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ABSTRACT  

Objective: Neonatal hypoxic-ischemic encephalopathy (HIE) still carries a high burden 

by its mortality and long term neurological morbidity in survivors. Apart from 

hypothermia, there is no acknowledged therapy for HIE, reflecting the lack of 

mechanistic understanding of its pathophysiology. (Macro)autophagy, a physiological 

intracellular process of lysosomal degradation has been proposed to be excessively 

activated in excitotoxic conditions such as HIE. The present study examines whether 

neuronal autophagy in the thalamus of asphyxiated human newborns or P7 rats is 

enhanced and related to neuronal death processes.  

Methods: Neuronal autophagy and cell death were evaluated in the thalamus 

(frequently injured in severe HIE) of both human newborns who died after severe HIE 

(n=5) and P7 hypoxic-ischemic rats (Rice-Vannuci model). Autophagic (LC3, p62), 

lysosomal (LAMP1, cathepsins) and cell death (TUNEL, caspase-3) markers were 

studied by immunohistochemistry in human and rat brain sections, and by additional 

methods in rats (immunoblotting, histochemistry and electron microscopy).  

Results: Following severe perinatal asphyxia in both humans and rats, thalamic 

neurons displayed up to 10-fold (p<0.001) higher numbers of autophagosomes and 

lysosomes, implying an enhanced autophagic flux. The highly autophagic neurons 

presented strong features of apoptosis. These findings were confirmed and elucidated in 

more detail in rats. 

Interpretation: These results show for the first time that autophagy is enhanced in 

severe HIE in dying thalamic neurons of human newborns, as in rats. Experimental 

neuroprotective strategies targeting autophagy could thus be a promising lead to follow 

for the development of future therapeutic approaches. 
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Introduction 

Perinatal asphyxia is a major cause of newborn mortality and long-term 

neurodevelopmental disabilities, with very limited therapeutic options1. Its best known 

complication is hypoxic-ischemic encephalopathy (HIE), which is characterized by acute 

neurological impairment, often with seizures and early lesions seen on magnetic 

resonance imaging (MRI) especially at the level of the perirolandic cortex, the basal 

ganglia, the thalamus and the brainstem. Twenty five percent of HIE lead to death in the 

first week of life and up to 50% of survivors develop permanent sequelae such as 

cerebral palsy, seizures, cognitive and neurosensorial impairment2. Despite 

considerable efforts in research to find clinically safe and effective neuroprotective 

pharmacotherapy, the only therapy that is currently approved is moderate hypothermia. 

The heterogeneity of the human hypoxic-ischemic insults and the presence of multiple 

interacting cell death mechanisms are major difficulties. 

Our current understanding of neuronal cell death in human HIE term newborns is 

very limited because of the lack of human brain studies3. One of the most relevant 

animal models in HIE is a combination of unilateral common carotid artery ligation and 

exposition to hypoxia on P7 rats4, this age being considered comparable to late preterm 

/ term in human brains (34-36 weeks gestation)5,6. An important conclusion emerging 

from studies on rodent perinatal HI is that cell death occurs along an apoptotic-necrotic 

“continuum”7 involving predominance of hybrid morphologies of cell death with mixed 

features of apoptosis and necrosis8. However, these may not be the only cell death 

mechanisms involved, because morphological characteristics of enhanced autophagy 

have recently been described in the dying neurons9-11.  
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Macroautophagy (hereafter called autophagy) is a physiological degradative 

process in which cellular components are sequestered in autophagosomes, which fuse 

with acidic organelles (late endosomes, lysosomes etc.) to form autolysosomes 

containing the hydrolytic enzymes necessary for the autophagic degradation. Autophagy 

is essential for maintaining homeostasis and cell survival, but recent studies indicate 

that it can be involved in cell death, either as a trigger of apoptosis or necrosis, or as an 

independent mechanism of cell death12. 

In situations of cerebral HI, the evidence for a death-mediating role of autophagy 

stems from a combination of morphological and functional evidence. Different studies 

have demonstrated the presence of enhanced autophagy in dying neurons in neonatal 

animal models of cerebral ischemia or HI in the cortex and/or hippocampus9,10,13. 

Inhibition of autophagy either pharmacologically14 or more specifically in neonatal 

conditional knockout mice with neuron-specific deletion of Atg710 is neuroprotective, 

suggesting a death-mediating role of autophagy. 

As the thalamus, including its ventrolateral nucleus (VLNT), is often involved in 

human HIE, we have studied whether neuronal autophagy is enhanced in the VLNT in 

brains of human newborns who died from severe HIE and have compared the results 

with those obtained in a human control group and in the animal model. 
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Materials and Methods 

Rat model of neonatal hypoxia-ischemia  

All experiments were performed in accordance with the Swiss Laws for the protection of 

animals and were approved by the Vaud Cantonal Veterinary Office. Seven-day old 

male rats (Sprague Dawley, from Janvier, France) underwent HI (8% of oxygen for 2h) 

according to the Rice-Vannucci model4 as previously described9. The damage induced 

by our model of neonatal cerebral HI (2h of hypoxia) was very severe, but with low 

individual/litter variability in our hands compared to shorter and less severe hypoxic 

periods (Fig 1A and 1B). 

 

Human newborn brain specimens 

Human brain tissues were obtained from 11 deceased and autopsied newborns, 

provided by the Institute of Pathology, University of Lausanne (Table 1). The studied 

population was selected retrospectively from the death reports of the Clinic of 

Neonatology (Lausanne University Hospital) between 2001 and 2009. Autopsies were 

done for medical and legal reasons and informed consent was obtained from the 

parents. The post mortem interval (time between death and autopsy) was between 5 

and 24 hours, and the bodies where conserved in a cold environment. During autopsy, 

the brain was removed and fixed in 10% buffered formalin for 3 weeks. Samples were 

then embedded in paraffin and 3µm thick sections were cut. Specimens were then 

anonymised for research purposes with the approval of the local ethical committee. We 

selected newborns who died after birth in the context of severe HIE (HIE group, n=5). 

Death was due to withdrawal of care in 4 cases and due to additional respiratory failure 

in one case. The criteria for HIE cases were: newborns at or near term (35 to 37 weeks 
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gestation), with severe perinatal asphyxia, and clinical HIE according to Sarnat grade 

III15. For the control group (n=6), newborns at or near term (35 to 37 weeks of gestation) 

with life-incompatible conditions were selected (transposition of the great vessels with 

intact septum (1), primary pulmonary lymphangiectasia (1), congenital diaphragmatic 

hernia (1), congenital myopathy (2), intrauterine demise with endocardial fibroelastosis 

(1). Babies with cerebral malformations and genetic anomalies were excluded, as well 

as babies from whom autoptic material from thalamus was no more available. For 

comparing the selection criteria between the groups, we calculated the resuscitation 

score according to Miller et al.16. 

 

Cerebral MRI and ADC  

MRI was available for 3 out of 5 HIE cases, using 1.5 or 3 Tesla scanners. Conventional 

T1 and T2 images and diffusion-weighted images (DWI) were acquired using spin echo 

echoplanar imaging (SE-EPI), with 5mm thick slices (b values: 0, 500, 1000 mm2/s). 

Apparent diffusion coefficient (ADC) values were calculated from the ADC map choosing 

similar bilateral regions of interest (ROI) in the VLNT. As reference values we used 

those published by Rutherford et al.17. 

 

Immunoblotting  

Immunoblots on thalamic extracts of sham-operated or HI rat pups were done as 

described previously18. The following primary antibodies were used for protein 

immunodetection: anti-α-tubulin (sc-8035) mouse monoclonal from Santa Cruz 

Biotechnology; anti-LC3 (ab48394) rabbit polyclonal from Abcam; anti-active caspase-3 
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(9661) from Cell Signalling Technology; anti p62/SQSTM1 (P0067) rabbit polyclonal 

from Sigma-Aldrich and anti-fodrin (FG6090) mouse monoclonal from Biomol (Enzo Life 

Sciences). Protein bands were visualized using the Odyssey Infrared Imaging System 

(LI-COR). Odyssey v1.2 software (LI-COR) was used for densitometric analysis. Optical 

density values were normalized with respect to tubulin and expressed as a percentage 

of values obtained for sham operated rat pups (100%).  

 

Histochemistry for lysosomal enzymes 

Histochemistry for acid phosphatase and β-N-acetylhexosaminidase was performed on 

rat pups perfused intracardially with 2% glutaraldehyde and 1% paraformaldehyde in 

cacodylate buffer (0.1mol/L, pH 7.4) as previously described9.  

 

Electron microscopy 

Electron microscopy (EM) was done on rat brains fixed following intracardiac perfusion 

with 2.5% glutaraldehyde and 2% paraformaldehyde in cacodylate buffer as previously 

described14. 

 

Immunohistochemistry 

For rat tissue, pups were perfused intracardially with 4% paraformaldehyde in 0.1mol/L 

PBS, pH 7.4. Immunohistochemistry was performed on 18μm cryostat sections as 

previously described9. For human tissue, the paraffin embedded sections were first 

deparaffinized. After antigen retrieval and blocking in PBS with 15% donkey serum, 

sections were incubated with primary antibodies in 1.5% donkey serum overnight at 4°C.  
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For both rat and human sections, Alexa Fluor 488 donkey-anti-rabbit (Invitrogen, 

A21206) and Alexa Fluor 594 donkey-anti-mouse (Invitrogen, A21203) secondary 

antibodies were incubated and then sections were mounted with FluoroSave 

(Calbiochem, 345-789-20) after a Hoechst staining. A LSM 710 Meta confocal 

microscope (Carl Zeiss) was used for confocal laser microscopy. Confocal images were 

displayed as individual optical sections. For double-labeling, immunoreactive signals 

were sequentially visualized in the same section with two distinct filters, with acquisition 

performed in separated mode. Images were processed with LSM 710 software and 

mounted using Adobe Photoshop 10.0.  

The following primary antibodies were used: anti-LC3 (ab48394, for human) 

rabbit polyclonal from Abcam; anti-active caspase-3 (9661) rabbit polyclonal from Cell 

Signalling Technology; anti-cathepsin D (sc-6486, for human) goat polyclonal from 

Santa Cruz Biotechnology, anti-cathepsin B (06-480) and anti-cathepsin D (06-467, for 

rat) rabbit polyclonal antibody from Upstate Biotechnology; anti anti-NeuN (MAB377) 

mouse monoclonal antibody from Chemicon, anti-LAMP1 (428017, for rat) from 

Calbiochem; anti-GFAP (G3893) mouse monoclonal from Sigma; anti-PGP9.5 (7863-

0504) rabbit polyclonal from Bio Trend; anti-LAMP1 (611042, for human) mouse 

monoclonal from BD Biosciences. Anti-LC3 for rat tissue was a generous gift from Prof. 

Yasuo Uchiyama (Tokyo, Japan).  

 

TUNEL staining  

After an antigen retrieval for paraffin sections or permeabilization (5 min in 0.2% Triton-

X100) for cryostat sections, TUNEL (Terminal deoxynucleotidyl transferase biotin-dUTP 

Nick End Labeling) staining was performed with DeadEnd Fluorimetric TUNEL system 
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(Promega, G3250) according to the manufacturer’s instructions. For combined 

immunolabeling, sections were extensively washed in PBS and incubated in primary and 

secondary antibodies as described above except that pre-incubation of cryostat sections 

was done without Triton-X100. 

 

Quantification of autophagic and lysosomal labeling  

For rat and human thalamus, confocal images of immunocytochemistry against LC3, 

cathepsin D, cathepsin B, LAMP1 were acquired using the confocal laser scanning 

microscope and images were then processed with Adobe Photoshop 10.0. LC3-, 

cathepsin D- cathepsin B and LAMP1-positive dots were quantified using ImageJ 

software and expressed as a number of positive dots per neuron per μm2. For cathepsin 

D, cathepsin B and LAMP1-positive dots, dot areas were also quantified using ImageJ 

software. To quantify autolysosomal areas, we set a lower limit of 0.5 µm2, in view of the 

fact that electron microscopical images gave a mean autolysosomal area of 0.58 ± 0.28 

µm2 per neuron. 

 

Statistics  

Biological markers data were expressed as mean ± standard deviation (SD). Rat data 

were derived from at least 3 independent hypoxic-ischemic experiments,  corresponding 

to at least 3 different litters. Data were analyzed statistically using JB STAT software. 

After testing each group of data for distribution normality (using Shapiro-Wilk tests), we 

used a multivariate ANOVA for histochemistry to compare rat sham or human control 

versus rat HI or human HIE values. For immunoblot, in cases of normal distribution, 

Welch’s ANOVA test was followed by a post-hoc Tukey-Kramer test. In the case of a 

 10 



non-normal distribution, a Kruskal-Wallis test (nonparametric analog of the one-way 

ANOVA) was followed by a post-hoc Steel-Dwass test to compare the different time 

points.  

The human descriptive data were expressed as median and range, and analyzed using 

the Statistical Package for Social Science software (SPSS, version 20.0). Univariate 

analyses of variance, using the Mann-Witney-Wilcoxon and the Fisher’s exact tests, 

were performed. p<0.05 was chosen as statistically significant. 

 11 



Results 

Perinatal characteristics of the human population 

Perinatal data and particularly postnatal adaptation from the two groups are represented 

in Table 1. There were no statistical differences between the groups for most of the 

characteristics such as birth weight, gestational age, gender. As expected, there were 

significantly more prenatal sentinel events reflected by the significantly lower umbilical 

artery pH and postnatal seizures in the HIE group than in the control group. The time 

between birth and death was not statistically different in the two groups, although the 

median value was higher in the HIE group. In the control group, the babies died between 

1h and 28 days after birth (median 13 hours), whereas in the HIE group, the babies died 

between 20h and 7 days after birth (median 44 hours).  

  

Ventrolateral nucleus thalamus (VLNT) of human neonates and ventrobasal 

thalamus (VBT) of rat pups are highly vulnerable to hypoxia-ischemia 

In human newborns at term, the predominant neuronal injury pattern after acute and 

severe asphyxia, known as the “deep nuclear pattern” or “BGT (basal-ganglia-thalamus) 

pattern” involves the peri-rolandic cortex, the basal ganglia, the thalamus and 

sometimes the brain stem and hippocampus19. But the thalamus, and particularly the 

VLNT, is especially sensitive to HI19,20, so we focused on it, and indeed confirmed this 

sensitivity. In 3/5 HIE cases, cerebral MRI (T1 and T2) was performed and showed 

severe thalamic lesions that were confirmed with DWI-ADC as is shown in Figure 1D. 

Diffusion was severely restricted with ADC levels in the ventrolateral thalamus ranging 

from 0.53 to 0.73 x 103mm2/sec (norm values for thalamus 1.0 to 1.1 x 103mm2/sec) . 

Moreover, hematoxylin eosin (HE) staining revealed pyknotic nuclei and cell shrinkage, 
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confirming neuronal suffering in the VLNT in HIE cases, whereas the control group did 

not show neuronal injury in the VLNT (Fig 1E) or in several other grey matter regions 

(not shown). Similar histological results were observed for the VBT at 24h in rat pups in 

our severe model of neonatal cerebral HI (Fig 1C).  

 

Hypoxia-ischemia increases autophagosome abundance in thalamus of both rat 

pups and human newborns 

In the neonatal rat model, Western blot analyses of thalamic extracts showed that HI 

caused an increase in the expression of LC3-II, the lipidated form of LC3, which is a 

marker of autophagosomal membranes (Fig 2A). Since the LC3-II expression level was 

highest at 24h after HI, we decided to focus our investigations on the 24h time point in 

the rat model.  

The effect of HI on autophagy was further investigated by performing 

immunohistochemistry against LC3. Immunoperoxidase labeling showed a marked 

increase in the presence of LC3-positive dots (presumably autophagosomes)  in the 

VBT of rats at 6h or 24h after HI, and to some extent at 72h (Fig 2B), and in the VLNT of 

the human HIE cases (Fig 2C).  The numbers of LC3-positive dots per neuron were then 

quantified in confocal images of the VBT of HI rat pups and the VLNT of HIE newborns 

and compared to counts in sham operated rats or human control cases, respectively 

(Fig 2D-E). At 24h after HI in rats, the number of LC3-positive dots per neuron was 

increased by 6-fold compared to sham-operated animals (Fig 2D). Similarly, all human 

HIE cases displayed an up to 10-fold increase in LC3-positive dots compared to control 

cases (Fig 2E), and this was persistent at 7 days (HIE case 3).  
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Electron microscopy in HI rat pups revealed that dying VBT neurons displayed 

marked autophagic characteristics, containing numerous vacuoles, autophagosomes 

and autolysosomes-like structures in their cytosol (Fig. 3). More specifically, the cell 

death resembled a recently defined kind of autophagic cell death called autosis21, which 

has been shown to involve sequential phases called 1a, 1b and 2. Each of these phases 

was represented. Thus, some neurons displayed numerous empty vacuoles, 

autophagosomes and autolysosomes (arrowheads) in the cytosol, features 

representative of autosis phase 1a. In others, parts of the perinuclear space were dilated 

and contained membrane-bound cytosolic regions, the defining characteristic of phase 

1b. Still other dying neurons displayed features of phase 2: gross ballooning of parts of 

the perinuclear space, and the presence of swollen organelles and rupture of the plasma 

membrane (Fig. 3B). In addition, these dying neurons also showed some morphological 

characteristics of apoptosis (chromatin condensation, shrinkage of the cytoplasm) and 

necrosis (observed in phase 2 autosis such as swelling of organelles). These 

ultrastructural results thus confirmed that HI induced an increase in autophagosomes in 

neurons from the rat VBT. 

 

Lysosomal activity and autophagic flux are increased following hypoxia-ischemia 

in thalamus of rat pups and human newborns 

To evaluate whether the increased number of autophagosomes was due to enhanced 

autophagic flux (autophagosome formation and autolysosomal degradation after 

autophagosomes-lysosome fusion) or to failed lysosomal degradation, lysosomal activity 

was investigated. Immunohistochemistry against different lysosomal markers was 

performed and the numbers and sizes of positive-dots were quantified. An increased 
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number of lysosomes, especially of very large lysosomes (>0.5µm2), which are 

putatively autolysosomes, would reflect an increase in autophagic flux. In neurons in the 

thalamus of rat pups (Fig 4A) and of human newborns (Fig 4B) the number of 

Lysosomal Membrane Protein 1 (LAMP1)-positive vesicles was strongly increased by 

HI. Moreover, among the positive dots the percentage of larger ones (>0.5µm2), which 

we assume to represent autolysosomes, increased by 12-fold after HI in rat (Fig 4C) 

and by 8-fold in human HIE (Fig 4D). Double immunolabeling against LC3 and LAMP1 

showed that neurons with a strong punctate LC3 labeling showed also numerous 

LAMP1-positive vesicles in HI human newborns (Fig 4E) and rat pups (not shown).  

Likewise immunohistochemistry against the lysosomal protease cathepsin D 

(cathD) demonstrated many more cathD-positive dots in HI neurons in both rats (NeuN-

positive cells) (Fig 5A, C) and humans (PGP9.5-positive cells) (Fig 5B, D). Moreover, 

the size repartition per neuron revealed more than 34% of large dots (>0.5µm2) after HI 

in rats and more than 28% in humans, whereas in controls the percentage was less than 

3% in both rat (Fig 5C) and human (Fig 5D). Immunolabeling for another lysosomal 

protease, cathepsin B, gave similar results in the rat HI model (data not shown). These 

results suggest an increased lysosomal activity following HI.  

To verify this, we studied the activity, rather than merely the expression, of two 

lysosomal enzymes, acid phosphatase (Fig 6A) and β-N-acetylhexosaminidase (Fig 

6B), and found that in each case their activity was enhanced following HI in rat pups, as 

shown by increased acid phosphatase and β-N-acetylhexosaminidase-positive dots.  

To further investigate the change in the level of autophagy, we studied the 

expression of p62/SQSTM1, a protein selectively degraded by autophagy, by 

immunoblot on rat extracts22. As is shown in Figure 6C, p62 expression was 
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significantly decreased 24h after HI. Immunohistochemistry against p62 confirmed the 

decrease in p62 expression 24h after HI in rat pups (Fig 6D) and also in HI human 

newborns (Fig 6E).  

Altogether these results indicate that HI enhances autophagic flux in thalamic 

neurons in rats and humans. 

 

Enhanced autophagy in relation to neuronal death in thalamus of both rat pups 

and human newborns 

To investigate the role of the increased neuronal autophagy following HI, we next 

evaluated the relationships between enhanced autophagy and cell death, focusing on 

the activation of caspase-3 as a marker of apoptosis and using DNA fragmentation and 

morphology as additional markers of cell death. 

 In rat pups we showed by immunoblotting that cerebral HI increases 

progressively the expression levels both of cleaved caspase-3 and of the caspase-

dependent cleavage product (120kDa) of α-fodrin from 6h to at least 72h after HI (Fig 

7A). Immunohistochemistry for cleaved caspase-3 clearly confirmed the activation of 

caspase-3 in rat VBT (Fig 7B), where DNA fragmentation was also detected by TUNEL 

staining (Fig. 8A, B). In human newborns we likewise showed caspase-3 activation (Fig 

7C) and TUNEL labeling (Fig 8C) after HI whereas the controls were always negative for 

both caspase-3 (Fig. 7C, E) and TUNEL staining (Fig. 8C).  

 

As apoptotic and autophagic processes share several regulators and as 

autophagy has been shown to trigger caspase-3 activation in cerebral HI, we evaluated 

the level of autophagy in caspase-3 positive neurons by quantifying the number and size 
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of LAMP1 positive vesicles in rat (Fig 7D) and human (Fig 7E). Double labeling 

experiments revealed that many thalamic neurons positive for cleaved caspase-3 

presented a strong punctate LAMP1 staining suggesting that the two mechanisms occur 

in the same neurons in HI rat and human HIE brains. Similar results were obtained with 

TUNEL stain in the rat model 24h after HI (Fig 8B) and in human HIE brains (Fig 8C).  

Altogether, these results reveal that autophagy is enhanced in dying neurons of 

human VNLT and rat VBT. 
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Discussion 

The present study was designed to investigate the possibility of enhanced 

neuronal autophagy in severe perinatal HIE in human newborns and to validate the 

clinical relevance of results obtained by our group and others in experimental HI rodent 

models. We previously demonstrated that HI in P7 rats enhances neuronal autophagy in 

CA3 hippocampal and cortical dying neurons8,21. Moreover, in a similar HI mouse model, 

the specific inhibition of autophagy through neuron-specific deletion of the autophagy-

related gene Atg7 conferred resistance to hippocampal neurons10 providing a strong 

argument for a death-mediating role of autophagy in rodent neonatal HI.  

Our human brain specimens came from autopsied newborns who died in the 

context of severe hypoxic-ischemic encephalopathy. It was therefore logical to relate the 

human results to those from an animal model that is likewise severe. The present 

neonatal HI rodent model, proposed by Vannucci 30 years ago4, has become the 

standard model and has allowed several deleterious cellular pathways to be identified3. 

One conclusion has been that excitotoxic and HI-induced neuronal death in immature 

brains occurs across a spectrum ranging from apoptosis to necrosis7 , but the situation 

has been complicated by evidence for multiple interacting neuronal death 

mechanisms3,23 including a death-mediating role of enhanced autophagy in different 

brain regions of neonatal rodents after HI8,9,24,25.  

 

Neuronal autophagy is enhanced in neurons of human VLNT after HI 

 We here report for the first time the presence of enhanced autophagy in dying 

neurons after HI in human newborns. We compared to tissues from newborns who died 

due to other life-incompatible conditions, where no enhanced autophagy could be 
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detected. The main differences between the HIE and the control groups resided in the 

fact that all HIE cases presented sentinel events affecting them already just before birth. 

The control group presented a compromised postnatal adaptation due mainly to 

respiratory insufficiency. Supported by our data from the rat model, we can conclude 

that autophagic flux, meaning autophagosome formation and autolysosomal 

degradation, is increased in VLNT human neurons. 

First, all HIE cases display an increased number of LC3-positive vesicles 

compared to control cases. After conjugation to phosphatidylethanolamine (PE), LC3 is 

converted to the LC3-II form and recruited to the autophagosomal membrane until its 

degradation by lysosomal hydrolases. Quantification of LC3-positive dots is considered 

one of the most reliable methods for evaluating autophagosome abundance26. Other 

complementary strategies are the measure of LC3-II expression level after 

immunoblotting and the identification of multimembrane compartments surrounding 

cytoplasmic materials including organelles by electron microscopy. The latter two 

techniques were not possible on the human brain samples but were performed on rat 

pup brains confirming that neonatal HI increases autophagosomal numbers in the rat 

VBT.   

To confirm an enhanced autophagic flux, it is essential to demonstrate that 

increased autophagosome abundance occurs along with a higher level of lysososomal 

clearing since a defect in degradation would result in autophagosome accumulation. 

After human and rat neonatal HI, lysosomal vesicles labeled with LAMP1, cathD and/or 

cathB were not only more numerous but also larger in thalamic neurons containing 

abundant autophagosomes (LC3-positive dots), indicating a greater autophagic 

lysosomal activity with increased presence of autolysosomes. This hypothesis was 
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strengthened by our results on the rat model showing degradation of the autophagy 

substrate p62 and enhanced activity of two lysosomal enzymes in VBT after HI. In both 

rat and human thalamic neurons, p62 immunolabeling confirmed that p62 was 

apparently reduced and certainly not accumulated following HI. Several studies have 

shown enhanced neuronal autophagy in diverse in vitro 27,28 and in vivo29,30 models of 

excitotoxicity including adult and neonatal cerebral HI9,10,13,14,31-35. 

 

The enhanced autophagy occurs in dying neurons of human VLNT after HI 

 Our results also show, in both humans and rats, that many of the neurons 

expressing enhanced autophagy were dying, since many of them were positive for 

activated caspase-3 and for TUNEL. In humans, very few post-mortem 

neuropathological studies of neonatal HIE are available, and most described only 

necrotic-like cell death36, although a few did mention the presence of apoptosis in the 

cerebral cortex and basal ganglia3. Our results make it clear that apoptotic-like cell death 

with apoptotic (but also necrotic) features including caspase-3 activation did occur in 

VLNT. This was yet another point of resemblance between the human and the rodent 

neuropathologies. Several rodent studies have described related results in cerebral 

ischemia in both adults29,31,34 and neonates9,10. However, in our neonatal HI rat model 

the relationships with apoptosis can be region-dependent since strong autophagy is 

activated simultaneously with apoptosis in cortical neurons whereas in the degenerating 

hippocampus CA1 neurons are purely apoptotic (not autophagic) and CA3 neurons are 

purely autophagic (not apoptotic)9. The neuronal cell death induced by HI in the 

thalamus of rat pups is thus more comparable to that occurring in the cortex. In such 

cases, with autophagy and apoptosis activated in the same neuron, the autophagy may 
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perhaps trigger an apoptotic execution, as has been shown in the death of cortical 

neurons exposed to different apoptotic stimulations18. 

Both human and animal studies have demonstrated sexual dimorphism in 

neonatal cerebral hypoxia/ischemia37-40. It has been shown that there is sex-specific 

activation of cell death signaling pathways. For example cell death in females occurs 

mainly via a caspase-dependent pathway whereas in males caspase-independent 

pathways (AIF, PARP) seem to be more important players41-43. We currently work only 

with male rat pups to avoid any possible gender differences in signaling. However, in the 

human data we were obliged to use both genders because of the scarcity of available 

brain tissue. However when the HI insult is severe in rodents, there are no significant 

sex differences in the extent of brain damage41 (Fig 1B) or in the level of LC3-II 

expression (not shown)41.   

 We did not, however, address the function of the neuronal autophagy in the 

present study. Enhanced autophagy can be related to cell death in different ways. Its 

best known function is a protective reaction to maintain cell survival as has been 

described in nutrient deprivation or pathogen invasion44-46. It can also be just an 

epiphenomenon or, at the other extreme, an active player in the cell death machinery. 

Evidence for a detrimental role in cerebral ischemia is currently much stronger than that 

for a protective one23. In particular, strong evidence for a death-promoting role of 

autophagy has been deduced in several cerebral ischemia models from the 

neuroprotective effects of its inactivation, achieved not only by pharmacological means 

in numerous papers11,14,47, but also by the specific knock-down of autophagy genes in 

adult cerebral ischemia35 or their specific deletion in a conditional knockout model of 

neonatal HI10. We recently demonstrated that downregulation of the autophagy-related 
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protein Beclin1 reduced the striatal lesion in the same hypoxic-ischemic rodent model as 

in the present experiments48. Our data corroborate the study of Koike and colleagues 

(2008) showing that the hippocampus becomes resistant in mice when another 

autophagy-related gene, Atg7, is specifically inhibited in neurons after mild hypoxia-

ischemia10. Moreover we recently showed that cardiac glycosides such as neriifolin were 

able to inhibit a form of autophagic cell death, designated autosis, that occurs in the 

present model21. Our present results indicate that the neuronal death in the thalamus 

resembles autosis but has features of apoptosis as well. Of particular interest, neonatal 

hypoxic–ischemic brain damage and autophagy in rat were both strongly reduced by 

treatment with neriifolin in both cortex and thalamus21. In cases where neuronal 

enhanced autophagy promotes cell death, the cellular pathways involved can be 

various. It can trigger necrosis49,50 but more often apoptosis18,51-53. We previously 

demonstrated that some widely used apoptotic stimuli can activate autophagy flux in 

primary cortical neurons with a strong contribution to caspase-dependent (caspase-3 

activation) and -independent (AIF nuclear translocation) apoptosis18. In specific 

conditions, autophagy can also be a cell death mechanism by itself, independently of 

apoptosis or necrosis12,19,54-56. Due to its described paradoxical roles, the function of 

enhanced autophagy in cell death is still a subject of debate12,57.   

 In conclusion we have shown for the first time that autophagy is enhanced in 

thalamic neurons of human newborns with HIE as well as in a rodent model of severe 

perinatal asphyxia. We hypothesize, based on experimental results on different rodent 

models of cerebral ischemia, that autophagy could be involved in triggering neuronal 

death in the human HIE. Experimental neuroprotective strategies targeting autophagy 
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could then be a promising lead to follow for the development of future therapeutic 

approaches. 
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Figure legends 

 

Table 1:  Descriptive data of the human population. There was a significant 

difference (p< 0.05) between the two groups for the Apgar score at 1 minute, the initial 

umbilical arterial pH, the frequency of secondary apnea and of postnatal seizures. 

Interestingly, the resuscitation score according to Miller et al.15 was not different 

between the groups, strengthening the choice of the control group. The data is 

expressed as median and range, or in some cases ratio and percentage because of the 

small numbers. Some information such as Apgar score, secondary apnea and seizures 

are missing for one control case. +one missing information. *according to Miller score15. 

§p<0.05 statistically significant.  

 

Figure 1. Perinatal asphyxia induces severe neuronal injury in the thalamus of 

both rat and human neonates. 

(A) Representative images of coronal brain sections stained with cresyl violet showing 

the evolution of the lesion as sampled at four time-points: 6h, 24h, 72h and 1 week (w) 

after hypoxia-ischemia (HI). Bar = 1 cm. (B) Quantification of damaged brain tissue 24 h 

after the insult induced by 2h of hypoxia in P7 male and female rats shows a severe but 

reproducible lesion. No significant difference in the percentage of total damaged tissue 

relative to the contralateral hemisphere was found between males (74 ± 4%, n=11) and 

females (70 ± 8%, n=11). Values are mean±SD. (C) Hematoxylin-eosin (HE) stains 

reveal that the rat ventro-basal thalamus is strongly affected by perinatal HI 24h after the 

insult with the presence of cell shrinkage and pyknotic nuclei. Black rectangles 
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correspond to the higher magnifications in the ventro-basal thalamus. Bar = 200µm for 

the low resolution (left panel) and 50 µm for the higher magnifications (middle and right 

panels). (D) Cerebral MR-imaging with T2-weighted, diffusion and ADC (apparent 

diffusion coefficient) maps obtained in HIE-cases 1(a1-3), 2(b1-3) and 3(c1-3). Top row 

shows transverse T2-weighted images at 34 hours (a), 40 hours (b) and 48 (c) hours 

after birth, respectively; middle row shows the diffusion-weighted images (DWI) at the 

same times and bottom row represents the ADC maps. a1: absence of signal anomaly 

in thalamus, basal ganglia and in cortex on T2-weighted images, but a2 presents a 

restricted diffusion in thalamus (arrow) bilaterally as well as the corticospinal tract and 

both hippocampi (not seen here), confirmed on ADC maps (arrow a3). b1 shows a 

severe diffuse cerebral edema with hyperintensity in thalamus/basal ganglia and loss of 

differentiation between gray and white matter for global cortex, seen also on the DWI 

(b2) with restricted diffusion on the thalamus (short arrow) and global cortex (long arrow) 

and confirmed on ADC maps (b3). c1 shows no anomaly on this image, but additional 

corticospinal tract hyperintensities were seen on adjacent images. c2 shows restricted 

diffusion bilaterally in the posterior limb of the internal capsule (PLIC), and ventrolateral 

thalamus; restricted diffusion occurred also in the corticospinal tract (not in this image, 

but in adjacent ones). This was confirmed on ADC maps (c3). The mean ADC values 

measured on the right and left ventrolateral nucleus of the thalamus (VLNT), were 

strongly reduced in all 3 HIE cases, confirming cytotoxic edema in VLNT bilaterally. (E) 

Representative images showing that dying neurons in the VLNT of HIE cases display 

cell shrinkage and pyknotic nuclei as shown using a hematoxylin-eosin (HE) stain 

compared to control cases. Bar = 20µm.  
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Figure 2.  Hypoxia-ischemia increases the number of neuronal autophagosomes 

in the thalamus of both rat and human neonates. (A) Representative immunoblots 

and the corresponding quantification of LC3-II expression after HI in rat pups, 

demonstrating a persistent increase in autophagosomes peaking at 24h (6h: 116± 20%, 

n=13, 24h:176 ± 42% n=16, 48h: 146 ± 34%, n=17, 72h: 149 ± 31%, n=10, 1 week (w): 

156 ±  22%, n=8) compared to sham operated animals (sham P8: 100 ± 6%, n=11, 

sham P14: 128 ± 11%, n=7). Values are mean ± SD and are expressed as a percentage 

of sham P8 value. *p<0.05, *<p0.01, *** p< 0.001. Steel-Dwass test. (B) Representative 

LC3 immunoperoxidase labeling in the ventrobasal thalamus of rat pups at different time 

points indicating an increase in LC3-positive dots after hypoxia-ischemia (HI). High 

magnifications of a representative neuron in sham-operated rat and 24h after HI are 

shown. Bars = 20µm. (C) Representative LC3 immunoperoxidase labeling in the 

ventrolateral thalamus of human newborns illustrating the increase in LC3 expression in 

hypoxic-ischemic encephalopathy (HIE) cases compared to control. High magnification 

shows punctate labeling in the HIE case. Bar = 20µm.  (D) Representative confocal 

images of neurons in ventrobasal thalamus of rat pups and quantification of LC3-positive 

dots (red) in neuronal autophagosomes showing an increase (24h HI: 0.278 ± 0.069; 

sham: 0.046 ± 0.018 LC3-positive dots/neuron/µm2) at 24h after HI.  The quantification 

was performed on neurons labelled with NeuN (green) in 5 rats (20 neurons/rat). Bar = 

20µm. (E) Representative confocal images of neurons in ventro-lateral thalamus of 

human newborns, and quantifications. Left graph: numbers of LC3-positive dots in the 6 

control and 5 hypoxic-ischemic encephalopathy (HIE) cases shown individually. Right 

graph: average numbers of LC3-positive dots in control (0.028 ± 0.003) and HIE (0.328 
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± 0.035) cases. Bar = 50µm. n ≥ 50 neurons/case. Nuclei are stained with Hoechst (in 

blue). Values are mean ± SD. ** p< 0.01, *** p< 0.001. Welch ANOVA.  

 

Figure 3. Neonatal HI-induced neuronal death in the rat thalamus with autophagic 

characteristics. (A) Representative electron micrographs of neurons in sham-operated 

rat pups (right panel) and 24h after HI (middle and left panels) showing numerous 

multimembrane vacuoles (presumably autophagosomes) containing cytoplasmic 

material as illustrated at high magnifications. Bars = 1µm and 0.5μm for higher 

magnifications. m = mitochondrion, GA = Golgi apparatus and ER = endoplasmic 

reticulum. (B) Electron microscopic analyses revealed that dying neurons in the 

thalamus showed morphological features of autosis ("autophagic cell death"). Some 

dying neurons displayed numerous empty vacuoles, autophagosomes (asterisks) and 

autolysosomes (arrowheads) in the cytosol representative of autosis phase 1a. Others 

exhibited swollen parts of the perinuclear space containing membrane-bound cytosolic 

regions (arrows, phase 1b). Then, some dying neurons displayed features of phase 2 

autosis: focal ballooning of the perinuclear space, swollen organelles and rupture of the 

plasma membrane. In addition, these dying neurons also showed some morphological 

characteristics of apoptosis (chromatin condensation, shrinkage of the cytoplasm) and 

necrosis (observed in phase 2 autosis such as swelling of organelles). N: nucleus, INM: 

inner nuclear membrane, ONM: outer nuclear membrane; PNS: perinuclear space. 

 

Figure 4. Hypoxia-ischemia in the thalamus of both rat and human neonates 

increases the number and size of LAMP1-positive vesicles. (A-B) Representative 
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immunoperoxidase labeling of LAMP1 illustrating the increase in its expression after 

hypoxia-ischemia in rats (HI) (A) and in human HIE cases (B). High magnifications of a 

representative neuron are shown in each case. At 72h after HI, the positive labeling 

probably corresponds mainly to macrophages, as is suggested by the cellular 

morphology. Bar = 20µm.  (C) Confocal images of LAMP1 expression (green) in neurons 

labeled with MAP2 (red), near the periphery of the lesion in HI rat pups. Quantification of 

these data shows increases in the number of dots/neuron/µm2 (left histogram) (sham: 

0.065 ± 0.018, 24h HI: 0.302 ± 0.077) and in the percentage of large dots with respect to 

all dots (right histogram) (sham: 2.6 ± 1.3%, 24h HI: 33.6 ± 3.3%) in rat pups 24h after 

hypoxia-ischemia (HI). n=5 rats (20 neurons/rat). (D) A similar analysis showing a strong 

increase of LAMP1 dots in neurons in human HIE cases. The two histograms on the left 

represent the number of dots/neuron/µm2 (upper) and the percentage of large dots 

(>0.5µm2) (lower) in the 6 control and the 5 hypoxic-ischemic encephalopathy (HIE) 

cases shown individually. The histograms on the right represent the average numbers. 

Human newborns with severe HIE display far more LAMP1-positive dots (control: 0.033 

± 0.022, HIE: 0.261 ± 0.05) and with a much higher proportion of large vesicles (control: 

.4.2 ± 1.9%, HIE: 32.2 ± 5%). (E) Double immunolabeling against LAMP1 (in green) and 

LC3 (in red) in human newborn brain sections reveals that in HIE cases neurons with 

strong autophagic features display also numerous putative autolysosomes (shown by 

numerous large LAMP1-positive dots). Nuclei are stained with Hoechst (in blue). Bar = 

20µm. 
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Figure 5. Hypoxia-ischemia in the thalamus of both rat and human neonates 

increases the number and size of cathepsin D-positive vesicles. (A-B) 

Representative immunoperoxidase labeling of Cathepsin D (CathD) illustrating the 

increase in CathD expression after hypoxia-ischemia in rats (HI) (A) and in human HIE 

cases (B). High magnifications of a representative neuron are shown in each case. At 

72h after HI, the positive labelling probably corresponds mainly to macrophages as is 

suggested by the cellular morphology. Bar = 20µm.  Confocal images of CathD 

expression (red) in neurons labelled in green with (C) NeuN for rats  or (D) PGP9.5 for 

humans. Quantification of these data shows increases in the numbers of CathD dots. 

(C) In the rat HI model, the numbers of dots/neuron/µm2 (upper graph) are 0.039 ± 0.009 

for sham and 0.112 ± 0.031 for 24h HI. The percentage of dots >0.5µm2 with respect to 

all dots are 2.6 ± 1% for sham and 34.4 ± 4% for 24h HI. Nuclei are stained with 

Hoechst (in blue). (D) For human HIE the two histograms on the left represent the 

number of dots/neuron/µm2 (upper) and the percentage of large dots with respect to all 

dots (>0.5µm2) (lower) in the 6 control and 5 hypoxic-ischemic encephalopathy (HIE) 

cases shown individually. The two histograms on the right represent the average 

numbers. Human newborns with severe HIE display far more cathD-positive dots 

(control: 0.033 ± 0.007, HIE: 0.166 ± 0.026) with a much higher proportion of large 

vesicles (control: . 4.3 ± 1%, HIE: 28.6 ± 4%). n ≥ 50 neurons/case. Values are mean ± 

SD. *** p< 0.001. Welch ANOVA.  Bar = 20µm.  

 

Figure 6. Lysosomal activity is enhanced by cerebral hypoxia-ischemia in the 

thalamus of both rat and human neonates. Histochemistry for the activity of (A) acid 

 30 



phosphatase (AP) and (B) β-N-acetylhexosaminidase shows an increase in the number 

of positive dots. Bar = 20µm. (C) Representative immunoblots for p62/SQSTM1 and the 

corresponding quantification, showing that p62 expression in the rat thalamus is 

significantly reduced 24h after hypoxia-ischemia (HI) (sham: 100 ± 7%, n = 9; 24h HI: 65 

± 17%, n = 8). Values are mean ± SD and are expressed as a percentage of sham 

value. *** p< 0.001. Welch ANOVA. (D-E) Representative confocal images of p62 (in 

green) and lysosomal markers (LAMP1 and cathepsin D (cathD) in red) (D) in the rat HI 

model and (E) in human newborns with severe hypoxic-ischemic encephalopathy (HIE) 

confirming that HI induces a decrease in p62 expression (and no p62 accumulation) in 

neurons displaying strong autophagic features. Nuclei are stained with Hoechst (in 

blue). Bar = 20µm. 

 

Figure 7. Caspase-3 positive neurons are highly autophagic in the thalamus of 

both rat and human neonates after hypoxia-ischemia. (A) Representative 

immunoblots for cleaved caspase-3 and α-fodrin in rat thalamic extracts and the 

corresponding quantifications demonstrate that hypoxia-ischemia (HI) triggers caspase-

3 activity as shown by an increase in both its cleaved active form (17kDa) (6h: 671 ± 

477%;  24h: 2135 ± 1325%; 48h: 2826 ± 1502%; 72h: 3236 ± 2430%) and the caspase-

3-dependent cleavage of α-fodrin (120kDa) (6h: 153 ± 49, 24h: 388 ± 295%; 48h: 438 ± 

326%; 72h: 448 ± 236%) (Steel-Dwass test). Immunoblots for α-fodrin also indicate an 

HI-induced activation of calpains as suggested by the high level of the calpain-

dependent cleavage product (150kDa) (6h: 766 ± 487%; 24h: 1268 ± 573%¸48h: 1259  ± 

494%; 72h: 1037  ± 841%) (Tukey-Kramer test). Values are mean ± SD. *p<0.05, *** p< 

0.001. (B) Representative images of immunoperoxidase labeling against cleaved 
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caspase-3 confirm a strong activation of caspase-3 after HI in the rat ventro-basal 

thalamus at 6, 24 and 72h. (C) Peroxidase immunohistochemistry against cleaved 

caspase-3 (in brown) followed by a Nissl stain (in purple) reveals that human HIE brains 

expressed numerous caspase-3-positive neurons (arrows) with highly condensed and 

pyknotic nuclei (high magnification) compared to control newborns. Bar = 20µm.  (D-E) 

Confocal images showing LAMP1 (in green) and cleaved caspase-3 (in red) distribution 

and the corresponding quantifications illustrating that caspase-3 positive neurons show 

a high number of LAMP1-positive dots (upper graph) with a strong proportion of large 

ones (>0.5µm2) (lower graph) in both (D) the ventro-basal thalamus of rat pups 24h after 

hypoxia-ischemia (HI) and (E) the ventrolateral thalamus of human newborns with 

severe hypoxic-ischemic encephalopathy (HIE cases, n=5). The numbers of LAMP1-

positive dots (0.29 ± 0.1 dots/µm2 for rat; 0.23 ± 0.09 dots/µm2 for human) and the 

percentage of dots >0.5µm2 (32 ± 9% for rat; 27 ± 10% for human) per neuron 

expressing cleaved caspase-3 are not significantly different (p>0.05) from the average 

values obtained in overall neurons after HI (0.30 ± 0.08 dots/µm2 and 34 ± 3% for rat; 

0.26 ± 0.05 dots/µm2 and 36 ± 3% for human). Nuclei are stained with Hoechst (in blue). 

Values are mean ± SD. Welch ANOVA. n ≥ 20 neurons per rat or per human case. Bars 

= 20µm.  

 

Figure 8. TUNEL-positive neurons are highly autophagic in the thalamus of both 

rat and human neonates after hypoxia-ischemia. (A) Representative images of 

peroxidase revelation of TUNEL staining following HI demonstrate that neonatal HI 

strongly increases the number of TUNEL-positive cells at 24h after HI. Black rectangles 
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correspond to the higher magnifications in the ventro-basal thalamus. Bar = 100µm. (B) 

Confocal images of LAMP1 expression (in red) combined with a TUNEL stain (in green) 

and corresponding quantifications demonstrate that TUNEL-positive neurons of the rat 

ventro-basal thalamus 24h after hypoxia-ischemia (HI) show an increased number of 

LAMP1-positive dots (upper graph, 0.33±0.14 dots/µm2) with a strong percentage of 

large dots (>0.5µm2) (lower graph, 26.43±12.09%) which are not statistically different 

compared to the overall HI neurons (0.30±0.08 and 34±3% respectively).  Bar = 20µm. 

Nuclei are stained with Hoechst (in blue). (C) Confocal images showing cathepsin D 

(cathD, in red) combined with a TUNEL stain (in green) and the corresponding 

quantifications demonstrating that TUNEL-positive neurons in the ventrolateral thalamus 

of human newborns show numerous cathD-positive dots (upper graph, 0.18±0.03 

dots/µm2) with a strong proportion of large ones (>0.5µm2) (lower graph, 26.57±7.45%) 

in severe hypoxic-ischemic encephalopathy (HIE cases, n=5), although the numbers are 

not statistically different (p>0.05) from the average value obtained in overall neurons 

after HI (0.16 ± 0.03 dots/µm2 and 28.57 ± 3.71% respectively).  Values are mean ± SD. 

Welch ANOVA. n ≥ 20 neurons/rat or case. Bars = 20µm.  
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Groups HIE 
(n=5) 

Control 
(n=6) 

p values 

Gestational age (days)  
median  
range  

 
277 

268-287 

 
272.5 

250-290 

 
0.712 

Birthweight (g)  
median  
range  

 
3180 

2610-3440 

 
3255 

2240-4070 

 
0.537 

Apgar 1 min  
median  
range  

 
0 

0-1 

 
2+ 
1-7 

 
0.029§ 

Apgar 10 min  
median  
range  

 
4 

1-6 

 
5+ 
0-8 

 
0.673 

Umbilical art pH  
median  
range  

 
6.83 

6.7-6.99 

 
7.28+ 

7.23-7.32 

 
0.019§ 

Lactate mmol/l  
median  
range  

 
17 

16-21 

 
16+ 
3-21 

 
0.596 

Time of death after birth (h)  
median  
range  

 
44 

20-171 

 
13+ 

1-672 

 
0.143 

Res score*  
median  
range  

 
6 

5-6 

 
6+ 
5-6 

 
0.600 

Gender n (%)  
female  
male  

 
1 (20) 
4 (80) 

 
3 (50) 
3 (50) 

 
0.545 

Secondary apnea n (%)  5 (100) 1 (20)+ 0.047§ 

Seizures n (%)  4 (80) 0(0)+ 0.048§ 
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