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Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor 

Deposition 

 

Yi-Hsien Lee#, Xin-Quan Zhang#, Wenjing Zhang, Mu-Tung Chang, Cheng-Te Lin, Kai-Di 

Chang,Ya-Chu Yu, Jacob Tse-Wei Wang, Chia-Seng Chang, Lain-Jong Li* and Tsung-Wu Lin* 

Transition metal dichalcogenides (TMD), MX2 (M=Mo, W; X=S, 

Se, Te), have attracted considerable attention for their great potential 

in the fields of catalysis, nanotribology, microelectronics, lithium 

batteries, hydrogen storage, medical and optoelectronics.[1-12] MoS2 

nano-materials have been known in the form of nested fullerene-like 

nanodots and one-dimensional nanotubes.[1-4,13-17] Stimulated by the 

discovery of two-dimensional graphene monolayer and its rich 

physical phenomenon, inorganic graphene analogues such as layered 

MoS2, where the Mo layer is sandwiched between two sulfur layers 

by covalent forces, have created great interest in the past few years. 

Recently, Radisavljevic et al. have demonstrated that the transistors 

fabricated with the exfoliated MoS2 monolayer[18-19] exhibit high 

on-off current ratio and good electrical performance, which may be 

used in future electronic circuits requiring low stand-by power. The 

strong emission inherited from the direct gap structure of monolayer 

MoS2 also promises the applications in optoelectronics.[20-22] 

  Substantial efforts have been devoted to prepare thin-layer 

MoS2, including scotch tape based micromechanical exfoliation,[18-24] 

intercalation assisted exfoliation,[25-27] liquid exfoliation,[28] physical 

vapor deposition,[29-230] hydrothermal synthesis,[31] thermolysis of 

single precursor containing Mo and S.[32-33] The lateral size of the 

MoS2 films synthesized by the aforementioned methods is often in 

the order of several micrometer; however, the synthesis of large-size 

MoS2 thin layers is still a challenge. Chemical vapor deposition 

(CVD) has been one of the most practical methods for synthesizing 

large-area graphene[34-36] and graphene analogues such as boron 

nitride and BCN nanosheets.[37-38] The sulfurization of MoO3 using 

the CVD method has been adopted to synthesize MoS2 materials; 

however, the reaction normally leads to MoS2 nanoparticles or 

nanorod structures during the synthesis. [39-40] To our best knowledge, 

synthesis of large-area, monolayer MoS2 films on amorphous SiO2 

substrates using a CVD method has not yet been reported. In this 

contribution, CVD is adopted to synthesize MoS2 layer directly on 

SiO2/Si substrates using MoO3 and S powders as the reactants. The 

growth of MoS2 is very sensitive to the substrate treatment prior to 

the growth. The use of graphene-like molecules for the substrate 

treatment, such as reduced graphene oxide (rGO), 

perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) 

and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), 

promotes the layer growth of MoS2. Large-area MoS2 layers can be 

directly obtained on amorphous SiO2 surfaces without the need to 

use highly crystalline metal substrates or an ultrahigh vacuum 

environment, which is in clear contrast to the reported epitaxial 

growth of MoS2 nano-islands on crystalline Au(111) surfaces in 

ultrahigh vacuum.[29] Spectroscopic, microscopic and electrical 

measurements suggest that the synthetic process leads to the growth 

of monolayer, bilayer and few-layer MoS2 sheets. These MoS2 films 

are highly crystalline and their size is up to several millimeters.  

 

Figure 1a schematically illustrates our experimental set-up. The 

MoO3 powder (0.4 g) was placed in a ceramic boat and the SiO2/Si 

substrate was faced down and mounted on the top of boat. A 

separate ceramic boat with sulfur powder (0.8 g) was placed next to 

the MoO3 powder. Prior to the growth, a droplet of aqueous reduced 

graphene oxide (rGO), PTAS or PTCDA solution, was spun on the 

substrate surface followed by drying at 50 oC. During the synthesis 

of MoS2 sheets, the reaction chamber was heated to 650oC in a 

nitrogen environment. At such a high temperature, MoO3 powder 

was reduced by the sulfur vapor to form volatile suboxide 

MoO3-x.
[39] These suboxide compounds diffused to the substrate and 

further reacted with sulfur vapor to grow MoS2 films. Figure 1b 

displays the OM of the MoS2 sheets obtained on the SiO2/Si 

substrate pretreated with an rGO solution and inset shows that a 

white dot is present at the center of a star-shaped MoS2 sheet, where 

these dots seem to act as the seeds for growing MoS2 layers. More 

images are shown in supporting figure S1 to evidence the 

observation. The star-shaped MoS2 can be merged to form a 

continuous MoS2 film (with a lateral size up to 2 mm) as shown in 

the upper area of figure 1b, where the seed density is higher. In 

figure 1c, smooth surface morphology of MoS2 sheets is observed 

with atomic force microscope (AFM), suggesting that a layer 

structure of MoS2 is formed. The cross-sectional height in figure 1d 
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reveals that the thickness of the MoS2 film is ~0.72 nm, which 

corresponds to a monolayer MoS2 sheet based on previous reports 

for a monolayer MoS2 on a Si/SiO2 substrate.[26] In addition to 

monolayer MoS2, we also occasionally find bilayer, trilayer and 

other thicker layers. Supporting figure S2 provides AFM images and 

cross-sectional profiles of the thicker MoS2 films. Supporting figure 

S3 shows the optical micrographs (OM) of the layered MoS2 grown 

respectively with the PTAS and PTCDA pre-treatments, where the 

MoS2 layer growth is initiated from the PTAS or PTCDA molecular 

aggregates. Similar to the role of rGO, the PTAS or PTCDA 

molecular aggregates act as the seeds for growing MoS2 thin layers. 

Experimentally, the MoS2 layer growth initiated by rGO is more 

homogenous in layer thickness. Hence, the subsequent discussions 

are mainly based on rGO initiated MoS2 thin layers.    

  

Figure 1. (a) Schematic illustration for the experimental set-up. (b) 
The optical micrographs of the MoS2 layers grown on the substrate 
respectively treated with rGO solution. The inset shows the 
magnified OM of the MoS2 films, where the seed is observed at the 
center of each star-shaped sheet. (c) AFM image of a monolayer 
MoS2 film on a SiO2/ Si substrate (pre-treated with rGO). (d) The 
thickness of the MoS2 layer is 0.72 nm from the AFM cross-sectional 
profile along the line indicated in (c).  

 

 To explore the Raman and PL dependency on MoS2 layer 

thickness, we identify an area with MoS2 monolayer, bilayer and 

trilayer films. Figure 2a and 2b respectively shows the mapping 

constructed by plotting the integrated MoS2 Raman peak intensity 

(360 ~ 420 cm-1) and the PL peak intensity (650 ~ 700 nm) in 

confocal measurements. The thickness distribution seems to 

correlate well to the contrast in OM image figure 2c. The MoS2 

monolayer sheet exhibits two Raman characteristic bands at 403.8 

and 385.8 cm-1 with the full-width-half-maximum (FWHM) values 

of 6.6 and 3.5 cm-1, corresponding to the A1g and E2g modes 

respectively. Note that the peak frequency difference between A1g 

and E2g modes () can be used to identify the layer number of MoS2. 

The value of 18 cm-1) in figure 2d evidences the existence of 

monolayer MoS2.
[24,41] The inset in Figure 2d shows that the  value 

increases with the layer number of MoS2, where the layer number is 

confirmed by AFM thickness (Supporting figure S2). These results 

agree well with the observation for exfoliated MoS2 layer. [23]  In 

figure 2e, the PL spectrum shows two pronounced emission peaks at 

627 and 677 nm[24] and these emissions are known as the A1 and B1 

direct excitonic transitions.[44] The emission intensity (normalized 

by the Raman scattering at ~482 nm) obviously decreases with the 

layer number. This can be reasoned by the fact that the optical 

bandgap transforms from indirect to direct one when the dimension 

of MoS2 is reduced from a bulk form to a monolayer sheet.[19] The 

X-ray photoelectron spectroscopy (XPS) scans for the monolayer 

MoS2 sample confirm the chemical bonding states of the MoS2 

layers (Supporting figure S4). These binding energies are all 

consistent with the reported values for MoS2 crystal.[32,43]  

 

  

Figure 2 (a) Raman peak intensity mapping (360 ~ 420 cm-1), (b) 

PL peak intensity mapping (650 ~ 700 nm) and (c) OM image of the 

selected area with various MoS2 layer thickness (1L, 2L and 3L).  

(d) Raman spectra and (e) photoluminescence of the monolayer, 

bilayer and trilayer MoS2 sheets. Both Raman and PL experiments 

were performed in a confocal spectrometer using a 473 nm 

excitation laser.  

  

 Figure 3a shows the transmission electron microscopy (TEM) 

image for the monolayer MoS2. The high resolution TEM image 

(figure 3b) and the corresponding selected area electron diffraction 

(SAED) pattern with [001] zone axis (inset of figure 3b) reveal the 

hexagonal lattice structure with the lattice spacing of 0.27 and 0.16 

nm assigned to the (100) and (110) planes. The distinct SAED 

pattern suggests that the crystalline domain of the MoS2 layer is at 

least 160 nm in lateral size (SAED aperture size ~160 nm in our 

measurement). Figure 3c displays the TEM image for the selected 

grain boundary area as indicated by the inset AFM, where the 

junction between two MoS2 domains is clearly seen.  The in-plane 

X-ray diffraction (XRD) profile for the MoS2 monolayer 

synthesized by the CVD method is shown in Figure 3d and the 

diffraction peaks at 32.4 and 58 degree are attributed to the (100) 

and (110) crystal planes respectively. Meanwhile, the stoichiometry 

of the MoS2 film has been separately confirmed with XPS (S/Mo 

ratio ~ 2.xx) and energy dispersive TEM based X-ray spectroscopy 

(EDS) as shown in supporting figure S5.  
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Figure 3. (a) High resolution TEM image of MoS2 monolayer. (b) 
Enlarged HR-TEM image of the marked area in figure (a) with an 
inset showing the SAED pattern. (c) TEM image for the MoS2 
domain boundary at the location as indicated by the inset AFM 
image. (d) In-plane XRD result for the MoS2 monolayer.   

To evaluate the electrical performance of the MoS2 sheets, we 

fabricate bottom-gated transistors on SiO2/Si using conventional 

photolithography. The bottom-gate transistors were fabricated by 

evaporating Au electrodes directly on top of the MoS2 layer. Figure 

4 demonstrates the transfer curve (drain current Id vs. gate voltage 

Vg) for the device prepared from a MoS2 monolayer. Inset shows the 

top view OM of the device. The on-off current ratio is 

approximately 1x104. The field-effect mobility of holes was 

extracted based on the slope ΔId/ΔVg fitted to the linear regime of 

the transfer curves using the equation μ= (L/WCoxVd)(ΔId/ΔVg), 

where L, W and Cox are the channel length, width and the gate 

capacitance.[44] The effective field effect mobility for the MoS2 

device can be up to 0.02 cm2/(V-s) in ambient, in agreement with 

previous reports.[18,41,45-46]  We note that the valley point of the 

transfer curve is at -84V and the FET shows the typical n-type 

behavior, which is consistent with other reports.[18,47]  Although the 

device exhibits a reasonably high on/off current ratio, there is still 

room to improve the carrier mobility. The relatively lower carrier 

mobility than the mechanically exfoliated MoS2 is likely limited by 

the structural defects, such as the grain boundary observed by TEM 

(Figure 3c).  

 As revealed in figure 2b, the star-shaped MoS2 layers were 

grown from center seeds, which suggest that the nucleation was a 

crucial step. The spin-casting of rGO solution before CVD growth 

introduced some tiny rGO flakes on the substrate surfaces, which 

experimentally enhanced the growth of MoS2 layers. Supporting 

figure S6 and Table S1 shows that the morphology of the 

synthesized MoS2 film is significantly affected by surface treatments. 

Without treating the substrate surface with rGO solution, only MoS2 

particles were found on the substrate. Other control experiments 

where the substrates separately cast with a graphene oxide (GO), 

hydrazine or KCl solution show that no MoS2 layers but only 

sparsely distributed MoS2 nano-particles are observed on substrates. 

Compared with more ordered aromatic structures of the 

graphene-like molecules including rGO, PTAS, and PTCDA, the 

GO is with randomly distributed defects and dangling bonds, which 

might be one of the reasons not being able to initiate layer growth. 

Although the GO may be thermally reduced to rGO[ref:pls add the J. Am. 

Chem. Soc. 2011, 133, 18522] at the MoS2 growth temprature (650oC), the 

formation of MoS2 seeds should involve many other factors such as 

the reaction between MoO3 and S, the attachment of MoO3-x vapors 

onto GO, the conversion of MoO3-x to MoS2, and the morphology of 

the MoS2 seeds formed on substrates. These reactions may occur 

during the temperature ramping period. It is likely that the MoS2 

seed morphology formed on GO prefers particle growth rather than 

layer growth. It is noted that our experimental results only allow us 

to conclude that the rGO treatment helps to form the MoS2 seeds 

which prefers and promotes the layer growth of MoS2. The 

morphology and structure of the seeds, requiring intense research 

efforts, are currently under investigation in our group. Meanwhile, 

we observe that both MoS2 and WS2, two typical transition metal 

dichalcogenides (TMD), exhibits similar layer growth behavior on 

the substrates pre-treated with graphene-like molecules (Supporting 

figure S7). The growth of MoS2 and WS2 layers is highly 

reproducible with our experimental conditions. A similar 

enhancement is expected to be observed in other 

transition-metal-disulfide TMD family materials. 

 

 

Figure 4. The typical transfer Id-Vg curve for a monolayer MoS2 
synthesized at 650 ℃. The inset shows the OM imge of a FET 
device. 

 In conclusion, large-area MoS2 films are directly synthesized 
on SiO2/Si substrates with chemical vapor deposition. It is 
noteworthy that the growth of MoS2 is not unique to SiO2 substrates 
and it is also observed on other insulating substrates such as 
sapphire. The as-synthesized films are consisted of monolayer, 
bilayer and other few-layer MoS2. Chemical configurations, 
including stoichiometry and valence states of MoS2 layers are 
confirmed with XPS. Raman spectra and PL performance of the 
monolayer MoS2 are presented. TEM and SAED demonstrate that 
the monolayer MoS2 exhibits six-fold symmetry hexagonal lattice 
and high crystallinity. The electric measurement for the bottom-gate 
transistor shows a N-type semiconductor behaviour and the on-off 
current ratio is approximately 1 x 104. The seeding approach can be 
further used to grow other transition metal dichalcogenides. 

Experimental Section 

 Synthesis: The MoS2 films were synthesized on SiO2/Si 

substrates in a hot-wall furnace. The ultra large and single-layer GO 

nanosheets are prepared by a modified Hummers’ method as 

reported.
[48]

 For the reduction of GO, GO solution was mixed with 

hydrazine solution and mixed solution was then heated to 90 
o
C for 1 

hr.
[49] 

Prior to the growth, a drop of rGO-hydrazine solution was spun 

on the substrate. PTAS (50 M) or PTCDA (26mg in 5mL DI water) 
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solution can also be used to treat the substrate. High purity MoO3 

(99%, Aldrich) and S powder (99.5, Alfa) were placed in two separate 

Al2O3 crucibles and the substrates were faced down and placed on the 

upper side of MoO3 power. The MoS2 samples were fabricated by 

annealing at 650 
o
C for 15 minutes with a heating rate of 15 

o
C /min 

and N2 flow (1 sccm) at ambient.  

  

 Characterizations:  Surface morphology of the samples was 

examined with commercial atomic force microscope (AFM, Veeco 

Icon) and scanning electron microscope (SEM, FEI VS600). Raman 

spectra and photoluminescence (PL) were obtained by confocal 

Raman microscopic systems (NT-MDT). Wavelength and spot size of 

the laser are 473 nm and 0.4 μm, respectively. The Si peak at 520 

cm
−1

 was used for calibration in the experiments. Field-emission 

transmission electron microscope (JEOL JEM-2100F, operated at 200 

kV with a point-to-point resolution of 0.19 nm) equipped with an energy 

dispersive spectrometer (EDS) was used to obtain the information of 

the microstructures and the chemical compositions. The TEM samples 

were prepared using lacy-carbon Cu grid to scratch the surface of 

MoS2 sample. Due to that only van der Waals force exists between 

MoS2 and underlying SiO2 substrate, a few MoS2 flakes may easily 

attach to the lacy-carbon TEM grid. Chemical configurations were 

determined by X-ray photoelectron spectroscope (XPS, Phi V5000). 

XPS measurements were performed with an Al Kα X-ray source on 

the samples. The energy calibrations were made against the C 1s 

peak to eliminate the charging of the sample during analysis. 
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Figure S1. Optical micrographs showing the presence of center seeds of MoS2 

growth on the substrate pre-treatment with an rGO solution.  
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Figure S2. AFM images and cross-sectional profiles of the MoS2 films with different 

thicknesses. (a) bilayer (b) trilayer MoS2 film.  

 

 

 

 

Figure S3. The optical micrographs (OM) of the layered MoS2 grown respectively with 

the (a) PTAS and (b) PTCDA pre-treatments, where the MoS2 layer growth is initiated 

from the PTAS or PTCDA molecular aggregates. 
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Figure S4. XPS spectra of the MoS2 film for (a) Mo 3d, where the  two peaks at 

229.3 and 232.5 eV, attributed to the doublet Mo3d5/2 and Mo3d3/2. (b) S 2p, where 

the binding energy at 162.2 and 163.3 eV can be assigned to spin-orbit S2p3/2 and 

S2p1/2, respectively. 

 

 

 

 

Figure S5. TEM-EDS spectrum of the MoS2 film. Inset shows the stoichiometry of the 

MoS2 film.  
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Figure S6 Typical AFM and OM images of the MoS2 sample deposited on the 

substrate subject to (a) the coating of graphene oxide (b) the immersion of hydrazine 

solution (c) no treatment. Only nanoparticles were formed on these substrates as 

evidenced by AFM measurements.  

 

 

Table S1.  

Treatment  After growth 

No treatment MoS2 Nanoparticles 

Hydrazine  MoS2 Nanoparticles 

Graphene oxide (GO) MoS2 Nanoparticles 

Reduced graphene oxides (rGO) Large-area layered MoS2  

KCl MoS2 Nanoparticles 

perylene-3,4,9,10-tetracarboxylic 

acid tetrapotassium salt  (PTAS) 

Large area layered MoS2  

perylene-3,4,9,10-tetracarboxylic 

dianhydride  (PTCDA) 

Large area layered MoS2 
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Figure S7. Optical micrographs showing the growth of WS2 layers on the substrates 

pre-treated with PTAS and rGO.  


