
Annalen der Physik, 18 November 2010

The Quantum Boltzmann Equation in Semiconductor Physics

D.W. Snoke
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, 15260, USA

Received XXXX, revised XXXX, accepted XXXX
Published online XXXX

Key words Nonequilibrium kinetics,excitons,plasma,Bose-Einstein condensation

The quantum Boltzmann equation, or Fokker-Planck equation, has been used to successfully explain a
number of experiments in semiconductor optics in the past two decades. This paper reviews some of the
developments of this work, including models of excitons in bulk materials, electron-hole plasmas, and
polariton gases.
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1 Introduction

Already when Boltzmann was working on the foundations of statistical mechanics in the late 1800’s, it was
widely recognized that the equilibrium theorems of statistical mechanics relied on an “H-theorem,” that is,
a theorem that shows that systems out of equilibrium evolve toward equilibrium. Boltzmann’s approach to
the H-theorem relied on the statistics of classical particles. Since the development of quantum mechanics,
in particular the second-quantized field theory formalized by Dirac in the 1930’s, it has been understood
that an H-theorem can be written down using the time-dependent Schrödinger equation for many-particle
systems. The equation for the time evolution of the distribution function of a quantum many-body system
is variously called a quantum Boltzmann equation (after the collision term in the classical Boltzmann
equation, discussed in Ref. [1], Section 5.9), a master equation (when the states are discrete), or a Fokker-
Planck equation.

While the formalism of time-dependent quantum mechanics of many-particle systems was well de-
veloped in the mid-twentieth century, two developments occurred in the 1980’s that allowed much more
quantitative application to experiments on nonequilibrium systems. The first was the arrival of cheap,
fast computers that allowed numerical solution of the quantum Boltzmann equation using iterative meth-
ods. The second was the development of ultrafast optics methods which allowed direct observation of
the distribution function of carriers in semiconductors (and in some metals) out of equilibrium. A related
development, in the 1990’s, was the accomplishment of trapped cold atom gases, which also allowed direct
measurement of the distribution function of a gas. The results of quantum Boltzmann equations could
thus be directly compared to experimental measurements of particle distribution functions instead of only
average properties.

In the limit of low particle density, the quantum Boltzmann equation has the form of simply adding
all the rates determined by Fermi’s golden rule for all possible scattering processes. For evolution due to
single-particle transitions, this is given by

∂ni
∂t

=
∑
j

2π

h̄
|〈i|Hint|j〉|2 δ(Ej − Ei)nj −

∑
j

2π

h̄
|〈j|Hint|i〉|2 δ(Ei − Ej)ni, (1)

where ni and nj are the instantaneous occupation probabilities of states i and j. This can be solved
numerically by an iterative method in which an instantaneous distribution function ni(t) is used to calculate
all possible rates ∂ni/∂t, and then the distribution function is updated for all i in the next time step of length
dt according to ni(d+ dt) = ni(t) + (∂ni/∂t)dt.
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2 D.W. Snoke: The Quantum Boltzmann Equation in Semiconductor Physics

While this approach makes intuitive sense, justifying the quantum Boltzmann equation quantum me-
chanically requires a fair amount of effort. The problem is that properly speaking, the time evolution should
be applied not to each state individually, but to the full many-body state of all the particles. Equation (1)
is incorrect when the particle density is such that the quantum Bose or Fermi statistics of the particles
become important, which corresponds approximately to the density at which the average deBroglie wave-
length of the particles is comparable to the average distance between them. It also does not apply when
there is phase coherence between the particles, as is the case when there is a Bose condensate, although
as discussed below, there are methods to modify the quantum Boltzmann approach to model condensates.
Even in the low-density limit, this equation must be modified if there are two-body scattering processes or
higher-order scattering processes.

In general, it is not obvious that using Fermi’s golden rule, which is derived for a single particle, will
work in a many-particle system, where there is the possibility for multiple phase interferences. It turns out
that it usually does, because the phases of the various particles all average out in most cases. Section 4.8
of Ref. [1] gives the general derivation of the quantum Boltzmann equation from first principles. One gen-
erally useful example is the case of a two-body scattering process with identical particles, with interaction
Hamiltonian

Hint =
1

2

∑
k1,k2,k3

U(k1, k2, k3, k4)a†k4a
†
k3
ak2ak1 , (2)

where U(k1, k2, k3, k4) is the interaction potential for two incoming momenta k1 and k2 and two outgoing
momenta, k3 and k4, with the value of ~k4 determined by momentum conservation, ~k1 +~k2 = ~k3 +~k4. The
a’s and a†’s are destruction and creation operators for the particles in states ~k1, ~k2, ~k3, and ~k4. In this case
the quantum Boltzmann time evolution equation is found to be

∂nk
∂t

=
2π

h̄

∑
k1,k2

|UD ± UE |2δ(Ek1 + Ek2 − Ek′ − Ek)nk1nk2(1± nk′)(1± nk)

−2π

h̄

∑
k1,k2

|UD ± UE |2δ(Ek′ + Ek − Ek1 − Ek2)nknk′(1± nk1)(1± nk2), (3)

where ~k′ is the determined by momentum conservation, ~k1 + ~k2 = ~k + ~k′. The rate of each transition is
multiplied by the factor (1± nf ) for the number of particles in each final state f ; since this equation is for
a two-body scattering process, there are two such final states factors. The plus sign is used in the above for
bosons, and the minus sign for fermions. Thus, fermion scattering is suppressed by high occupation, while
boson scattering is enhanced by it. In Equation (3), UD stands for the direct interaction U(k1, k2, k

′, k),
while UE stands for the exchange process, that is, with the final two states exchanged. Fermion scattering
is therefore forbidden if U(k1, k2, k

′, k) is symmetric under exchange, for example if it is constant, as is
the case for s-wave, pointlike scattering.

Similarly, the time evolution for particles emitting or absorbing phonons (which are not number con-
served) via the interaction Hamiltonian (see Section 5.1 of Ref. [1]),

Hint = i
∑
q,k

U(q)(aqa
†
k+qak − a

†
qa
†
k+qak), (4)
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Fig. 1 Evolution of the distribution function of a homoge-
neous gas of particles starting far from equilibrum. The labels
of the curves are the average number of scattering events per
particle, for hard-sphere, two-body scattering. From Ref. [3].

is found to be

∂nk
∂t

=
2π

h̄

∑
q

|U(q)|2δ(Ek+q − Ek − h̄ωq)nk+q(1± nk)(1 + nphq )

+
2π

h̄

∑
q

|U(q)|2δ(Ek+q + h̄ωq − Ek)nk+q(1 + nk)nphq

−2π

h̄

∑
q

|U(q)|2δ(Ek − Ek−q − h̄ωq)nk(1± nk−q)(1 + nphq )

−2π

h̄

∑
q

|U(q)|2δ(Ek + h̄ωq − Ek−q)nk(1 + nk−q)n
ph
q , (5)

where nphq is the phonon particle distribution. The first and third terms correspond to phonon emission,
which is stimulated by a (1 +nphf ) factor, since the phonons are bosons, while the second and fourth terms
correspond to phonon absorption.

Although Equations (3) and (5) require some detailed calculations to justify, their form is actually quite
simple: they correspond to the results of adding up Fermi’s golden rule for each possible transition, and
multiplying by the final states factor (1 ± nf ) for the occupation of each final particle state affected by a
transition.

Just as classical mechanics is reversible at the microscopic level, so is quantum mechanics. Iterative
solution of Equations (3) and (5) leads to irreversible behavior, however. Figure 1 shows the solution
of Eq. (3) for the distribution function of a homogeneous gas of interacting particles starting far from
equilibrium, at low density [2,3]. (At low density, the evolution is the same for bosons and fermions). The
calculated distribution evolves irreversibly toward the equilibrium Maxwell-Boltzmann distribution. In
these calculations, the distribution function in energy, n(E)D(E)dE =

∑
i

niδ(E −Ei)dE, was evolved

directly by the iteration method described above; there was no tracking of individual particles and no
random number generation. It turns out that in the case of a homogeneous, isotropic gas with UE either
negligible or constant, the integrals in (3) and (5) can be greatly simplified by integrating over all the angles,
leaving only integrals over the energies of the particles. This greatly simplifies the numerical calculations,
making calculations like that shown in Fig. 1 possible in just a few hours on a modern personal computer.
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4 D.W. Snoke: The Quantum Boltzmann Equation in Semiconductor Physics

The irreversibility in these calculations comes from the loss of phase information. At each time step in
the iteration, the state of the system is represented by a set {. . . , ni−1, ni, ni+1, . . .}, where the ni values
are continuous variables that give the occupation probability of each state. This is not the full amount
of quantum mechanical information of the system, however. In principle, the full state of the system
corresponds to a superposition of all possible states, written as a sum of Fock many-body states, each
multiplied by some phase factor α(t) which is a continuous, complex number:

|ψt〉 = α(t)| . . . , Ni−1, Ni, Ni+1, . . .〉+ α′(t)| . . . , N ′i−1, N ′i , N ′i+1, . . .〉
+α′′(t)| . . . , N ′′i−1, N ′′i , N ′′i+1, . . .〉+ . . . , (6)

where the Ni values are the exact integer values for each state. The values of ni correspond to the expec-
tation values of this full quantum mechanical many-body state:

ni = 〈ψt|a†iai|ψt〉. (7)

The quantum Boltzmann equation approach amounts to keeping only the information of these expectation
values and not all the individual phase factors. There is thus information loss at each step, which gives the
irreversibility. This is physically well justified in most cases, because the phase factors generally all cancel
out for most expectation values except the average occupation numbers. Exceptions are when the system
is very small, and when there is a macroscopic phase, as in the case of a Bose condensate.

The iterative solution of the quantum Boltzmann equation therefore acts as the H-theorem for any given
system, showing that it will evolve toward equilibrium and stay there. The irreversibility in this case
comes from dephasing of many-body wave function. This is a generic result in quantum mechanics, that
dissipation comes from coupling to many degrees of freedom, which spread out the energy widely. In
principle, one could pick an exact set of phase factors for a full wave function of the form (6) which would
evolve the system away from an equilibrium probability distribution for a period of time, but for a system
which is coupled to an external environment with multiple interactions from other sources, it would be
effectively impossible to arrange the phases this way in a system with many particles.

2 Results for Excitons

As mentioned above, both the power of modern numerical methods as well as the techniques of modern
optics allow for a direct comparison of the quantum Boltzmann equation theory to measurements of particle
distribution functions. Figure 2 shows a result by Snoke, Braun, and Cardona [4], done in the laboratory of
Wolfgang Ruehle in Stuttgart in the early 1990’s, which compares the evolution of the energy distribution
of excitons in the semiconductor Cu2O to the quantum Boltzmann theory, using Equation (5) with exciton-
phonon deformation potentials consistent with static stress experiments in the literature [5, 6]. As seen
in these data, at early time the exciton distribution evolves in a highly nonequilibrium path, emitting a
cascade of phonons, until at late times they reach a Maxwell-Boltzmann distribution. At all later times the
distribution remains a Maxwell-Boltzmann, as the temperature cools toward the lattice temperature, which
is around 2 K.

This experiment was possibly the first direct comparison of time-resolved data for a full particle dis-
tribution function in any system to a solution of the quantum Boltzmann equation, and remains one of
the clearest examples showing that the H-theorem is well justified not only theoretically but also exper-
imentally, as the quantum Boltzmann equation accurately predicts the evolution of the system toward
equilibrium.

This experiment also was significant in that it addressed a controversy about the difference between
multi-phonon resonant Raman scattering and hot luminescence. As seen in Fig. 2, at early times there
are a series of peaks corresponding to emission of various phonons; these peaks last much longer than the
laser pulse, although much less than the total exciton lifetime. In a time-integrated spectrum, these peaks
will appear on top of a Maxwell-Boltzmann distribution. Early experiments [7] interpreted these peaks as
multi-phonon resonant Raman lines, but this experiment shows that the most natural interpretation of these
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Fig. 2 Solid lines: experimentally measured evolution of the distribution function of a gas of excitons in Cu2O start-
ing far from equilibrum, generated by an ultrafast (2 ps) laser pulse at t = 0, for two different laser photon energies.
Dashed lines: theoretical energy distribution at the same times as deduced by iterating the quantum Boltzmann equa-
tion. The only fit parameters were the exciton-phonon deformation potentials, which were found to be in agreement
with values deduced from stress measurements. From Ref. [4].

lines is as hot luminescence caused by the dominance of certain emission energies due to momentum and
energy conservation in the exciton-phonon interaction. The interpretation of these peaks as multi-phonon
resonant Raman lines is still widely quoted in the literature [8]. In principle, all luminescence processes
following optical excitation can be seen as a type of Raman process, but when there is a time delay for the
emission, following a real absorption process, the picture of hot luminescence is more natural.

One reason for the debate is the importance of the phonon-assisted exciton absorption and emission
in Cu2O. Figure 3 illustrates the sequence of processes involved. First, a photon is absorbed along with
emission of an optical phonon. The exciton created by this process can then emit an acoustic phonon.
Energy and momentum conservation of this acoustic phonon emission process lead to a peak in the exciton
occupation at an energy below the initial exciton energy that depends on the mass of the exciton and the
acoustic phonon velocity. The excitons at this energy can then recombine into photons that are emitted
along with another optical phonon. Thus, in the final emission spectrum there will be a peak that is two
optical phonon energies below the initial laser energy, due to the optical phonons emitted in the phonon-
assisted absorption and emission processes. This will follow the laser if the laser wavelength is tuned. In
addition, there will be another peak which is two optical phonons and one acoustic phonon energy lower,
and, as seen in Fig. 2, there can even be more peaks at lower energy due to additional acoustic phonon
emissions. All of these peaks are due to luminescence from the excitons following their creation by the
laser. The Boltzmann equation fit shows that all the peaks can be accounted for by the emission and
absorption of phonons by hot excitons without need for invoking multi-phonon resonant Raman theory.

In principle, the excitons will scatter with each other and not only with phonons, if the exciton density
is high enough. This exciton-exciton scattering would be seen in a faster equilibration of the excitons
at higher density, and would therefore constitute a measurement of the exciton-exciton interaction cross
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6 D.W. Snoke: The Quantum Boltzmann Equation in Semiconductor Physics

Fig. 3 Photon absorption and re-emission process in the
semiconductor Cu2O. The exciton energy is shown as the
solid black parabola. Optical phonon emission is indicated
by dashed lines.

section. In the experiments shown in Fig. 2, however, it was not possible to have exciton density high
enough to see this, due to the long absorption length of the laser near the exciton resonance.

3 Results for Electron-Hole Plasma

The same method can be applied to free electrons and holes in semiconductors. Figure 4 shows a measure-
ment of the time-resolved energy distribution of free electrons in the semiconductor GaAs, also recorded in
the laboratory of Wolfgang Ruehle in Stuttgart [3]. The energy distribution of the electron gas is seen in the
spectrum of the electron-acceptor luminescence. As seen in this figure, at low density the electron energy
distribution evolves from a nonequilibrium to an equilibrium distribution in about 50 ps. The data could be
reasonably well fit with quantum Boltzmann equation model [9] which included carrier-carrier scattering,
carrier-phonon scattering, and carrier-impurity scattering (the dopant atoms in the p-doped GaAs used for
these experiments play a major role in the thermalization).

The modeling of the electron-electron (and electron-hole and hole-hole) interaction is much more com-
plicated than the modeling of exciton-exciton interactions, which can be treated as short-range, hard-sphere
interactions. The interaction potential for electrons is (see Ref. [1], Section 8.10)

U(k1, k2, k3, k4) =
e2/ε

|k1 − k3|2 + κ2
, (8)

where again, momentum conservation is assumed, which gives ∆~k = ~k1 − ~k3 = ~k4 − ~k2. The parameter
κ is the screening parameter. Without this parameter, the Coulomb interaction diverges at ∆k = 0. In the
long wavelength, low energy approximation, the screening is given by

κ2 = − 1

V

e2

ε

∫
∂n(E)

∂E
D(E)dE (9)

in a three-dimensional system. This formula gives the familiar Debye and Thomas-Fermi screening results
for equilibrium distributions. For nonequilibrium distributions, the screening can be calculated for the
distribution n(E) at each point in time [10] as the distribution is evolved by iteration. Similar formulas can
be deduced for a two-dimensional system [10].

The general theory of nonequilibrium electron-hole scattering, and plasma scattering in general, is still
an open field of theory. The above formulas should work well on long time scales, but on very short
time scales, they will break down, under the same conditions when Fermi’s golden rule will break down,
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Fig. 4 Time evolution of the free electron energy distribution in bulk GaAs following their generation by a short (2
ps) laser pulse, for two different densities. Solid lines are the data, deduced from the electron-acceptor luminescence,
and dashed lines are the quantum Boltzmann equation theory, including carrier-carrier, carrier-phonon, and carrier-
impurity scattering. The dotted line in the upper left panel is the predicted initial population due to the laser excitation.
From Ref. [9].

namely, when the rate of change of the energy distribution is so fast that the equivalent energy ∆E ∼
h̄/∆t is larger than the range over which the energy distribution and scattering matrix element can be
considered constant (see Ref. [1], Section 4.7.) The rapid variation of the Coulomb scattering interaction
makes this energy range very narrow. In this limit, a method must be developed to generalize the quantum
Boltzmann equation to take the phase of the electrons into account, known as a quantum memory kernel
[11–15]. Various methods of solving the quantum Boltzmann equation for electron-electron and electron-
hole scattering were presented in the 1990’s [9, 10, 16–18], but none of them could provide fits to time-
resolved data as accurate as that shown in Fig. 2, although the fit shown in Fig. 4, from Ref. [9], is not
bad. A model for plasma scattering should properly include electron-electron, electron-hole, and hole-
hole scattering, with exchange, as well as interaction of electrons and holes with phonons and elastic
scattering with impurities. These latter processes are easy to model, but the Coulomb scattering of the
carriers with exchange is much harder to calculate numerically. The exchange process, in particular, which
can be dominant, depends on ~k1 − ~k4, which cannot be written simply in terms of ∆~k = ~k1 − ~k3 and
kcm = 1

2 (~k1 + ~k2). The methods discussed above which make the calculation quite simple for the case
of an isotropic, homogeneous gas therefore cannot be used. This does not make the quantum Boltzmann
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8 D.W. Snoke: The Quantum Boltzmann Equation in Semiconductor Physics

Fig. 5 Time evolution of the free electron energy distribution
in for the parameters of bulk GaAs, computed by solution of
the quantum Boltzmann equation, for constant electron screen-
ing. The dots in the last curve are a fit to a Maxwell-Boltzmann
distribution. From Ref. [3].

equation inapplicable, it just means that a Coulomb scattering problem requires much more computational
time.

The quantum Boltzmann equation allows us to make some interesting conclusions about the power laws
for various types of processes in various density regimes. Because the Coulomb scattering interaction (8)
is so sharply peaked around ∆k = 0, the rates deduced in different experiments for effects that depend on
carrier-carrier scattering in plasmas can vary enormously. Ref. [10] calculated the intrinsic power laws for
three different types of experiments. One type can be called dephasing measurements, which depend on the
total carrier-carrier scattering rate. This type includes most four-wave mixing experiments. Another can be
called momentum relaxation experiments. This type includes most transport experiments. The last can be
called energy relaxation measurements. This includes experiments like that shown in Fig. 5 which measure
the time scale for thermalization to an equilibrium energy distribution. Using a self-consistent model for
dynamic screening, but neglecting exchange of identical particles, Ref. [10] deduced that the intrinsic
dephasing rate will be independent of density, that the momentum relaxation will be proportional to density,
and the energy relaxation rate will be proportional to the square root of density, in three dimensions. The
reason why the rate for total electron-electron scattering is constant as density falls is that the screening
becomes less efficient at low densities, so that the scattering cross section for electron-electron scattering
increases in just such a way as to keep the total scattering constant as the density decreases. However,
the scattering will more and more favor forward scattering, that is, scattering with little or no change in
an electron’s momentum and energy, as the density decreases. Thus the momentum and energy relaxation
rates will fall.

The surprising prediction of constant dephasing rate independent of density [10] was approximately
confirmed by four-wave mixing experiments done in the 1990’s which showed very weak dependence of
the dephasing rate on density. One study [19] found that the dephasing rate increased by less than 40% over
a factor of ten increase of density from 1016 − 1017 cm−3, corresponding to a power law of 1/τ ∝ n0.15;
another study [20] found about 50% increase over the same range. The absolute values of the dephasing in
these studies were also consistent with the quantum Boltzmann theory. For the limit of low density (i.e.,
when Fermi statistical state filling is negligible), the dephasing rate deduced from the quantum Boltzmann
equation, neglecting exchange, is (for the derivation see [1], Section 5.5)

1

τ
=

√
2e2(mkBT )1/2

π3/2εh̄2
, (10)

which depends only on the mass and temperature, i.e. the average thermal velocity of the particles. This
formula gives τ ' 25 fs for electrons in GaAs at room temperature and τ ' 200 fs at for electrons
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in GaAs at 4 Kelvin. Ref. [19] found an average low-density dephasing time of around 15 fs at room
temperature, while Ref. [20] found an average dephasing time of around 25 fs. Both are much shorter than
the electron-phonon scattering time of around 150 fs [21, 22].

One of the most controversial results of the work on plasma scattering in the 1990’s was the claim of the
group of Shank [23, 24] that in the high density regime, the electron dephasing rate scales as n1/3 in three
dimensions and as n1/2 in two dimensions. These power laws could be justified by a quasi-phenomelogical
estimate of the dependence of the screening length on density [10]. Later experimental work [20], however,
indicated that the power laws reported by Shank and coworkers might not apply across a very wide range
of density.

Several experimental factors made these experiments difficult to interpret. One issue is that ultrafast
laser pulses have broad spectral width, and part of the laser spectrum can overlap with the excitonic range of
the spectrum, giving interference effects. This makes experiments at very low temperature, where exciton
effects are important, hard to interpret. Another issue is that the higher power laser pulses used to create
higher carrier density can also lead to higher temperature. Equation (10) predicts that the dephasing rate
should increase as T 1/2. If the temperature increases weakly with increasing density, this could explain the
non-constant dephasing rate seen in the experiments. The difference in the absolute values of the dephasing
times seen in Refs. [19] and [20] can also be understood as due to different effective temperatures of the
electrons in different excitation conditions, which could include different pump laser photon energies and
different rates of heat flow out of the samples.

In general, there are still many open questions in the topic of the intrinsic power laws of carrier-carrier
scattering, and a need for clear experiments and theoretical models that take into account dynamical screen-
ing and exchange. Kira and Koch [25] have led the way in numerical models of carrier scattering, but their
numerical methods are too complicated for many others to reproduce, and there is a need for simpler an-
alytical approaches that work well in the middle ground between the manifestly incorrect relaxation time
approximation and a full quantum wave function model. The quantum Bolztmann results clearly show
that we cannot talk meaningfully of “a” rate for carrier-carrier scattering; this is in sharp contrast to the
relaxation-time approximation which is often used in the theory of carrier scattering, which writes a single
characteristic relaxation time for each scattering process.

4 Results for Polaritons

In the past ten years, microcavity exciton-polaritons have become a major field of study in optics, because
they can be viewed as a Bose-Einstein condensate (BEC) of light-mass, weakly-interacting particles [26],
with many fascinating effects such as vortices [27, 28]. Exciton-polaritons are superpositions of photons
and excitons in a semiconductor; the modern experiments use a microcavity, fabricated using two Bragg
mirrors made of alternating dielectrics, to produce cavity photon states which are resonant with the exciton
states in quantum wells inside the cavity. (For reviews, see Refs. [29] and [30].) This produces poalritons
in a two-dimensional plane with very light effective mass, around 10−4 times the vacuum electron mass,
which interact with each other and with phonons due to their excitonic component. The light mass of
the cavity polaritons allows the possibility of a BEC at room temperature, while the interactions between
the polaritons lead to many useful nonlinear effects [29]. Figure 6 shows the basic band structure of the
microcavity polaritons and the scattering processes following generation of free electrons and holes.

A quantum Boltzmann model is essential for understanding the energy distribution of the polariton gas.
A polariton in this type of system only lives for around 10-20 picoseconds before turning into a photon
external to the cavity which exits irreversibly. A typical microcavity polariton condensate experiment
therefore involves a quasi-cw pump which creates hot carriers that eventually become hot polaritons, which
collide with each other and emit phonons to settle down and thermalize in the low energy states. Figure 7
shows the experimentally measured energy distribution of a polariton gas for several densities below and
near the BEC threshold. Well below the threshold, the gas is not thermalized at all; as it approaches the
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10 D.W. Snoke: The Quantum Boltzmann Equation in Semiconductor Physics

Fig. 6 Schematic illustration of the bands and relaxation
processes in the polariton generation process. The lowest ex-
citon band is split by the cavity into a lower polariton band
(LP) and upper polariton band (UP). The lower polariton band
goes from the polariton minimum at zone center to an exci-
tonic region, with a connecting bottleneck region in between
(labeled BR). The polaritons have an effective mass much
lighter than that of the excitons. From Ref. [31].

threshold it becomes more thermalized, and right near the BEC threshold a peak appears in the energy
distribution near the ground state.

Numerous models [31–33] using a quantum Boltzmann approach have been used to model microcavity
exciton-polariton behavior; this work is surveyed in Ref. [34]. The general conclusion of all this work is
that it is indeed proper to speak of the polariton gas as a condensate, in which the Bose statistics of the
polaritons plays the key role in the buildup of the population in low-energy states.

The full energy distribution, which includes not just the polariton states, but also the exciton states at
higher energy and the bottleneck region which connects the two (see Fig. 6), is never well described by
an equilibrium distribution with single temperature, because the coupling of the exciton population to the
polariton population through the bottleneck region is quite weak. However, a quantum Boltzmann fit to the
steady-state energy distribution, shown in Fig. 7, shows that the polaritons are nearly equilibrated among
themselves. These fits were obtained by evolving a nonequilibrium polariton gas in time until it reached
steady state. The model shows that the collisions between the polaritons play the key role in the buildup
of polaritons in the low-energy states. Their interaction with acoustic phonons is so weak that the gas can
never thermalize through phonon interactions alone.

The Boltzmann model used to fit the data in Fig. 7 does not include any coherent phase information,
and therefore cannot model the condensate itself. Laussy and coworkers [35] and Haug and coworkers [36]
have used modifications of the quantum Boltzmann equation to account for the coherence of polaritons, as
will be discussed in the next section.

A surprising experimental result of the polariton experiments has been that at very low polariton density,
the polaritons still thermalize reasonably well, much faster than expected from polariton-phonon interac-
tion, although the polaritons do not reach equilibrium at low density. Ref. [34] showed that this low density
quasi-equilibrium can be explained as due to the interaction of polaritons with free electrons, which can
exist as a permanent population with low density in the solid. Polariton-electron interaction has been
shown to be efficient [37]. Another approach to the low density behavior was taken in Ref. [38], which
treated elastic scattering of polaritons with disorder by replacing the energy-conserving delta-function in
the quantum Boltzmann equation with a Lorentzian, allowing violation of energy conservation. While this
approach might seem natural, since scattering can lead to energy broadening of transition rates in Fermi’s
golden rule (see Section 8.4 of Ref. [1]), it is problematic in the case of the many-body quantum Boltzmann
equation. Work by Haug and coworkers in the early 1990’s showed that relaxing strict energy conservation
in the Boltzmann equation leads to an overall instability of the total energy of an interacting gas, when the
particles have infinite lifetime. In the case of polaritons with finite lifetime, this instability is avoided, but
replacing the energy-conserving delta-function with a Lorentzian in the quantum Boltzmann equation has
not been well theoretically justified.
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Fig. 7 Symbols: the energy distribu-
tion of a polariton gas in steady state, for
several generation rates. Solid lines: fit
to the data using a quantum Boltzmann
equation solution. From Ref. [34].

5 Modifications for Condensates

In general, the question of the onset of coherence in a condensate, starting from a system which is initially
incoherent, has been an active area of theory in the past twenty years. The issue first became important for
the theory of condensates of excitons [2], because excitons have finite lifetime, and therefore there were
questions whether they could undergo condensation within their lifetime. The topic was next picked up
for atomic condensates in traps [39–42], because the atoms in these traps also have finite lifetime; in this
case their lifetime is not determined by recombination, but rather their rate of escaping the trap. In recent
years the issue has come to prominence again because of the successes of polariton condensates, discussed
above.

As discussed above, the quantum Boltzmann equation does not directly model condensation, because
it does not account for the phase of the particles, and true condensation consists of spontaneous phase
coherence. However, a quantum Boltzmann equation can account for the buildup of the macroscopic
population in the ground state. The early work modeling excitons [2] showed that a two-body, short-range
interaction between bosons led to exponentially increasing population of the ground state, i.e. n0 ∼ et/τ ,
where τ is of the order of the classical scattering time defined by 1/τ = nσv, where n is the particle
density, σ the scattering cross section, and v the average velocity. Later work [46] showed that the motion
of the population toward the ground state via two-body, short-range scattering follows an interesting power
law. The ground state can also obtain a macroscopic population entirely through phonon emission and
absorption, even when there is no interparticle scattering. Figure 8 shows the theoretical time evolution
of a gas of excitons with the same properties as those in Fig. 2, with density high enough to lead to
Bose statistical effects (accounted for through the (1 + nf ) factors) but with the exciton-exciton two-body
interaction artificially turned off. The gas of excitons quickly acquires a large population in the ground
state above the critical density for Bose condensation.

It turns out that for a polariton gas, the interaction with phonons is not sufficiently fast to bring about
condensation, because of both the short lifetime of the polaritons and the “bottleneck” in the density of
states of the polaritons, which makes it difficult for excitons in high energy states to scatter into polariton
states. The two-body scattering between the polaritons therefore plays the dominant role in the buildup of
the condensate [34].
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Fig. 8 Quantum Boltzmann equation so-
lution of a gas of excitons, with the same
properties as those in Fig. 2, when the ex-
citon density is above the critical thresh-
old for Bose-Einstein condensation, and the
time evolution is entirely due to interaction
with acoustic phonons. Lattice temperature
was 16 K; exciton density 7 × 1018 cm−3;
the curves labeled 1-5 (alternating solid and
dashed lines) correspond to times after the
initial creation of 0, 11, 42, 120, and 832
picoseconds, respectively. From Ref. [47].

Laussy, Malpuech, Kavokin, and coworkers [35], building on earlier work by Gardiner and Zoller and
coworkers [42], showed that the coherence of the condensate can be accounted for by generalizing the
quantum Boltzmann equation to a similar equation for the density matrix ρ = |ψ〉〈ψ|. For the case of
excitons or polaritons interacting with phonons, they found, for the ground state,

∂ρ0
∂t

=
1

2
Win(t)(2a†0ρ0a0−a0a

†
0ρ0−ρ0a0a

†
0)+

1

2
(Γ0+Wout(t))(2a0ρ0a

†
0−a0a

†
0ρ0−ρa

†
0a0), (11)

where Win(t) and Wout(t) are the in-scattering and out-scattering rates for the ground state from the
quantum Boltzmann equation, and Γ0 is the recombination rate of the ground state. From this they obtained
an equation for the expectation value of the amplitude,

∂

∂t
〈ψ|a|ψ〉 = (Win(t)−Wout(t))〈ψ|a|ψ〉. (12)

Equation (12) has the same form as the equation for onset of lasing (for a review see Ref. [1], Section
11.3). This form of equation, for both condensates and lasers, shows that a small coherent amplitude
will be amplified and grow exponentially. If the initial amplitude is strictly zero, of course there will be
no growth of the coherent amplitude. The coherent amplitude 〈a〉 must therefore be given a “seed” in
the numerics which will be amplified. This is a direct expression of the very basic effect of spontaneous
symmetry breaking which occurs in condensates. Nothing in the equations chooses the exact phase of the
condensate; this must come from some external seed, or fluctuation.

This approach has the limitation that one state, the ground state, is “cut out” from the rest of the quantum
states somewhat artificially, but this is in the spirit of the way that Einstein treated the condensate state
separately from others. Another approach is to treat the full continuum of states near k = 0, in what is
called a “classical field” approach [43–45], adapted from quantum optics of lasers. This approach treats all
the states near the ground state, but has the disadvantage that it does not transition continuously from these
states to the thermal states well above the ground state.

A few words are in order about the role of the seed in the generalized Boltzmann models like that of
Ref. [35]. No seed was used in the iterated solution shown in Fig. 8, nor in the two-body scattering model
of Ref. [2]. Thus the growth of the population in the ground state is not dependent on the symmetry
breaking. However, the coherence of the ground state does depend on a seed which breaks the symmetry.

In the model of Fig. 8, as well as the two-body model of Fig. [2] and similar models, the energy distribu-
tion of the particles is represented by a set of values of n(Ei)dEi for a set of energy ranges (Ei, Ei+dEi).
The “condensate” population in these models is represented by the value of n(0) for the lowest energy
range (0, dE0). Strictly speaking, this method therefore cannot distinguish between a “true” condensate in
the exact E = 0 state and a “quasicondensate” in states very near E = 0. However, what one can do in a
quantum Boltzmann approach is to use a grid of ever smaller and smaller energy intervals near E = 0, and
show that the lowest of these energy intervals is always the one which eventually jumps up in population,
no matter how small the energy range near the ground state.
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In the two-dimensional polariton system, the dynamics of condensation is not much different from the
three-dimensional models. Technically, a true condensate cannot appear in a translationally invariant two-
dimensional system [48, 49]. However, in a finite system, the coherence length can be long compared to
the size of the system, so that the lack of long-range order predicted for a two-dimensional system does
not play a role.

6 Conclusions

The quantum Boltzmann equation, or Fokker-Planck equation, has a wide range of applicability to nonequi-
librium dynamics, and many spectroscopy experiments provide data which can be directly compared to
solutions of the quantum Boltzmann equation. The solutions for the quantum Boltzmann equation for ex-
citons interacting either with phonons or with each other via short-range interactions are well worked out,
and in the case of exciton-phonon interaction there is outstanding agreement of theory and time-resolved
experiments. The status of the theory and experiments for the evolution of a plasma is much less settled.
However, the results of the quantum Boltzmann approach for a gas interacting via Coulomb potential at
low density give power laws and absolute scattering rates that are basically consistent with the experiments,
including a prediction [10] of constant dephasing rate at low density and reasonable fits to time-resolved
data [9].

The quantum Boltzmann approach also describes the behavior of Bose-Einstein condensates. The Bose
statistics give rise to a macroscopic occupation of the ground state in a system which starts far from equi-
librium, with no condensate, both for systems interacting with a phonon bath and for closed systems
interacting via number-conserving two-body scattering. Quantitative fits to data have been performed for
polariton condensate systems. The quantum Boltzmann equation can also be coupled to a general density
matrix approach for the evolution of the phase of a Bose condensate.

Thus, despite its simplicity compared to full quantum Monto Carlo and quantum memory kernel ap-
proaches, the quantum Boltzmann equation has wide applicability to quantitative experiments measuring
the particle distribution of gases, in particular as measured by optical spectroscopy of semiconductors.
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[28] D. Sanvitto, F. M. Marchetti, M. H. Szymańska G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S.

Skolnick, L. Marrucci, A. Lemaı̂tre, J. Bloch, C. Tejedor and L. Viña, Nature Physics 6, 527 (2010).
[29] A. Kavokin, J.J. Baumberg, G. Malpuech, and F.P. Laussy, Microcavities, (Oxford University Press, Oxford, UK,

(2007).
[30] D.W. Snoke and P. Littlewood, Physics Today 63, 42 (August, 2010).
[31] F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, and P. Schwendimann, Phys. Rev. B 56, 7554 (1997).
[32] T. D. Doan, H. T. Cao, D. B. Tran Thoai, and H. Haug, Phys. Rev. B 74, 115316 (2006).
[33] G. Malpuech, Y. Rubo, F. Laussy, P. Bigenwald, and A. Kavokin, Semicond. Sci. Technol. 18, S395 (2003).
[34] V. E. Hartwell and D. W. Snoke, Phys. Rev. B 82, 075307 (2010).
[35] F.P. Laussy, G. Malpuech, A.V. Kavokin and P. Bigenwald, J. Phys.: Cond. Mat. 16 S3665 (2004); F. P. Laussy,

G. Malpuech, A. Kavokin, and P. Bigenwald, Phys. Rev. Lett. 93, 016402 (2004).
[36] H. Haug, H.T. Cao, and D.B.T. Thoai, Phys. Rev. B 81, 245309 (2010); T.D. Doan, H.T. Cao, D.B.T. Thoai, and

H. Haug, Phys. Rev. B 78, 205306 (2008).
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