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Abstract

Recent studies have collected high-dimensional data longitudinally. Examples include brain

images collected during different scanning sessions and time-course gene expression data.

Because of the additional information learned from the temporal changes of the selected features,

such longitudinal high-dimensional data, when incorporated with appropriate statistical learning

techniques, are able to more accurately predict disease status or responses to a therapeutic

treatment. In this article, we review recently proposed statistical learning methods dealing with

longitudinal high-dimensional data.
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1 Introduction

Current biomedical technology enables the collection of high-dimensional data

longitudinally to gain understanding of genomic, proteomic, and in vivo neural processing

properties over time. The temporal changes in high-profile biological properties may

provide insight into disease diagnosis, progression, or recovery. Depending on the types of

outcomes and clinical needs, the goals of longitudinal high-dimensional data include

clustering and classification, survival analysis, multilevel regression and time series

modeling.

By “longitudinal data,” we indicate two types of data collections: (1) high-dimensional

profiles are collected at multiple times points during the study but the response variable is

only collected at the end of the study as a final outcome; and (2) both the high-dimensional

predictor variables and response variable are collected at multiple times points during the

study. The desired methodology for high-dimensional longitudinal data would take

advantage of the additional data to determine temporal trends of features and incorporate the

temporal effects into learning methods and models that allow for repeated measurements.

Recent research has developed several strategies to analyze high-dimensional longitudinal

data using different statistical learning techniques, including support vector machines, non-

parametric Bayesian methods, and shrinkage methods for different purposes. To address

different objectives in the context of different data structures, we review several recent
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methods for high-dimensional longitudinal data. Across these models, the key challenges are

determining how to extract features in high-dimensional space and incorporate the temporal

effects for more accurate prediction.

In this paper, we review a set of methods for high-dimensional longitudinal data, with focus

on longitudinal support vector machine and penalized linear mixed effects models. We begin

with basic concepts of each method, and then introduce how recent high-dimensional

longitudinal data analysis methods extended from original model. We also review the

computational strategies and algorithm implementations for these methods.

2 Methods

In this section, we will review several current statistical methods for use with both types of

longitudinal high-dimensional data.

2.1 Longitudinal Support Vector Classifier - LSVC

We first review the statistical methods to deal with the first type of longitudinal high-

dimensional data. The support vector (SVC) classifier is a robust and effective machine

learning method that has been widely used for high-dimensional data analysis (Mitchell et

al., 2004, Vapnik, 1996). Also, SVC has been applied to handle spatial-temporal high-

dimensional data, Mourao-Miranda et al, 2007 first use singular value decomposition to

obtain the linear combination of spatial and temporal effects and then apply the component

as input of SVC. Recently, Chen and Bowman, 2011 developed a SVC based method for

high-dimensional data measured at multiple time points. Suppose that longitudinal high-

dimensional data is collected from N subjects at T measurement time points, and p

represents the dimensionality of data. The expanded feature matrix for longitudinal high-

dimensional data becomes TN by p. For features xi,t collected for subject i at time t, the goal

is to classify each individual x̃i = {xi,1, xi,2, …, xi,T}′ to certain groups yi ∈ {−1, 1},

outcomes only collected at the end of the study.

Linear trends of change are characterized: xs = xi,1 + β1xi,2 + β2xi,3… + βT−1xi,T, where β =

(1, β1, β2, …, βT−1)′ is an unknown parameter vector. Such trend information is highly

desired to improve the classification accuracy, usually not available. Thus, a key challenge

of building a classifier of longitudinal high dimensional data is jointly estimating the

separating hyperplane parameters α and the temporal trend parameters β. Chen and

Bowman, 2011 first proposed a novel longitudinal support vector classifier (LSVC) to solve

the problem using quadratic programming.

The LSVC is extended from the conventional support vector classifier (SVC), and it

augments the cross-sectional high-dimensional feature space to a longitudinal high-

dimensional feature space. The method seeks to construct an objective function by

incorporating both temporal trend parameters and separating the hyperplane parameters. In

the paper, the authors first note the augmented Gram matrix as
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where

X̃
m = [X̃

t=1, X̃
t=2, …, X̃

t=T]T represents the p × TN longitudinal high dimensional features,

with components X̃
t=k = (y1x1,t=k, y2x2,t=k, …, yNxN,t=k) to be data from N subjects each with

p features at time point k. The corresponding βm is a TN × N matrix, and

. Similar to the conventional SVC, the

objective function of LSVC is also subject to maximize the margins in the following

equation:

(2.1)

where wnv is the estimate of separating hyperplane parameters with, by assuming that the

temporal trend parameters are known, longitudinal high-dimensional features xi = xi,1 +

β1xi,2 + β2xi,3… + βT−1xi,T.

After the incorporation of the temporal trend parameters , the

Langrange (Wolfe) dual function becomes:

(2.2)

for i = 1, …, N and t = 1, …, T − 1.

Provided with αm, the separating hyperplane parameter becomes

where αm,i = (αm(i), αm(i + N), …, αm(i + (T − 1)N)) and .
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Given wnv, the intercept term then becomes , in which βm can

be estimated based on αm. At last, the separating hyperplane can be used to classify each

subject by

(2.3)

Model Estimation—To estimate α and β vectors, the authors suggest to reparameterize

the first part of the objective function in 2.6 as:

where

and  is the N × N submatrix in the left top corner of the matrix Gm for the baseline data

( ), the Gram matrix of SVC.

The objective function has been proven to be convex, and an iterative quadratic

programming (QP) procedure is developed for optimization: (1) start with initial values of β

and use QP to optimize 2.3 to obtain α; (2) use the updated α obtained in step 1 and apply

QP again to estimate β; and (3) repeat the above two steps until convergence. The

convergence of the iterative algorithm can be achieved because a unique solution exists.

Nonlinear Kernel Functions—The authors also provide solutions for nonlinear kernels.

The Gram matrix of a nonlinear kernel is

where 〈βK(·, xĩ,t), K(·, x̃i′,t)〉 = βK(x̃i,t, x̃i′,t), and K(·, x̃i,t) indicates the reproducing kernel

map of x̃i,t (Wahba, 1990). The separating hyperplane with a nonlinear kernel becomes
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where b is obtained by . Therefore, the nonlinear

kernel does not increase the complexity of estimating β. In addition, the authors discussed

the variable selection based on the predictors’ effect on the objective function which is a

“wrapper” method (Guyon et al., 2003; Hastie and Tibshirani, 2004).

To demonstrate the use and potential advantages of LSVC, the authors apply the method to a

simulation study and a data example from the Alzheimer’s disease Neuroimaging Initiative.

The results show that by leveraging the additional longitudinal information LSVC achieves

higher accuracy than methods using only cross-sectional data and methods that combine

longitudinal data by naively expanding the feature space.

2.2 Penalized Linear Mixed Effects Models

Linear mixed effects models can be used in the analysis of clustered or longitudinal data.

Those models estimate the relationship between the dependent variable and the fixed effects

and random effects of independent variables by considering both means and covariances.

With the improvement of data collection and storage technology, a large number of

independent variables are available and can be included in the model. Inference and

prediction of such a model becomes too complex and infeasible when the number of

predictors increases. One challenge is how to choose significant predictors while excluding

variables that have no true effects on the outcome. An example is the Trial of Activity for

Adolescent Girls (TAAG) study, which determined the effectiveness of a school and

community based intervention on the physical activities of girls from 6 middle schools in

Maryland (Young et al., 2013). A large group of girls were followed up for four years from

year 2006 to 2009 and asked to take a survey with hundreds of questions at multiple time

points to measure the change of physical activities. A linear mixed effects model can be

fitted to take into account the clustering effects (6 middle schools) and temporal effects (four

years) as well as the fixed effects such as race, socio-economic status, and other questions in

the survey.

To construct a linear mixed effects model, consider the ith subject in a longitudinal study

with n subjects, each having observations at mi time points for a total of 

observations. The linear mixed effects model can be written by

where yij is the response variable at the jth time point, xij is the vector of p fixed effects, zij is

the vectors of q random effects at the jth time point, β is the p parameter vector for the fixed

effects, bi is the q parameter vector for random effects, and εij is the i.i.d. random error from
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N (0, σ2). The random effects parameter bi are i.i.d. multivariate normal variables following

MV N (0, σ2Π), where Π is the covariance matrix, and are independent of εij. Using the

matrix notation, the model can be simplified as

(2.4)

where Yi = (yi1, …, yimi)
T, Xi = (xi1, …, ximi)

T is the m × p design matrix of fixed effects, Zi

= (zi1, …, zimi)
T is the m × q design matrix of random effects, and εi = (εi1, …, εimi)

T is an

i.i.d. random error following N(0, σ2Imi).

Previous methods for penalized estimation of fixed effects include Efron et al., 2004, Zou

and Hastie, 2005, and Bondell and Reich, 2008. Previous methods for selection of random

effects include Stram and Lee, 1994, Lin, 1997, Hall and Praestgaard, 2001, and Chen,

2003. In this review we focus on three penalized linear mixed effects models, which, unlike

many previous approaches, select both fixed effects and random effects simultaneously. The

first model is developed by Bondell et al., 2010, maximizing a penalized joint likelihood

problem. The second model is introduced by Fan and Li, 2012, uses a proxy matrix in

maximizing a penalized profile likelihood for fixed and random effects separately. Third, the

paper of Li et al., 2012 optimizes maximum likelihood estimator with separate penalization

methods for fixed and random effects. A side-by-side comparison of these models is

summarized in Table 1.

Model 1 (Bondell et al., 2010)—Method 1 estimates fixed effects, random effects, and

the covariance structure of the selected random effects simultaneously in a model with one

penalty function. Equation (2.4) can be reparameterized using a modified Cholesky

decomposition to factorize the covariance matrix of the random effects, Π. Through this

factorization, Π = DΓΓTD, where Γ is a q × q lower triangular matrix with 1’s on the

diagonal and whose (l, r)th element is given by γlr and D = diag(d1, d2, …, dq) is a diagonal

matrix. After this reparameterization, the linear mixed effects model (2.4) becomes:

The covariance matrix of bi is now expressed in terms of vector d = (d1, d2, …, dq)T and the

free elements of Γ, denoted by vector γ = (γlr : l = 1, …, q : r = l + 1, …, q)T. Setting any dl

= 0 will set the corresponding lth row and column of the covariance matrix Π to 0 and

therefore remove the lth random effect from the model.

After reparameterizing the model and treating b as given, maximizing the log-likelihood

function is equivalent to minimizing the conditional expectation of ||y − ZD̃Γ̃b − Xβ||2,

where D̃ = Im ⊗ D and Γ̃ = Im ⊗ Γ. Rearranging the terms and adding the Adaptive Least

Absolute Selection and Shrinkage Operator (ALASSO, Zou, 2006) penalty, the goal is to

minimize the quadratic problem:
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(2.5)

where βĵ and d̂
k are ordinary least squares estimates and 1q is a column vector of ones of

length q. The problem (2.5) can be solved using the EM algorithm developed by Laird and

Ware (1982) and Laird, Lange, and Stram (1987).

For high-dimensional data, it would be necessary to reduce the dimension of the data before

using the method. This could be accomplished by using previous methods of penalized

variable selection on the fixed effects, while ignoring the random effects, and vice versa.

The resulting reduced model could then be applied to this joint penalty problem for further

simultaneous selection of fixed and random effects. While this method is effective at

selecting fixed and random effects, the EM algorithm that it uses is not efficient and may not

be plausible when the number of predictors is too large due to its slow convergence rate and

computational burden.

Model 2 (Fan and Li, 2012)—This method selects important fixed and random effects

independently in two separate models. Proxy matrices are used to account for the unknown

variance-covariance structure of the random effects during the selections. Stacking Xi, bi, yi,

and εi and setting Z = diag(Z1, …, Zn) with corresponding Π̃ = diag(Π, …, Π), the linear

mixed effects model in (2.4) can be rewritten as

For the fixed effects parameter β, it is necessary to minimize the penalized likelihood

equation

(2.6)

where Pz = (I + σ−2ZΠ̃ZT)−1 and the penalty function Pλ(|βj|) is the Smoothed Clipped

Absolute Deviation (SCAD, Fan and Li, 2001) penalty with tuning parameter λ. It is

important to note that the problem Q(β) depends on the unknown parameters Π̃ and σ2. To

overcome this obstacle, a proxy matrix P̃
z = (I + Z ZT)−1, where  = (log n)I, is

substituted into (2.6) for Pz. Since this regularization function is quadratic, it can be solved

through previous methods for penalized least-squares, such as the LARS algorithm (Efron et

al., 2004).

The selection of the random effects is accomplished through Bayesian methods of deriving

the restricted posterior distribution of the random effects, and penalizing this solution of the

restricted posterior mode. The resulting regularization problem to be minimized is
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(2.7)

where Px = I − X(XTX)−1XT, the penalty function Pλ(|bk|) is again the SCAD penalty with

tuning parameter λ, and Π̃+ is the Moore-Penrose generalized inverse of Π̃. Again, Π̃ and σ2

are unknown so a the proxy matrix  = diag(M, …, M), with M = (log n)I, is substituted for

σ−2Π̃, so the regularization problem in (2.7) becomes:

This problem is similar to the penalized quadratic function of adaptive elastic net (Zou and

Zhang, 2009), so it can be solved through modification of this algorithm.

For high-dimensional data where N ≤ p, the dimension of fixed effects must be lowered to

below the sample size before using the above methods. This can be done by first using

penalized least squares methods on the fixed effects while ignoring random effects. Using

these selected fixed effects, the random effects can be estimated using the regularization

problem (2.7). Next, using these selected random effects from the second step, the fixed

effects regularization problem (2.6) can be used to select from the remaining fixed effects.

The second and third steps can be repeated, as needed, to further reduce the dimensionality

of the data.

Model 3 (Li et al., 2012)—The final method selects and estimates fixed effects, random

effects, and the covariance structure of the selected random effects simultaneously in a

linear mixed effects model using two penalty functions. Using the model (2.4), When N > p,

a modified log-likelihood incorporating the Restricted Maximum Likelihood (REML) is

(2.8)

where . In high dimensional settings when N ≤ p, the restricted term in

(2.8) will become singular so the following full log-likelihood must be used

(2.9)

The maximum likelihood can be found for this equation to obtain the parameters. Adding

penalty functions, the regularization problem to maximize is

(2.10)
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where ℓn(θ) is (2.8) or (2.9) depending on if N > p or N ≤ p, respectively. The first penalty

function, λ1P1(β), is for the fixed effects and is an ALASSO penalty. For the random effects,

a Cholesky decomposition is performed such that Π = LLT where L is a lower triangular

matrix with positive diagonal elements. If any diagonal element of Lkk = 0, then the

corresponding random effect bk is also 0 and is removed from the model. The second

penalty function in (2.10) is set to be an L − 2 penalty function (Yuan and Lin, 2006) with an

adaptive weight added so that the regularization problem is

(2.11)

where βĵ and ||L̂
(k)|| are ordinary least squares estimates. An estimation of the variance σ2

(Lind-strom and Bates, 1988) can be substituted into the model, allowing (2.11) to be

maximized in terms of only L and β.

The problem (2.11) can be solved by a new algorithm that iteratively updates two quadratic

optimization functions for the random and fixed effects. This has proven to be more efficient

than the EM algorithm, which cannot handle large numbers of predictors. When the

maximum likelihood is used, the new algorithm is proven to be a consistent estimator for

high-dimensional data, where p and q can diverge at an exponential rate with the sample size

n.

3 Summary

In this article, we described two types of longitudinal high-dimensional data that researchers

often encounter in current biomedical research and reviewed several recently developed

statistical methods to deal with these two types of data. First, we introduced a kernel method

for classification for the first type of longitudinal high-dimensional data and the

corresponding computational strategy for parameter estimation. Second, we reviewed three

mixed effect shrinkage models for the other type of longitudinal high-dimensional data. In

the review, we compared the model setups, computational strategies, and advantages and

shortcomings of the methods.
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Table 1

Comparison of three penalized linear mixed effects models

1. Joint Penalization 2. Independent Selection 3. Double Penalization

Authors Bondell et al. (2010) Fan and Li (2012) Li et al. (2012)

Regularizations 1 1 2

Objective
Functions

ℓ(β, Π, σ2) − λP(β, b) Fixed: ℓ(β) − λ1P1 (β)
Random: ℓ(b, σ2) λ2P2(b)

ℓ(β, Π, σ2) − λ1P1(β) − λ2P2(b)

Penalties 1 total (ALASSO) 1 fixed (SCAD)
1 random (SCAD)

1 fixed (ALASSO)
1 random (L-2 norm)

Covariance Structure Modified Cholesky
decomposition for covariance
matrix

Use of proxy matrix to substitute for
unknown covariance matrix

Cholesky decomposition for
covariance matrix

Algorithms EM algorithm LARS/Elastic net New efficient algorithm with two
quadratic components

High-Dimensional Data EM algorithm is not efficient
for large number of predictors

p and q can diverge to ∞, but must reduce
dimensions of fixed effects ignoring
random effects first

p and q can diverge to 1
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