [19–22] These plasma solutions were then diluted and incubated with probe 1. After 1 hour, the mixture was diluted again with PBS buffer and fluorescence signals were measured. As expected, strong fluorescence was observed in plasma solutions in the presence of NaHS (Figure 4). We noticed that the fluorescence intensity response to certain H_2S concentration obtained in plasma was lower than the signal obtained in pure buffer solutions. This is likely due to the fact that H_2S can be quickly scavenged by proteins present in plasma. [18] Nevertheless we conclude that probe 1 can be used for the selective detection of H_2S in complex biological systems like plasma. We also used cultured COS7 cells to investigate the potential of 1 for use in the detection of H_2S in cells. As shown in Figure 5, COS7 cells were incubated with compound 1 (100 μ M) for 30 min and we did not observe any fluorescent cells. Strong fluorescence in the cells was induced after treatment with sodium sulfide (250 μ M). Thus we conclude that probe 1 can be used for the detection of H_2S in cultured cells. In summary, we reported in this study a H_2S -mediated benzodithiolone formation under mild conditions. This reaction proved to be selective for H_2S and it did not proceed with other biological thiols such as cysteine and glutathione. Based on this reaction, a fluorescent probe, i.e. compound 1, was developed for the detection of H_2S . The efficiency of this probe was demonstrated in aqueous buffers and plasma, as well as in cells. Using this strategy, the concentration of H_2S can not only be measured by the fluorescence signal, but also be assessed from the analysis of the benzodithiolone product. We are now actively pursuing more specific H_2S fluorescent probes based on this new benzodithiolone formation and related reactions. ## **Supplementary Material** Refer to Web version on PubMed Central for supplementary material. ## References - [1]. Li L, Rose P, Moore PK. Annu. Rev. Pharmacol. Toxicol. 2011; 51:169–187. [PubMed: 21210746] - [2]. Szabo C. Nat. Rev. Drug Discov. 2007; 6:917–935. [PubMed: 17948022] - [3]. Lowicka E, Beltowski J. Pharmacol. Rep. 2007; 59:4–24. [PubMed: 17377202] - [4]. Kimura H. Amino Acids. 2011; 41:113-121. [PubMed: 20191298] - [5]. Stipanuk MH, Ueki I. J. Inherit. Metab. Dis. 2011; 34:17–32. [PubMed: 20162368] - [6]. Whiteman M, Moore PK. J. Cell. Mol. Med. 2009; 13:488-507. [PubMed: 19374684] - [7]. Leffler CW, Parfenova H, Jaggar JH, Wang R, R. J. Appl. Physiol. 2006; 100:1065–1076. [PubMed: 16467393] - [8]. Jacob C, Anwar A, Burkholz T. Planta Med. 2008; 74:1580–1592. [PubMed: 18937169] - [9]. Kabil O, Banerjee R. J. Biol. Chem. 2010; 285:21903-21907. [PubMed: 20448039] - [10]. Olson KR. Biochim. Biophys. Acta. 2009; 1787:856–863. [PubMed: 19361483] - [11]. Furne J, Saeed A, Levitt MD. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008; 295:R1479–R1485. [PubMed: 18799635] - [12]. a) Han Y, Qin J, Chang X, Yang Z, Du Z. Cell. Mol. Neurobiol. 2006; 26:101–107. [PubMed: 16633905] b) Ubuka T. Analyt. Technol. Biomed. Life Sci. 2002; 781:227–249.c) Warenycia MW, Goodwin LR, Benishin CG, Reiffenstein RJ, Francom DM, Taylor JD, Dieken FP. Biochem. Pharmacol. 1989; 38:973–981. [PubMed: 2930598] - [13]. Tangerman A. J. Chromatogr. B. 2009; 877:3366–3377. - [14]. Ubuka T. J. Chromatogr. B. 2002; 781:227-249. [15]. Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr. Anal. Biochem. 2005; 341:40–51. [PubMed: 15866526] - [16]. Nagata T, Kage S, Kimura K, Kudo K, Noda M. J. Forensic. Sci. 1990; 35:706–712. [PubMed: 2348184] - [17]. a) Dasgupta PK, Zhang G, Li J, Boring CB, Jambunathan S, Al-Horr R. Anal. Chem. 1999; 71:1400–1407. [PubMed: 21662963] b) Toda K, Dasgupta PK, Li J, Tarver GA, Zarus GM. Anal. Chem. 2001; 73:5716–5724. [PubMed: 11774912] c) Trettnak W, Wolfbeis OS. Fresenius' J. Anal. Chem. 1987; 326:547–550.d) Wolfbeis OS, Trettnak W. Spectrochimica Acta A. 1987; 43A:405–408. - [18]. Shen X, Pattillo CB, Pardue S, Bir SC, Wang R, Kevil CG. Free Radic. Biol. Med. 2011; 50:1021–1031. [PubMed: 21276849] - [19]. A fluorescent probe of H₂S was recently reported: Lippert AR, New EJ, Chang CJ. J. Am. Chem. Soc. 2011; 133:10078–10080. [PubMed: 21671682] - [20]. Yang G, Wu L, Jiang B, Yang B, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. Science. 2008; 322:587–590. [PubMed: 18948540] - [21]. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C. Proc. Natl. Acad. Sci. USA. 2009; 106:21972–21977. [PubMed: 19955410] - [22]. Abe K, Kimura H. J. Neurosci. 1996; 16:1066–1071. [PubMed: 8558235] **Scheme 1.** Proposed fluorescent turn-on strategy Scheme 2. Synthesis of fluorescent probe 1 **Scheme 3.** Fluorescent probes and reaction with H₂S Figure 1 . Fluorescent images of probe 1: a) 1 only (100 $\mu M)$, b) NaHS only (50 $\mu M)$, c) 1 (100 $\mu M)$ + NaHS (50 $\mu M)$; d) 1 (100 $\mu M)$ + cysteine (50 $\mu M)$; e) 1 (100 $\mu M)$ + glutathione (50 $\mu M)$, f) 1 (100 $\mu M)$ + glutathione (50 $\mu M)$) + NaHS (50 $\mu M)$, in a mixture of PBS buffer (pH 7.4 mM) and CH₃CN (9:1). Figure 2. Fluorescence response of probe 1 toward H_2S and other thiols. 1) 1 only (100 $\mu M)$, 2) 1 (100 $\mu M)$ + NaHS (50 $\mu M)$; 3) 1 (100 $\mu M)$ + cysteine (50 $\mu M)$; 4) 1 (100 $\mu M)$ + glutathione (50 $\mu M)$, 5) 1 (100 $\mu M)$ + glutathione (50 $\mu M)$ + NaHS (50 $\mu M)$; measured in a mixture of PBS buffer (pH 7.4) and CH₃CN (9:1), λ_{ex} 465 nm, 25 °C. Figure 3. Linear correlation of fluorescent intensity toward H_2S concentration. NaHS concentration: 0, 1, 2.5, 5, 7.5, 10 μ M. Figure 4. Fluorescence response of probe 1 to H_2S in plasma. 1) probe 1 only, 2) probe 1 + NaHS (50 μM^a , 2 μM^b), 3) probe 1 + NaHS (100 μM^a , 4 μM^b), 4) probe 1 + NaHS (500 μM^a , 21 μM^b). aoriginal concentration in plasma, bdiluted concentration when fluorescence was recorded. Figure 5. Fluorescence images of H_2S detection in COS7 cells using probe 1. COS7 cells on glass coverslips were incubated with 1 (100 μ M) for 30 min, and then subjected to different treatments. Top row was control (no sodium sulfide was added); bottom row was treated with sodium sulfide (250 μ M).