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In the absence of extrinsic disorder, the mobility of charge carriers in top-quality organic 

field-effect transistors (FETs) is expected to increase upon lowering the temperature T.[1-10] 

Such a behavior is analogous to that observed in inorganic semiconductors, exhibiting 

conventional band transport, where charge carriers are described by wave packets undergoing 

rare scattering events. In organic semiconductors based on small conjugated molecules, 

however, the underlying physics is different and poorly understood microscopically.[11, 12] 

Even in the best single-crystals, the estimated carrier mean free path at room temperature is 

comparable to the lattice spacing,[10, 13] which prevents the use of the band picture. Indeed, 

thermal molecular vibrations induce very large fluctuations in the inter-molecular hopping 

integrals[5, 14] that – on the much faster time scales characteristic of electronic motion – are 

experienced as strong static disorder, and cause Anderson localization.[15] On a longer time 

scale, the localized carriers can still propagate, driven by the molecular dynamics.[5, 10, 16] In 

this scenario (referred to as “band-like transport”[17, 18]), the mobility increases as T is lowered, 

because the amplitude of the molecular motion – and hence the hopping integral fluctuations 

– are smaller at lower T, resulting in a longer localization length.[7, 13, 16] At very low 

temperature, when the localization length eventually becomes much longer than the lattice 

spacing, true band transport is expected.[9, 19] However, this regime is not reached in the 
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experiments even in organic FETs based on the highest quality molecular single crystals: as T 

is lowered below a temperature T* (that is material and device dependent), extrinsic sources of 

disorder contribute to localize carriers, causing a drastic suppression of their mobility.[17, 20-22]  

 

To access the intrinsic transport properties of organic FETs in a broad temperature range – as 

it is essential to gain a true microscopic understanding of the band-like transport regime – 

materials and devices are needed, which are less affected by extrinsic disorder. This is 

difficult, because it is not yet established what the dominant sources of disorder in high-

quality organic single-crystal FETs are. Nevertheless, useful information has been obtained 

from comparative studies of organic FETs with different gate dielectrics, which have shown 

how the coupling of charge carriers to their polarizable environment strongly enhances the 

tendency towards carrier localization.[23-28] Different microscopic mechanisms may play a role, 

such as the formation of interfacial polarons,[25, 26] electrostatic fluctuations generated by 

dipolar disorder,[23, 28] interplay between disorder and the effect of electrical polarizability,[24, 

27] etc. Despite the differences, all of these mechanisms share a common aspect: disorder and 

the tendency towards localization originate from – or are enhanced by – the electrostatic 

interaction between a charge carrier in the channel and nearby charges, either unintentionally 

present, or due to polarization effects (e.g., image charges in the dielectric or in the 

semiconductor itself).  

 

Based on this concept, we have recently proposed structure-property relationships which are 

expected to favor the occurrence of band-like transport in high mobility molecular 

semiconductors.[21] The most transparent of these relations holds for organic crystals of 

molecules consisting of identical conjugated cores (that, in a crystal, are π-stacked to form the 

conducting crystalline planes), functionalized with chains (that determine the spatial 

separation between adjacent conducting crystalline planes). Our prediction is that the 

molecules with the longest substituents lead to a more pronounced band-like transport, with 

the carrier mobility increasing down to a lower temperature T* (a conclusion that holds under 

the assumption that changing the ligands does not significantly modify the crystal packing of 

the conjugated molecular cores). Indeed, longer core substituents increase the spatial 

separation between the charge carriers in the FET channel – that reside on the conjugated 

cores – and other charges in the system that contribute to enhance extrinsic disorder. Since all 

electrostatic interactions decrease with increasing distance, a larger spatial separation results 

in a weaker electrostatic coupling and, hence, smaller disorder strength.  



   

3 

 

Here, we validate this idea with a set of transport experiments (and their quantitative analysis) 

on FETs realized on single crystals of two perylene derivatives, PDI3F and PDI5F (Figure 1). 

These core-cyanated molecules [N,N’-bis(R)-(1,7 and 1,6)-dicyanoperylene-3,4: 9,10-

bis(dicarboximide)] have the same conjugated core but two different substituents on the 

nitrogen atoms: R = CH2C3F7 for PDI3F (also known as PDIF-CN2
[29, 30]); R = CH2C5F11 for 

PDI5F. We find that in the temperature range where the mobility increases upon lowering T – 

i.e., when transport is determined by the intrinsic properties of the materials – FETs of both 

molecules exhibit virtually identical mobility values. In the devices based on the molecule 

with shorter side ligands, however, the mobility starts decreasing at a higher temperature. The 

effect is very reproducible, and the analysis of the full temperature dependence of the mobility 

is quantitatively consistent with the original idea, namely that the longer ligand length 

contributes to suppress extrinsic disorder generated by charges located outside the FET 

channel. These results provide important microscopic insights on the effects of the molecular 

and crystal structure on the performance of organic FETs. They also give information about 

the microscopic origin of extrinsic disorder limiting transport in high-quality organic 

transistors. 

 

Although the underlying idea – comparing the temperature dependent mobility in transistors 

based on two different, but similar, molecules – is straightforward, the experiments are 

challenging, because of the very stringent conditions that they impose on the molecules to be 

used. First – and obviously – devices need to be realized in which the band-like transport 

regime is experimentally visible. Many different molecules with the structural motif of non-

conjugated ligands of variable length attached to π-conjugated molecular cores have been 

used to realize organic FETs, such as Cn-BTBT,[31] Cn-DNTT,[32] Cn-BDT,[33] and PTCDI-

Cn,
[34] and band-like transport in single-crystal FETs has been reported in rare cases.[35, 36] 

However, experimental reproducibility is an issue:[37] to detect the change in behavior induced 

by a small change in the length of the molecular ligands, highly reproducible measurements 

on many devices are needed, to ensure that differences are not just originating from small 

statistics and sample-to-sample fluctuations.  

 

Band-like transport together with a high level of experimental reproducibility for single-

crystal FETs of organic semiconductors has been achieved only with a few materials,[17, 20-22, 

38] always using crystals grown by physical vapor phase transport (VPT). Among these 
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materials, core-cyanated perylenes are an excellent choice for this study as functionalization 

of the nitrogen atoms with various substituents could access a library of derivatives. We 

therefore started by synthesizing four PDIR-CN2 derivatives having R = CH2CF3 (PDI1F), R 

= CH2C3F7 (PDI3F), R = CH2C5F11 (PDI5F), R = CH2C7F15 (PDI7F). In the case of PDI1F 

and PDI7F, purification of the synthesized molecules proved to be extremely difficult. Only 

small amounts of these molecules could be produced with sub-optimal purity, and single 

crystals grown by VPT were irregularly shaped and showed poor, irreproducible FET 

characteristics (for these molecules, the same problems had been found previously in thin film 

devices[39]). For PDI5F, on the contrary, sufficiently large quantities of high-purity materials 

could be synthesized, enabling the growth of well-shaped crystals leading to highly 

reproducible, high-mobility OFETs (see below).  

 

Having identified two molecules with the desired structural motif that enable the reproducible 

observation of band-like transport in single-crystal OFETs, we have checked that the 

molecular core packing in bulk crystals is approximately the same in the two cases. Indeed, it 

often happens that drastic differences in the structure of molecular crystals – leading to large 

changes in orbital overlaps and in their fluctuations, i.e. precisely those parameters which 

govern charge transport – are caused by seemingly small changes in the constituent units.[40] 

By means of thorough X-ray diffraction measurements, we have resolved the crystalline 

structure of the two materials (see Figure 1 and Experimental Section), from which we 

conclude that the structural differences between PDI3F and PDI5F crystals do not lead to very 

significant changes in the relevant transport parameters. Variations in the transfer integrals 

and in their dynamical fluctuations could arise from differences in the inter-molecular 

separation, the translational displacements of the perylene cores of adjacent molecules,[41, 42] 

and in relative orientation. However, in PDI3F and PDI5F crystals, the minimum π-π stacking 

distance d(π-π)min differs by less than 0.5 % (3.358 Å in PDI3F and 3.343 Å in PDI5F). As for 

differences in translational displacement of perylene cores in the two crystals, this is at most 

0.2 Å, much smaller than the size of a benzene ring. Finally the α, β, and γ angles defining the 

unit cell are the same for PDI3F and PDI5F within approximately 3 %. Therefore, also on the 

basis of the crystalline structures, the two molecules appear to be ideally suited to investigate 

the influence of the ligand length on band-like transport in organic semiconductors. 

 

We have realized many FETs of PDI3F and PDI5F by laminating thin VPT-grown single-

crystals on so-called air-gap PDMS stamps[43] (see Figure 1d and 1h), Cytop, and PMMA gate 
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dielectrics, using techniques that are by now well-established and characterized[44] (see 

Supporting Information). All these devices show virtually ideal electrical characteristics (see 

Figure 2a,b for PDMS stamps), no hysteresis and an essentially gate voltage-independent 

carrier mobility � = �
��

��
��	
  (see Figure 2c,d for devices on PDMS stamps; Ci is the 

capacitance per unit area and σ is the Vgs-dependent electrical conductivity measured in a 

four-terminal configuration – to eliminate possible contact effects). The data also show that 

the reproducibility of the temperature dependence of the mobility in different devices is 

excellent for both molecules (see Figure 2e,f for PDMS stamps and Supporting Information 

for devices on Cytop and PMMA), which allows us to reliably compare and analyze the µ(T) 

curves measured on the two materials. We first discuss the qualitative aspects of the data and 

then move on to a more quantitative analysis. 

 

Figure 3a-c show the experimentally determined µ(T) for PDI3F (full squares) and for PDI5F 

(open circles), with vacuum (a), Cytop (b), and PMMA (c) gate dielectric (in each case the 

data are obtained by averaging measurements on approximately five different, but nominally 

identical, devices). The mobility decreases with increasing the dielectric constant of the gate 

insulator, as expected, and in all cases band-like transport remains visible in part of the 

temperature range investigated. Noticeably, Figure 3a shows that throughout the temperature 

interval where µ increases with decreasing T the mobility measured on single-crystal FETs of 

the two molecules essentially coincide. This observation shows that in the regime where the 

experiments probe the intrinsic material properties, the two materials do behave identically, 

consistently with the nearly identical packing of the conjugated molecular cores in the two 

crystals. Deviations in the behavior of the two molecular materials, however, become 

increasingly pronounced in the range where µ decreases upon decreasing T, i.e., when the 

transport properties are determined by extrinsic disorder.[10] Specifically, we observe that for 

PDI5F, the temperature T* at which µ is maximum is always lower than for PDI3F (for air-

gap FET, by as much as ~40 K), and that at low temperature, the mobility is higher than for 

PDI3F. Indeed, this is the behavior that we had anticipated: the disorder experienced by 

charge carriers is different in crystals with constituent molecules having different chain 

lengths, and is effectively smaller for longer substituents.  

 

For a more quantitative analysis we fit the experimental data using a phenomenological 

mobility edge model that we have developed in the past to describe band-like transport in 
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organic single-crystal FETs,[20] and that has been thoroughly tested.[21, 22] The model describes 

(see Supporting Information) the electronic properties of the organic materials in terms of a 

band of delocalized states, whose intrinsic mobility is given by µ(T) = α·T -2 [5, 10] and by a 

Gaussian tail of states at energies below the band edge, in which carriers are assumed to be 

fully localized and not to contribute to transport. The device-dependent fitting parameters are 

the density of states in the tail Nt, and the width of the Gaussian tail Et, which is a measure of 

the strength of disorder (Et = 0 corresponds to having no localized states, and hence no 

disorder). The value of α is fixed once and for all, and taken to be the same (α = 3.5·105 

cm2
·K2/V·s) for all devices analyzed – approximately 30 – irrespective of the molecule and of 

the gate dielectric, since it describes an intrinsic property of the crystalline planes formed by 

the perylene cores that are the same in all cases (the density of states in the band also enters 

the model, and is assumed to be the constant, equal to the density of molecules at the surface, 

divided by the electronic bandwidth ~0.5 eV). Analyzing the data in this way is crucial to 

properly take into account experimental factors that have a strong influence on the µ(T) curve, 

such as the carrier density at which the measurements are performed (the carrier density is 

different in air-gap as compared to Cytop and PMMA devices, owing to the different 

breakdown field and dielectric constants of the different device structures).  

 

The model fits well nearly all the µ(T) curves measured on individual transistors, with the 

band-tail width Et playing the most crucial role in determining the device behavior. The 

excellent agreement with the data is shown in Figure 3a-c, where the continuous lines 

represent the best fits to the averaged µ(T) curves measured for PDI3F and for PDI5F air-gap, 

Cytop, and PMMA transistors. The results of the data analysis are illustrated in Figure 4. 

Figure 4a shows the temperature T* at which the mobility is maximum as a function of the 

value of Et extracted by fitting the µ(T) curve, for each individual device. Clearly, T* is 

smaller for smaller Et, as expected: band-like transport is seen down to lower temperature in 

devices where the width of the band tail – hence the strength of disorder – is smaller. Much 

more importantly, Figure 4a shows that the values of Et extracted from any PDI5F device is 

always smaller than the value of Et obtained from PDI3F devices on the same dielectric (see 

also Figure 4b for the T* vs. Et relation averaged over different devices). This systematic 

behavior is summarized in Figure 4c, which shows the average values of Et for the different 

dielectrics, for both PDI3F (full squares) and PDI5F (empty circles). Finding such a 

systematic behavior excludes that sample-to-sample variations are responsible for our 

observations. We therefore conclude that the chain length does have a clear effect on the 
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disorder strength (quantified by Et), and influences the tendency of the material to show band-

like transport (as quantified by T*). Indeed, extending the chains in PDI3F by two C2F4 units 

systematically lowers T* by approximately 30-40 K in air-gap devices. 

 

It is also apparent from Figure 4b that, at a quantitative level, changing the side chain length 

has an effect comparable to a change in the gate dielectric: the value of Et for PDI3F on air-

gap devices is approximately the same as that in PDI5F FETs on Cytop, and for PDI3F 

devices on Cytop, Et nearly coincides with the value for PDI5F on PMMA. Finding 

systematically comparable magnitudes of Et suggests a common origin of disorder in all cases. 

For FETs with polymeric gate dielectrics, such as PMMA and Cytop, disorder is largely due 

to potential fluctuations generated by permanent, randomly oriented electrical dipoles that are 

present on the monomer units of the polymeric dielectric (the so-called dipolar disorder[23, 28]). 

We attribute also the disorder measured on air-gap devices to potential fluctuations generated 

by charges adsorbed at the crystal surface (see Figure 4d,e for a schematic representation). 

We can then check whether the order of magnitude of Et in all different cases (different 

dielectrics and different substituent lengths) is consistent with this hypothesis. 

 

To this end, we first determined theoretically the potential fluctuations induced by a random 

distribution of charged impurities placed on the surface of the organic crystal, at a distance d 

from the molecular cores (for air-gap devices, charges present in adsorbates at the surface are 

the dominating source of potential fluctuations). Following Ref. [45], the resulting electrical 

potential in the conducting channel is statistically distributed with an energy spread ∆�
 

∆�
� = 2�	����(��/�̃)����(2�� )!�"
�(1 + 2�� ) − 1&, (1) 

which depends crucially on the channel-impurity distance d. Here Q and nimp are the charge 

and density of impurities, �̃ = (� + �')/2 the effective dielectric constant of the interface, 

with � and �'	referring to the organic crystal and to the gate insulator, ��(()	is the exponential 

integral function and �� the inverse screening length characterizing the screening by mobile 

charges in the channel (see Supporting Information). Eq. 1 shows that ∆�
 is a decreasing 

function of the distance d, which is proportional to the chain length. Longer substituents 

therefore result in a reduced amount of extrinsic disorder.  

 

For a quantitative comparison of different devices, we use the same impurity density 	���� in 

all cases, whose value we determine experimentally by assuming that the width Et of the 

states in the band tail of our phenomenological model is proportional to the spread of potential 
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fluctuations ∆�
. Moreover, we identify ∆�
= Et, as any proportionality factor would have the 

only effect of changing the estimated value of	���� , without affecting the comparison of 

different devices. Taking Q=e, the distance d equal to half the interlayer spacing c in the 

molecular crystal (see Figure 4d), the inverse screening length	�� = 0.02	Å,�  as a 

representative value in the explored temperature and density range, and	� = 3 we obtain nimp 

= 1.1*1011 cm-2 from the experimental value Et = 33.0 meV for PDI5F/air-gap devices. Using 

the same parameters and the length d appropriate to PDI3F/air-gap devices yields Et = 36 

meV, in good agreement with the experimental value Et = 38.2±1.5 meV.  

 

Following the same approach, we include dipolar disorder in devices with polymer gate 

insulators. It can be shown (it will be discussed in detail elsewhere) that the potential 

fluctuations originating from randomly oriented dipoles uniformly distributed in a polymer 

placed at a distance d from the conducting channel have a spread 

 ∆���= ./
0
12�3
�

45
67 ,  (2) 

where δ is the elementary dipole in a monomer unit, ndip is the density of monomers and e the 

electron charge (since potentials from randomly oriented dipoles are already short ranged,[28] 

screening by mobile charges in the channel can be neglected). As expected, dipolar disorder is 

also a decreasing function of the distance d. For a comparison with experiments, the case of 

PMMA dielectric is particularly useful, because the values of δ=1.97D and ndip = 7.1·1021 cm-

3 are known from the literature,[28] yielding ∆���= 44 meV for the PDI5F/PMMA device, and 

∆���= 48 meV for PDI3F/PMMA. The potential fluctuations generated by the dipoles in the 

dielectric add to those due to charges adsorbed at the crystal surfaces that we obtained from 

the analysis of air-gap devices (where now the appropriate dielectric constant has to be used 

in Equation 1), resulting in a total spread ∆898= .∆�
� + ∆����  of potential values. The 

resulting values are ∆898=	48 meV and ∆898=	53 meV respectively, in very good agreement 

with the experimental values �8 =	 47.7±0.8 meV and �8 =	 57.5±1.6 meV. These 

considerations indicate that the estimated strength of the disorder experienced by the charge 

carriers is consistent with electrostatic potential fluctuations generated by charges present 

outside the FET channel, which we conclude to be the dominant sources of disorder. 

Consistently with this conclusion, the strength of disorder decreases upon increasing the 

substituent length and the magnitude of the effect matches quite precisely our theoretical 

estimates.  
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These findings validate our initial assumption on the role of the core substituents in 

facilitating the experimental observation of band-like transport. They also identify 

electrostatic potential fluctuations as the dominant source of extrinsic disorder in high-quality 

organic single-crystal field-effect transistors. We want to emphasize the “universality” of 

these electrostatic interactions, which implies that the physical mechanisms that we have 

discussed here are insensitive to details and are therefore relevant more in general (i.e., not 

only in high-quality single-crystal devices). For instance, it has been repeatedly reported in 

the past that the deposition of self-assembled organic monolayers on SiO2 substrates used for 

the realization of organic thin-film transistors resulted in improvements of the carrier 

mobility.[32, 46, 47] We believe that the results reported here provide an explanation of the effect 

(which had often been tentatively attributed to an improved morphology of thin films 

deposited onto substrates coated with monolayers), since the role of the self-assembled 

monolayers is to space away the charges unavoidably present in the SiO2 gate dielectric from 

the FET conducting channel. This is just an example, and we anticipate that owing to the 

universality of the phenomenon, the mechanisms illustrated here will play a role in many 

other molecular systems with the same structural motif.  

 

Experimental Section 

Due to their extensive length, details on the synthesis of the molecules, on crystal growth, 

device fabrication, electrical measurements and on the fitting of the µ(T) data, as well as a 

comprehensive discussion on the theoretical analysis are presented in the Supporting 

Information. The crystal structures of the two molecular crystals relevant for this study are 

presented below: 

PDI3F (C34H10F14N4O4):  

Mr=804.46; triclinic, P-1; a=5.2320(14), b=7.638(2), c=18.819(5) Å; α=92.512(5), 

β=95.247(5), γ=104.730(4)°; V=722.522 Å3;  

PDI5F (C38H10F22N4O4): 

 Mr=1004.50; triclinic, P-1; a=5.2983(4), b=7.2482(5), c=23.5708(17) Å; α=95.293(6), 

β=94.274(6), γ=105.082(5)°; V=865.704 Å3.  
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Figure 1. Chemical structure and molecular packing of PDI3F (a,b,c) and PDI5F (e,f,g). 
Panels (b) and (f) show the minimum π-π stacking distance that is the same (within 0.5 %) in 
the two materials. Panels (c) and (g) illustrate how the separation of the conducting planes 
formed by the conjugated molecular cores is determined by the chain length. Panels (d) and 
(h) show optical microscope images of single crystals of PDI3F and PDI5F molecules on 
PDMS air-gap stamps with a 10 µm recessed gate; the scale bar is 100 µm.  
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Figure 2. Room temperature transfer characteristics of single-crystal air-gap PDI3F (a) and 
PDI5F (b) OFETs for VDS = 5, 10, 15, 20, 25 V (the channel length is approximately 200 µm). 
Panels c) and d) show the corresponding gate voltage dependence of the mobility (PDI3F (c) 
and PDI5F (d)) at different temperatures. Above the threshold region, the mobility does not 
significantly depend on VGS. The temperature-dependence of µ for several air-gap devices of 
PDI3F and PDI5F is shown in panels e) and f), from which the high reproducibility of the 
measurements and the value of T* can be inferred. The solid lines represent the mobility 
averaged over all samples.  
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Figure 3. Averaged temperature dependent mobility �̅(;) of PDI3F (full squares) and PDI5F 
devices (open circles) with vacuum (a), Cytop (b) and PMMA (c) gate dielectrics. Panel (a) 
shows that in the intrinsic regime – i.e., in the range where µ increases upon lowering T – µ 
nearly coincides for both molecules, while deviations in µ(T) become larger in the activated 
regime below T* (indicated by the arrows). The continuous lines are fits to �̅(;) by the model 
discussed in the main text. The different T-ranges for air-gap, Cytop and PMMA devices are 
due to cracking of crystals on Cytop and PMMA at higher T (due to differences in the thermal 
expansion coefficient of the substrates and the organic material). Panel (d) schematically 
illustrates the energy dependent density of states assumed by the model. The two Gaussian 
curves indicate that, for any given dielectric, the width of the disorder-induced band tail is 
different for PDI3F and PDI5F.  
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Figure 4. (a) Plot of T* versus Et extracted from the µ(T) curves of all FETs investigated on 

PDI3F (full squares) and PDI5F (open circles) with vacuum (blue), Cytop (red) and PMMA 
(green) as gate dielectrics. The errors on Et represent the uncertainties originating from the 
fitting procedure, while the T* is mainly determined by the flat maximum in the µ(T) curves. 
(b) Relation between Et and T*, obtained by averaging the data from all individual devices, 
shown in (a). Panel (c) shows that on each gate dielectric, the value of Et (averaged over all 
devices) is systematically smaller for PDI5F (open circles) as compared to PDI3F devices 
(filled squares): extending the chains in PDI3F by two C2F4 units decreases Et by an amount 
comparable to a change in gate dielectric. Panels (d) and (e) schematically illustrate the 
mechanism giving the largest contribution to the disorder experienced by the charge carriers: 
charged particles unintentionally present at the crystal surface (not to scale; the density of 
surface charges is approximately 10-4/molecule) generate fluctuations of the electrostatic 
potential Φ in the FET channel (e), which localize charge carriers. 
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Supporting Information  

 

1. Experimental 

Synthesis of mixture of N, N’-bis(1H, 1H-perfluorohexyl)-1,7&1,6-dibromoperylene-3,4:9,10-

bis- (dicarboximide) (PDI5F-Br2): The mixture of 1,7-dibromoperylene-3,4:9,10-

tetracarboxylic dianhydride and 1,6-dibromoperylene-3,4:9,10-tetracarboxylic dianhydride 

(2.83 g, 5.14 mmol) in 1-methyl-2-pyrrolidinone (NMP) (64 ml) was sonicated for 30 min 

before successive addition of a solution of 1H, 1H-perfluorohexylamine (5 g, 16.7 mmol) in 

NMP (43 ml) and acetic acid (2.0 ml). The mixture was stirred at 90 oC for 41 h. After 

cooling down, the mixture was concentrated to ~20 ml and then precipitated into methanol 

(100 ml). The precipitates were collected by filtration, washed by methanol and dried to give 

a black solid. Further purification by column chromatography with chloroform as the eluent 

gave a red solid (4.51 g, yield 79%). 1H NMR (CDCl3, 500 MHz): δ 9.57-9.52 (m, 2H), 9.03-

8.98 (m, 2H), 8.81-8.76 (m, 2H), 5.11-5.00 (m, 4H). Elemental Analysis for 

C36H10Br2F22N2O4: Calcd. C 38.88, H 0.91, N 2.52; Found: C 38.98, H 1.01, N 2.60. 

 

Synthesis of mixture of N, N’-bis(1H, 1H-perfluorohexyl)- 1,7&1,6-dicyanoperylene-3,4:9,10-

bis- (dicarboximide) (PDI5F-CN2): CuCN (2.00 g, 22.4 mmol) was added to the mixture of 

the above dibromoperylene (6.18 g, 5.56 mmol) and DMF (282 ml). The mixture was heated 

to 150°C and stirred for 24 hr. After cooling down, filtered and washed with MeOH several 

times. The crude brown solid (5.41 g) was purified by vacuum sublimation twice at 310 oC 

under  5 × 10-5 torr to give a red solid (1.05 g, yield 18%). The solubility is too low for NMR. 

Elemental Analysis for C38H10F22N4O4: Calcd. C 45.44, H 1.00, N 5.58; Found: C 45.35, H 

1.00, N 5.45. 
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Crystal growth: 

Single crystals of PDI3F and PDI5F were grown by vapor phase transport in a flow of 

ultrapure argon gas at a sublimation temperature of approximately 290 °C. Most crystals were 

platelet-like, with typical dimensions of 100-200 µm width and ~ 300-500 µm length, were 

highly uniform and showed smooth surfaces. Crystals used for electrical measurements were 

re-crystallized in order to minimize impurities. 

 

Device fabrication: 

Polydimethylsiloxane (PDMS) air-gap stamps were prepared according to previously reported 

procedures[S1] by pouring a 10:1 w/w solution of base:curing agent onto a pre-fabricated SU-

8/25 photoresist mould (10 µm thickness) with subsequent baking in an oven for 24 hours at 

100°C. 3/20nm of Ti/Au was evaporated in an e-beam evaporator (p = 5·10-8 mbar) at 0.1 

nm/s to form (electrically isolated) source, drain and gate contacts as well as voltage probes. 

The field-effect transistors were completed by manually laminating single crystals onto the 

pre-fabricated contacts using the hair of a fine brush. Cytop and PMMA substrates were 

fabricated as in Ref. [S2] by spin-casting the dissolved polymers onto heavily doped Si wafers 

with a 290 nm layer of thermally grown SiO2 and subsequent baking on a hot plate. The 

thickness of the baked layers (typically around 50 nm for Cytop and 200 nm for PMMA) were 

measured with a surface profiler and showed high homogeneity. The capacitances of the 

SiO2/polymer dielectrics were determined in a parallel-plate geometry using an Agilent 

4284A LCR meter and coincided with the calculated values. 15 nm thick Au contacts were 

evaporated onto the substrates using SU8 shadow masks. In all devices, the channel length 

varied between 160 and 240 µm, and the channel width was determined by the width of the 

crystal used (typically ~100 µm) 

 

Electrical measurements: 

Electrical measurements were performed using an Agilent E5270B parameter analyzer in the 

vacuum chamber (p = 5·10-7 mbar) of a helium flow cryostat. Special attention was given to 

the variable temperature measurements in order to ensure temperature stability and minimize 

the probability of crystal cracking at high temperature (on PMMA and Cytop devices, crystal 

cracking at low temperature appears to be unavoidable): the devices were cooled at a constant 

slow rate of 0.5 K/min and the temperature was stabilized for 10 minutes prior to every 
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measurement. The set temperature was varied in steps of 10 K. The drain-source bias used to 

determine the four-terminal linear FET mobility was VDS = 5 V.   

 

Temperature-dependence of the mobility for Cytop and PMMA FETs 

As we repeatedly mentioned in the main text, having an excellent reproducibility of the 

temperature dependence of the mobility in different devices is essential to compare the 

behavior of single-crystal based on PDI3F and PDI5F. In the main text we have shown 

(Figure 2) the reproducibility of the µ(T) curves measured on air-gap devices, for both of 

these molecules. Here, in Figure S1, we show data of the linear field-effect mobility µ(T) 

obtained from four-terminal measurements on several PDI3F single crystal FETs on Cytop 

(Figure S1a) and PMMA (Figure S1b) gate insulators, as well as the corresponding data for 

PDI5F devices (Figure S1c,d). The solid gray lines are the average T-dependent mobility 

�̅(;) shown in Figure 3b,c of the main text. The data clearly indicate that, as in the case of 

air-gap devices, PDI3F and PDI5F devices with Cytop and PMMA gate dielectrics also show 

extremely high reproducibility of the µ(T) curves, as compared to most organic FETs reported 

in the literature. 

 

2. Fitting of the µ(T) data 

In order to fit the µ(T) data, we use a phenomenological mobility edge model where the 

density of states (DOS) consist of a band in which electrons move with an intrinsic mobility 

µ0(T)=α·T -2 (α = 3.5·105 cm2K2V-1s-1 is the same in all cases) and of a band tail caused by 

disorder in the crystal and in the environment, in which electrons are localized. Nt and Et are 

the height and width of the Gaussian-like distribution of tail states =8(�) = =8 ∙ !(?	(− @A
�@BA) 

below the conduction band (CB), where the DOS is taken to be N0 = 1015 cm−2eV−1 

(corresponding to the density of molecules at the surface divided by the bandwidth, which is 

approximately ~0.5 eV). In practice, µ(T)=µ0(T)·nb(EF)/ntot is calculated by first evaluating 

the position of the Fermi energy EF(T) for a given density of states numerically and then 

determining the fraction of occupied CB states nb(EF)/ntot. The fit to the µ(T) data is done by 

varying the height and width of the trap distribution (see Refs. [S2-S4] for further details on 

the model).  
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3. Theoretical analysis 

In the main text we have considered potential fluctuations originating from charged 

impurities unintentionally present at the surface of the organic material, as well as from 

dipoles in the gate insulator. We have shown that such electrostatic effects can explain (at a 

rather good quantitative level) the observed changes in the disorder parameter Et extracted 

from experiments on the whole series of devices studied. Here we provide some details on the 

theoretical analysis, and discuss other microscopic mechanisms that we considered and found 

to be incompatible with the experimental observations, or that do not to play a relevant role.  

 

3.1 Microscopic estimates of potential fluctuations 

To determine the spread of potential fluctuations in the conducting channel of our single-

crystal FETs (i.e., the outermost plane of conjugated cores of PDI3F/PDI5F molecules) we 

assume a random distribution of charged adsorbates located at the surface, i.e. at a distance d 

from the channel (with d = c/2 equal to half the inter-layer distance in the crystal structure). 

The result [S5] is Eq. (1) of the main text. It depends on the inverse screening length qs, which 

characterizes screening by mobile charges in the channel. For the estimates of ∆ made in the 

main text, we assume Debye screening, which is appropriate for non-degenerate charge 

carriers, and gives �� = (2�!�/�̃)	��C/DE; (for the definition of the parameters entering the 

previous equations see the main text). The value that we use in our calculations, qs = 0.02 Å-1, 

corresponds to taking a typical carrier density of n2D = 1011 cm-2 at T = 150 K. Note that, 

although we have described explicitly the case of charged impurities located at the surface of 

the organic crystal, analogous results are obtained if the charged impurities are present in the 

bulk of the organic crystal.  

 

4. Other mechanisms 

As discussed in the main text, the dependence of extrinsic disorder on the ligand length 

can be explained satisfactorily (both qualitatively and quantitatively) in terms of electrostatic 

potential fluctuations generated from charges (or dipoles) located outside the FET channel. To 

reach this conclusion, we have considered theoretically several other different mechanisms 

that can lead to variations in the carrier mobility when changing the length of the ligands. 

These mechanisms can be classified in two main categories: (I) mechanisms which directly 

modify the amount of disorder felt by the mobile electrons and (II) mechanisms which modify 
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the hopping integrals, resulting in a change of the mobility-vs-temperature, curves even 

though the absolute strength of disorder is nominally unchanged. 

 

In this context, we can invoke results of theoretical calculations of Ref. [S6] showing that 

mechanisms of type (I) are compatible with the experimental observations, while mechanisms 

of type (II) are not. Specifically, calculations show that reducing the amount of disorder – i.e., 

a type (I) mechanism – has the effect of increasing the mobility at low temperature, in the 

range where the mobility is limited by disorder, while leaving the mobility unchanged at 

higher temperature, in the T range where the intrinsic “band-like” behavior is observed (see 

Figure 2 of Ref. [S6]). With reducing disorder, the transition from these low- and high-

temperature regimes is accompanied by a reduction of the temperature T* at which the 

mobility is maximum, as shown in Figure S2a. This evolution of the µ(T) curves with 

reducing disorder reproduces precisely what is seen in the experiments when comparing 

PDI3F and PDI5F single-crystal FETs (see Figure 3 of the main text). Using the same 

theoretical calculations of Ref. [S6] it can be shown that modifying the hopping integrals 

(type (II) mechanism) results in a qualitatively different evolution, with an overall 

increase/decrease of the whole mobility curve, which leaves T* unchanged (see Figure S2b). 

Changes in the hopping integral, therefore, do not reproduce the experimental observations 

presented in this work. In other words, these considerations indicate that the experimental 

evolution of the µ(T) curves when passing from PDI3F to PDI5F is consistent with an 

effective decrease of strength of extrinsic disorder experienced by the carriers residing in the 

FET channel (the outermost plane formed by the conjugated molecular cores of the 

molecules) and cannot be explained with differences in hopping integrals in the two cases. 

 

Within the mechanisms of type (I), short-ranged impurities can be excluded right from the 

start, as they are incompatible with the gradual dependence with respect to the impurity-

channel distance d, which is found in the experiments. Moving to long-ranged impurities, 

both charges and dipoles adsorbed on the surface of the material are a possibility. For the case 

of air-gap devices, if the external potential were generated by dipoles, the experimental 

observations could only be reproduced by assuming an unrealistically large surface 

concentration, corresponding to one impurity dipole per organic molecule. Such a large 

concentration can be excluded on experimental basis for air-gap devices. Clearly, for devices 

on PMMA or Cytop, dipoles are present at such large concentrations – and taken into account 
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– since they originate from the monomers present in the polymeric gate dielectric, as we have 

discussed in detail in the main text. 

 

Finally, we have considered two other potentially relevant physical phenomena. First, 

changing the ligand length would alter the dielectric polarizability. Since the polarizable part 

of the molecule is the conjugated core, increasing the ligand length would result in a decrease 

of the dielectric constant of the organic material in the relevant direction perpendicular to the 

planes, which would affect the electrostatic potential fluctuations experienced by charge 

carriers in the channel (since a larger dielectric constant suppresses the potential fluctuations 

more). According to this mechanism, owing to its longer ligand length, PDI5F should possess 

a smaller dielectric constant resulting in larger potential fluctuations, as compared to PDI3F, 

and therefore a stronger disorder. This is the opposite of what we find experimentally, 

implying that this mechanism is not the most relevant one. Second, we have considered the 

tendency towards self-trapping of carriers due to their interaction with the dynamical 

electronic polarization of the molecules. These polarization effects may further localize 

carriers, which are already localized by intrinsic and extrinsic disorder. They would lower the 

energy of the electronic states by an amount which is inversely proportional to their original 

localization length, thereby effectively causing a deepening of the distribution of sates in the 

tail of the band. However, theoretically such a mechanism only plays a role if the polarization 

dynamics is sufficiently slow, since, as demonstrated in Ref. [S7], electrical polarization with 

a fast dynamics only causes a renormalization of the hopping integrals. As we discuss above, 

however, a hopping integral renormalization pertains to type (II) mechanisms, and cannot 

explain our experimental observations. 
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Figure S1. Temperature-dependence of the four-terminal linear field-effect mobility µ(T) for 
several PDI3F single crystal FETs with Cytop (a) and PMMA (b) gate dielectrics. The 
corresponding µ(T) data of PDI5F FETs is shown in panels (c) and (d). The solid lines 
represent the mobility averaged over all samples. The channel length in all cases was 
approximately 200 µm. 
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Figure S2. Calculations of a microscopic transport model, reported in Ref. [6], showing how 
changes in disorder energy ∆ (a) or hopping integral t (b) affect differently the behavior of 
µ(T). Parameters are the same as in Ref. [6], with t0 = 100 meV. Panel (a) shows how a 
change of ∆ shifts the position of T*, while leaving the intrinsic mobility regime at high 
temperature unchanged (the hopping integral is fixed to t = t0). Panel (b) shows how 
modifying the hopping integral t, for a given disorder energy ∆ results in an overall 
increase/decrease of µ(T), while T* remains unchanged (here the extrinsic disorder ∆ is taken 
to be constant and equal to 0.3 t0) 
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