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Varieties of applications have been proposed to use carbon nanotubes (CNTs) in different fields 

such as electronics
1
, photonics

2
, chemistry

3
, biology

4
 and their inter-disciplinaries

5-7
. Among 

them, many applications such as ion separation
8
 and thermal interface materials

9
 require strong 

connections between CNTs to realize a specific function. However, the CNTs synthesized by 

current methods are commonly a sparse material and only weak van der Waals interactions exist 

between them
10

. Creation of high quality chemical bonding between CNTs remains a formidable 

challenge in nanotechnology. In this paper, we demonstrate a template-assisted method which 

enables the growth of covalently bonded CNTs originating from graphene at a large scale. The 

as-grown CNT networks are suspended over silicon trenches, on which structure atomic force 

microscopy (AFM) based bending tests are executed. Results show that the Young’s modulus of 

the CNTs is about        
     GPa, which is in accordance with theoretical prediction

11,12
 and 

previous measurement results
13-17

 on traditionally-synthesized CNTs. It is also observed that the 

covalently bonded CNT structure can effectively distribute external loading throughout the 

network to improve the mechanical strength. This covalently bonded three-dimensional CNT 

network provides great opportunities to the application of CNTs in complex device fabrication
18-

20
, energy storage

21,22
, ion/molecule separation

8,23
, thermal interface material development

9,24
, 

etc. 

 

CNT is a one dimensional material which has attracted tremendous research interest due to the 

exceptional electrical
25,26

, thermal
27-30

 and mechanical
11-17

 properties in the longitudinal 

direction. The CNTs in these investigations appear in three different manners, namely single 

CNTs for nano/micro device fabrication
31,32

, CNT bundles for component integration
33,34

 and 

CNT networks
35,36

 to extend the excellent properties into two or three dimensions. Up to date, 
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the synthesis of single CNTs and CNT bundles is becoming mature by chemical vapor deposition 

(CVD) method. While the CNT networks can be produced by laser ablation
37,38

 and arc 

discharge
39,40

 techniques, or obtained by post-growth processing of CVD-deposited aligned CNT 

films
41,42

. However, the CNT network produced by either of the above methods is commonly a 

sparse material, in which the CNTs just physically contact with each other and van der Waals 

force is the only interaction between them
10

. The weak interaction prevents the CNTs talking to 

each other therefore leading to low resistance against sliding
10

, and producing huge electrical and 

thermal contact resistance among CNTs
43

. This will not only restrict the application spectrum of 

CNTs but also greatly lower the performance of the CNT-based components. Therefore, a few 

methods are developed to build up covalent inter-tube bonding in the network. The first route is 

introducing inter-tube connections by post-growth processing. Since carbon atoms in CNTs can 

be activated by irradiation
44

, electron
10,45

 or ion
46,47

 beams were applied to first amorphize two 

adjacent CNT surfaces and then re-construct the carbon atoms to generate covalent bonding 

between these two CNTs. However, the high irradiation applied in this process resulted in 

degradation of the structure around the contact region
48

, which consequently lowers the 

performance of CNTs. Furthermore, this method is favorable for making devices/structures at a 

small scale, and it is very unlikely scalable for volume production. The second route is growing 

the CNT network in a special way, following a pre-defined template or introducing additives into 

the growth/annealing process. The aluminium-templated growth method developed by Li J et 

al.
49

 successfully produced Y-junctions in CNTs, in which a large-diameter CNT can be 

branched into two smaller ones. However, limited by the shape of the template, there is no 

connection between those large-diameter CNTs so the inter-connection is not propagated 

throughout the material. Additives such as sulfur
50,51

 and boron
52

 were also introduced into the 
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CNT growth or annealing process, and covalent bonding between CNTs was created. However, 

these additives can bring impurities and defects
52

 into the CNTs which are detrimental to the 

performance. Branched CNTs were also produced by adjusting the growth conditions such as gas 

flow
53

 and magnetic field
54

 in the CVD process, where catalyst particles were re-assembled 

therefore CNTs were grown in a branched manner. Similar to Li’s work
49

, these branched CNTs 

can be excellent candidate for multi-terminal electronic devices, but they could not extend the 

outstanding properties of CNTs into three dimensions in a network. Inter-connected CNT 

structures were also found in a normal typical arc discharge or CVD process occasionally
55,56

, 

but the mechanism of formation remains unidentified. 

In this paper, we report a new strategy to grow covalently bonded CNTs which is scalable for 

mass production. These CNTs are grown on a cross-linked three-dimensional nickel (Ni) 

template by CVD method. Different from the traditional particle-catalyzed CVD method
57

 for 

CNT growth, we grow graphene layers on a continuous cylindrical Ni surface
58

 to form tubular 

structures, i.e. CNTs. After the Ni template core is etched away, the inter-connected CNT 

networks are obtained. A schematic of the CNT network is shown in Fig. 1, in which covalent 

inter-tube bondings are created. 

 

Figure 1 Schematic of a covalently bonded CNT network. 
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The synthesis process of the covalently bonded CNT network is illustrated in Fig. 2. The 

experiment starts with the electrospinning of polyvinyl butyral (PVB) and nickel nitrate 

hexahydrate (Ni(NO3)2∙6H2O) dissolved ethanol solution, as shown in Fig. 2a. The electrospun 

nanofiber network which consists of PVB and Ni(NO3)2 was collected on a conductive 

aluminum foil. Since wet Ni(NO3)2 containing PVB fibers sprayed from the syringe can easily 

fuse to each other, large amounts of inter-connections throughout the nanofiber network can be 

created, as marked by dashed frames in Fig. 2b. In addition, electrospinning is a facilely scalable 

and well controllable technique. Therefore it is easy to deposit such nanofiber networks to large 

thickness to obtain three dimensional structures. The nanofiber network was then peeled off from 

the aluminum foil and annealed in oxygen (O2) at 400 ˚C for 2 hours, thereby removing PVB 

from the fibers and decomposing Ni(NO3)2 to NiOx, as displayed in Fig. 2c. Afterwards, the 

NiOx fiber network was moved into a commercial graphene/CNT growth system (Black Magic 

II, Aixtron) and heated up to 400 ˚C in hydrogen (H2) environment. The reduction process lasted 

for 2 hours, whereby a pure Ni fiber network was obtained (shown in Fig. 2d). After elevating 

the temperature up to 750 ˚C and annealing the Ni fibers for 5 minutes, argon (Ar) diluted 

acetylene (C2H2) was introduced into the system to start the graphene growth on the cylindrical 

surfaces of the inter-connected Ni fibers, as shown in Fig. 2e. Since in this case the growth of 

graphene has to follow the morphology of the Ni template, the inter-connected graphene-tube, 

i.e. CNT, structure was formed. In order to harvest the inter-connected CNTs, the graphene 

shells covered Ni fiber network was immersed into an iron chloride (FeCl3) solution to etch away 

the Ni core. Consequently, the covalently bonded three dimensional CNT network was produced 

as sketched in Fig. 2f. 
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Figure 2 Synthesis flow chart of the covalently bonded three dimensional CNT networks. a, 

Electrospinning of Ni(NO3)2 contained PVB nanofiber networks. b, Inter-connected electrospun 

Ni(NO3)2/PVB nanofibers in the network. The fused inter-connection joints are marked by 

dashed frames. c, NiOx nanofiber network after the burning of PVB and decomposition of 

Ni(NO3)2 in O2. d, Pure Ni fiber network reduced from NiOx by H2, acting as graphene-tube 

growth template. e, Graphitic layer growth on the inter-connected three dimensional Ni template. 

f, Chemical etching of Ni core in FeCl3 solution so that covalently bonded three dimensional 

CNT network is obtained. The inter-connection joints are marked by dashed frames. 

 

The electrospun Ni(NO3)2 contained PVB nanofiber network is shown in Fig. S1, from which it 

can be seen that the nanofibers are inter-connected with each other throughout the network 

structure. A locally enlarged typical inter-connection joint is shown in Fig. 3a. Making the 

nanofiber network thicker with longer time for electrospinning deposition, this inter-connected 

structure can easily be extended into three dimensions. Fig. 3b and Fig. S2 shows the pure Ni 
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fibers which are reduced from NiOx. It can be clearly observed that the inter-connected three 

dimensional structure is retained after the thermal decomposition process in O2 (Fig. 2c) and the 

reduction process in H2 (Fig. 2d). The reduced Ni fibers were characterized by X-ray diffraction 

(XRD), the diffraction pattern is displayed in Fig. 3c. The peaks in the XRD pattern show a high 

purity of Ni but also the existence of NiO in the sample. This small amount of NiO originates 

from the oxidation of Ni fibers exposed to air during the XRD characterization. Energy-

dispersive X-ray spectroscopy (EDX) pattern in Fig. S3 further confirms the metallic Ni fibers. 

Once pure Ni fibers were acquired, they were annealed at 750 ˚C for 5 minutes. C2H2 was then 

introduced to start the graphene growth on the Ni surface. Fig. 3d shows the Ni fibers after 

graphene growth. Transmission electron microscopy (TEM) image (Fig. 3e) shows that well 

crystallized graphene layers have been grown on the Ni fibers with an inter-layer distance of 

about 0.34 nm. The multi-layer graphene covered Ni fiber network was then immersed into 30 

wt% of FeCl3 solution to remove the Ni template. The CNT network was herein harvested and is 

shown in Fig. 3f. More detailed inter-connected CNT structures are available in Fig. S4. The 

TEM images in Fig. 3g clearly show a multi-branched joint where CNTs are internally connected 

to each other. A broken CNT perpendicular to the paper plane at the right lower corner even 

allows us to look inside to the inter-connected CNT structure. A schematic in Fig. 3g illustrates 

the three dimensional structure of this CNT network. The sp
2
 hybridized carbon structure in this 

material was confirmed by Raman spectroscopy. The three most intense peaks in Fig. 3h located 

at 1357 cm
-1

, 1578 cm
-1

 and 2702 cm
-1

 represent the D, G and 2D modes respectively. The 

relatively low D peak suggests a high quality of sp
2
 bonding in the material

59
. 
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Figure 3 Fabrication and characterization of the covalently bonded CNT network. a, Inter-

connected Ni(NO3)2 contained PVB nanofibers produced by electrospinning. b, H2 reduced inter-

connected Ni fibers. It can be seen that the three dimensional structure is retained after the 

thermal decomposition process in O2 and reduction process in H2. c, XRD pattern of the H2 

reduced Ni fibers. Ni is identified by the most intense peaks. The small amount of NiO was from 

the oxidation of Ni when it was exposed to air during XRD characterization. d, Inter-connected 

Ni fibers with graphene layers grown on the cylindrical surfaces. e, Well crystallized graphene 

layers on the Ni fiber surface. f, Harvested CNT network after removing Ni template by 

chemical etching in FeCl3 solution. g, Covalently bonded, internally connected CNT multi-

branched structure. The broken CNT at the right lower corner allows us to look inside to the 
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CNT structure. h, Raman spectrum of the harvested material. D, G and 2D peaks are located at 

1357 cm
-1

, 1578 cm
-1

 and 2702 cm
-1

 respectively. Relatively low D peak indicates a high quality 

sp
2
 hybridized carbon structure in the material. 

 

In order to examine the as-fabricated CNTs, atomic force microscopy (AFM) assisted bending 

tests were performed on both suspended single CNTs and suspended CNT networks. The test 

structure and principle are schematically shown in Fig. 4a, where a loading is applied at the 

midspan of the suspended CNT via an AFM tip. To suspend the CNTs, Ni(NO3)2 contained PVB 

nanofibers were electrospun and collected on trenched silicon chips, then following thermal 

decomposition, reduction, graphene growth and template etching processes were kept the same 

as described above. More details about the suspension of CNTs are available in Fig. S5. A 

Ntegra Aura AFM with a NSG-10 cantilever was used for the bending test. The spring constant 

of the cantilever was measured to be 12.3 N/m. To find the position of the suspended CNTs, the 

sample was scanned by the AFM in tapping mode. The suspended single CNT and the inter-

connected CNT network were found as shown in Fig. 4b and Fig. 4c. During the bending test, 

the AFM tip oscillation was turned off. The deflection of the cantilever and the displacement of 

the piezo in the AFM were recorded simultaneously, as shown in Fig. S6. The force-deflection 

curves of the tested single CNT and the CNT in a network are displayed in Fig. 4d. Repeated 

tests at different positions close to each other on the CNTs demonstrated the robustness of the 

results, see Fig. S6. Assuming the force loaded on the individual CNT is F, the deflection of the 

CNT is δ and the span of the suspended CNT is l, the force-deflection relation of the tested CNT 

can be herein expressed as
60

: 
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                                                                 (1) 

where E is Young’s modulus of the CNT, and I is the second area moment on the cross section of 

the CNT. Correlated with the approximately linear force-deflection curve of the individual CNT 

in Fig. 4d, Young’s modulus of the as-grown CNT is extracted to be        
     GPa. The large 

bounds of modulus originate from the difficulty to measure the inner diameter of the CNT. More 

detailed discussion on determining the inner diameter is presented in the supplementary 

information. The extracted Young’s modulus is in agreement with the previous theoretical 

prediction
11,12

 and experimental measurements
13-17

 on a single CNT grown by the traditional 

methods. More details about the mechanical test procedure and calculation of the Young’s 

modulus are also available in the supplementary information. 

Fig. 4d also reveals that a CNT in the network can withstand much higher loading force than the 

individual suspended CNT under the same deflection. For instance, the same deflection of 200 

nm is triggered by 8 nN loading on the individual CNT compared to 78 nN loading on the CNT 

in a network. This is consistent with previous experimental and modeling results
61

 on cross-

linked fibrin fibers which have similar network structure, i.e. the cross-linked structure can 

distribute external loading throughout the network to avoid a concentrated stress and failure so 

that effectively improve the mechanical strength of the network. 
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Figure 4 Mechanical tests on the individually suspended CNT and the inter-connected CNT 

network. a, Schematic of the test structure and principle. F is the force loaded at the midspan of 

the single CNT, δ is deflection of the CNT and l is the span of the CNT. b and c, AFM image of 

the individually suspended CNT and the suspended CNT network, respectively. d, 

Approximately linear force-deflection curves of the individual CNT and the CNT in the network, 

obtained from the mechanical tests. 

 

Cu(NO3)2 was also dissolved in ethanol solution together with PVB and electrospun into 

nanofiber networks. Using the same fabrication process as described above for Ni(NO3)2 

contained PVB fibers, pure Cu nanofiber networks were produced. C2H2 was also utilized as 

carbon precursor to grow graphene on the inter-connected Cu template. However, most of the Cu 

fibers melted into discrete islands during the growth even at a comparably low temperature of 

about 700 ˚C (see Fig. S7). Similar phenomenon on Cu nano wires was also observed at higher 

temperature in an earlier report
58

. 

In summary, we have demonstrated a new method to grow covalently bonded CNT networks. 

Different from traditional particle-catalyzed methods, these CNTs are grown in the same way as 

graphene. Since the Ni nanofibers in the template are inter-connected with each other forming a 

network structure, the as-grown CNTs are covalently bonded throughout the network. In 
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addition, the Ni template is easy to produce in large volume by the electrospinning-based 

technique, therefore the covalently bonded CNTs can extend their excellent properties from the 

longitudinal direction to three dimensions at a macro scale. AFM based mechanical tests on the 

suspended individual CNTs show that the Young’s modulus of the as-grown CNTs is about 

       
     GPa, which is in accordance with the theoretical expectation and agrees with previous 

experimental measurements on traditionally grown CNTs. The Raman spectra together with the 

mechanical tests reveal the high quality of the synthesized CNTs. In contrast to individual CNTs, 

the covalently bonded CNT structure can effectively distribute stress throughout the network to 

improve the mechanical strength of the material. This three-dimensional CNT network offers 

new opportunities for device design and material development where the covalent bonding 

between CNTs is essential but remains a big challenge. 

 

Methods 

Preparation and confirmation of inter-connected Ni template. The fabrication of Ni template 

starts with the preparation of electrospinning solution. Typically 25 wt% of Ni(NO3)2∙6H2O and 

5 wt% of PVB dissolved in ethanol was prepared. The electrospinning was performed by 

applying 15 kV with an electrode-to-collector distance of 12 cm at ~50% relative humidity at 

room temperature. The Ni(NO3)2 contained PVB fiber network was collected on an aluminum 

foil and peeled off for thermal decomposition in O2 flow (3 l/min) at 400 ˚C for 2 hours. 

Therefore PVB was burned out and Ni(NO3)2 was decomposed into NiOx. The NiOx nanofibers 

were moved into a commercial graphene/CNT growth system (Black Magic II, Aixtron) and 

reduced in H2 with a flow rate of 20 standard cubic centimeter per minute (sccm) at 400 ˚C. The 
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reduction process lasted for 2 hours. The reduced fibers are shown in Fig. 3b and Fig. S2. XRD 

(X’Pert Materials Research Diffractometer, Philips) was used to confirm the formation of 

metallic Ni fibers following the reduction process. A Cu-Kα X-ray source at 45 kV and 40 mA 

was utilized. A wide range scan (2θ range 5–105°) was carried out utilizing a fixed diffraction 

slit with Ni filter as primary optics, and a parallel beam collimator with proportional detector was 

used as diffracted optics. The signal background was manually subtracted. EDX was performed 

in the TEM (Tecnai T20 FEI) under 200 keV. 

Growth of graphene layers. Once NiOx was reduced into pure Ni fibers, 1000 sccm argon (Ar) 

flow was introduced into the growth system and the temperature was elevated up to 750 ˚C to 

anneal the Ni fibers. After 5 minutes annealing, 10 sccm C2H2 was pumped in to start the 

graphene growth on the Ni fiber surfaces. The growth lasted for 30 seconds. After the growth, 

the samples were cooled down to room temperature at 200 ˚C/min in H2 and Ar environment. 

Microscopic characterization of inter-connected CNTs. The graphene shells covered Ni fiber 

network was immersed into 30 wt% FeCl3 solution for 15 hours to etch away the Ni template. 

The floating CNT network was then transferred onto a carbon-deposited Cu grid for SEM (Zeiss 

Supra 60 VP) and TEM (Tecnai T20 FEI) observation. The samples were dried in an acetone-

contained critical point dryer to prevent damaging the CNT structure from capillary force. The 

sp
2
 carbon structure was confirmed by Raman spectroscopy. Unpolarized Raman spectra were 

collected with a Dilor-XY800 spectrometer using a liquid-nitrogen cooled CCD detector. A 

single grating configuration with a focal distance of 30 cm and 200 µm slit width gave a spectral 

resolution of 4 cm
-1

 with a 1500 cm
-1

 spectral window.  A holographic notch filter was used to 

suppress the contribution from the laser line. The horizontally polarized 514 nm line from an Ar
+
 

laser excited the sample through a 100x micro-objective with a spot size of ~1 μm. The laser 
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power was kept below 4 mW to avoid sample damage. An accumulation time of 10 min was 

used for the individual spectra and the average of three such spectra was used in order to 

minimize noise. 

Mechanical tests on suspended CNTs. First, the Ni(NO3)2 contained PVB fibers were 

deposited on trenched silicon chips. Therefore, a suspended inter-connected fiber network was 

obtained on the chips, as shown in Fig. S5. The trenches on the chips were fabricated by standard 

photolithography and deep reactive ion etching (DRIE) processes. The following processes 

including thermal decomposition, reduction, graphene growth and template etching were kept the 

same as described above. Finally, the inter-connected CNT network was suspended on the 

trenches. A Ntegra Aura AFM with a NSG-10 cantilever was used for the mechanical test. The 

spring constant of the cantilever was measured to ensure precise bending tests on the CNTs. 

More details about the calibration of the cantilever are available in the supplementary 

information. During the bending tests, both the cantilever and the CNT were deflected. The force 

exerted by the tip was obtained from the deflection of the cantilever. The deflection of the CNT 

was calculated by subtracting the deflection of the cantilever from the total displacement of the 

piezo in the AFM. The deflection of CNT was plotted against the exerted force from the tip, as 

shown in Fig. 4d.  
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