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1 Introduction Self-assembly is the process in which 
units such as atoms, molecules, colloidal or microfabri-
cated particles spontaneously form organized structures [1]. 
The final shape and properties of the resulting structure is 
entirely determined by the properties of the individual 
units, and not by external (human) direction.  

Self-assembly occurs at all length scales, from the tini-
est molecules to entire galaxies [2]. In this paper, we study 
the three-dimensional self-assembly of anisotropic silicon 
particles as a fabrication technique for 3D silicon micro-
machining. Self-assembly of microfabricated objects in 
two dimensions has received wide attention with promising 
results [3, 4] and very complex shapes [5]. The transition 
to three dimensions is of technological importance for 
complex structures such as photonic band gap materials [6, 

7], metamaterials fabricated from cubic building blocks  
[8], three-dimensional electrical networks [9] and 3D 
cross-point architectures for computer memories [10]. 
Processes for 3D silicon microfabrication are necessary in 
order to overcome the scaling limits imposed by 2D micro-
fabrication [11, 12].  

For self-assembly, four elements are critical: the char-
acteristics of the individual units, the driving forces which 
bind the units, the disturbing forces which allow the units 
to find their optimal position, and the environment in 
which the self-assembly takes place [1]. Organized struc-
tures are obtained when these four elements are properly 
tuned. For submicrometer sized particles, the gravitational 
force is small compared to drag forces and sedimentation 
of particles is slow [6]. However, in our research we use 

Today’s micro- and nano-fabrication is essentially two-
dimensional, with very limited possibilities of accessing the
third dimension. The most viable way to mass-fabricate func-
tional structures at the nano-scale, such as electronics or
MEMS, with equal feature sizes in all directions, is by three-
dimensional self-assembly. Up to now, three-dimensional
self-assembly has mainly been restricted to crystals of poly-
mer spheres. We report on two- and three-dimensional self-
assembly of silicon cubes, levitated in a paramagnetic fluid.
We demonstrate the benefits of templating and study the ef-
fect of a change in hydrophilicity of the cubes. These experi-
ments bring us one step closer to three-dimensional self-
assembly of anisotropic, semiconducting units, which is a
crucial milestone in overcoming the scaling limits imposed
by contemporary 2D microfabrication. 

 

1 mm
 

Levitated assembly of silicon cubes. 
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particles of several hundred µm. At these length scales, 
sedimentation takes place too rapidly, and has an undesired 
effect on the outcome of the self-assembly experiments. 
Therefore there is a need to counteract gravity in these sys-
tems. To this end we employ the magneto-Archimedes 
levitation [13] in a paramagnetic fluid, sometimes also 
called diamagnetic levitation [14–16]. We prefer the term 
magneto-Archimedes, since strictly speaking the levitated 
objects do not have to be diamagnetic, as long as they are 
less paramagnetic than the surrounding fluid. The mag-
neto-Archimedes effect also provides a driving force push-
ing the particles towards each other [17, 18].  

Magnetic forces are increasingly used in self-assembly. 
For instance, assembly was performed using magnetic 
nanoparticle fluids [19], magnetite nanocubes have been 
self-assembled into helical superstructures [20], a macro-
scale Zeeman slower was fabricated from permanent mag-
nets [21], and colloidal assembly was directed by magnetic 
moulds [22].  

Here we report on the 2D and 3D self-assembly of 
levitated silicon macrocubes. Since the magneto-
Archimedes driving force in our system is axi-symmetric, 
we expect the target structures to be cubic closed packed 
disc-like (2D case) or ellipsoid-like (3D case) structures, 
built from the constituent macrocubes. The submillimeter 
particles were levitated in a paramagnetic fluid. These par-
ticles have a much higher density than commonly used  
[17, 18]. Early results indicated that the levitated 3D self-
assembly of these macrocubes is very challenging [23]. 
Therefore, in order to increase the quality of the resulting 
3D crystals, the particles were made less hydrophilic. This 
reduction in hydrophilicity introduces additional binding 
forces between the particles that are in contact, as was 
demonstrated by means of the self-assembly of hydropho-
bic silver nanocubes [24] and other anisotropic shapes  
[25].  

We demonstrate successful 2D and 3D templated self-
assembly, as well as the 3D levitated self-assembly of sili-
con macrocubes. These results are the first ever 3D self-
assembly of silicon particles with an anisotropic shape by 
means of magnetic levitation. This method is a promising 
route towards 3D micromachining of silicon aided by self-
assembly. 

  
2 Experimental The self-assembly experiments were 

performed in a home-built setup, fabricated from alumi-
num, schematically depicted in Fig. 1(A). In this setup a 
cuvette filled with a paramagnetic liquid and up to 54 dia-
magnetic silicon macrocubes was positioned between two 
NdFeB magnets. These magnets were obtained by stacking 
5 smaller cylindrical magnets, resulting in a stack with a 
total length of l = 35 mm and a radius of r = 12.5 mm. The 
magnetic field strength at the edge of the magnets was 
measured with a Gauss meter to be 1.25 T. By placing 
these stacks of magnets so that similar poles face each 
other, a magnetic field gradient is obtained in the cuvette. 
The gradient and point of zero field was adjusted by 

changing the distance between the magnets from 14 mm to 
22 mm by raising magnet 1.  

The silicon particles are pushed towards a position on 
the central axis between the two magnets as a result of the 
magnetic field gradient inside the paramagnetic medium. 
This is the position where the magnitude of the magnetic 
field is lowest1. Since all particles are forced towards this 
central region, an effective pressure exists that keeps the 
particles in close contact.  

By changing the separation h between the two magnets, 
the magnetic field gradient can be altered, which aids  
attempts to obtain the target structures. The paramagnetic 
fluid used is a 2M solution of GdCl3 (Sigma Aldrich 
G7532, gadolinium(III)chloride hexahydrate 99%) in 
demineralized water. The relatively strong susceptibility of 
this fluid enhances the susceptibility contrast between the 
diamagnetic macrocubes and the paramagnetic liquid envi-
ronment.  

In order to introduce vibrations into the system,  
one end of the cuvette is pressed against a piezo-actuator 
(FPA-0150E-S-0518-150-SS-1M3 FlexFrame PiezoActua-
tor, Dynamic, Structures & Materials, LLC).  

The electric capacity of the piezo-element is 1.8 µF. A 
spring ensures that the cuvette is kept in position while the 
piezo-element is actuated. The actuation frequency and 
amplitude are generated by means of a waveform generator 
(Agilent A33220A), which is connected to a 10× high  
voltage amplifier (SyLAB LM3325). Typically the piezo-
element was actuated for 30 minutes. Care was taken to 
prevent strong oscillatory fluid flows, which typically re-
sults in an undesired alignment of particles at the nodes of 
the resulting standing waves. We determined an actuation 
frequency of 300 Hz with a peak to peak voltage of 130 V 
to be optimal for self-assembly. From this voltage and the 
capacity of the piezo-element, we can estimate that the up-
per limit in the disturbing energy in the system is in the  
order of 15 mJ.  

The macrocubes were diced from a double-sided pol-
ished silicon wafer (p-type, 〈100〉, resistivity = 5 – 10 Ω cm). 
The dicing procedure was optimized in order to make sure 
that the particles be as cubic as possible and that the diced 
surfaces be as smooth as possible. To obtain the cubes, 
first the average thickness of the wafer was determined 
around the edge of the wafer by a micrometer caliper to be 
525 µm. The manufacturer specificies a thickness variation 
over the entire wafer of less than 5 µm. Subsequently, the  
wafer was diced so that edges were obtained with lengths 
equal to the measured average thickness of the wafer.  
For dicing, we employed a Loadpoint Micro Ace 3 dicing 
saw, equipped with an F1230 blade. The blade was oper-
ated at 32000 rpm at a feed rate of 1 mm/s. Any residual 
dicing foil was removed using a piranha solution 
(H2SO4(conc):H2O2(30%) = 4:1, temperature = 100 °C, 
10 min), followed by rinsing. The particles were stored in 
 
1  The actual position of assembly is slightly lower due to gravity. 
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demineralized water. Inspection by scanning electron  
microscopy (FEI Quanta 450) confirmed that the particle 
size was as designed within measurement error 
(519 ± 10 µm).  

In order to optimize the dicing process for flatness of 
the cubes, the morphology of the resulting surface was 
analysed by means of scanning electron micrographs (FEI 
Quanta 450). Atomic force microscopy (AFM, Dimension 
3100) on a face of a single particle resulted in a RMS 
roughness of 12.6 nm over a 10 µm scan range, with a 
peak-peak value of 460 nm.  

Due to the native surface oxide, the water wets the  
silicon cubes completely (contact angle of 0°). Some of  
the cubes were made less hydrophilic by means of chemi-
cal functionalization with hexamethyldisilazane (HMDS) 
[26, 27].  

To begin with, the macrocubes were heated on a hot-
plate at 70 ± 20 °C to remove any adsorbed water from the 
surface. Subsequently, the particles were immersed in pure 
HMDS (BASF, VLSI Selectipur). The surface reaction be-
tween the silicon and HMDS was allowed to proceed for 
one minute while stirring, after which the suspension was 
poured on top of a Whatman general purpose filter paper. 
The residual HMDS was quickly removed by rinsing the 
particles with excess acetone (VWR Chemicals, Technical 
grade, 99%) and isopropyl aclohol (Merck Millipore, for 
analysis, 99.8%). The macrocubes were dried in air.  

This chemical reaction was also performed on a whole, 
unprocessed wafer. This wafer allowed the contact angle of 
a droplet of water on the silicon surface to be measured be-
fore and after the reaction, in order to characterize the 
change in hydrophilicity. The contact angles were meas-
ured using a Metrology Dataphysics OCA-20. After the 
one minute HDMS treatment, the surface became less hy-
drophilic with a contact angle of 53°.  

The macrocubes were used for several 2D and 3D self-
assembly experiments. In this paper we report 4 different 
experiments:  

– Measuring the levitation height of single macrocubes 
as a function of the magnet separation h.  

– Templated 2D self-assembly of macrocubes on the 
bottom of the cuvette.  

– Templated 3D self-assembly of macrocubes on the 
bottom of the cuvette.  

– Levitated 3D self-assembly of macrocubes.  
Typically, around 54 macrocubes were used for the 

self-assembly experiments.  
The levitation heights of single silicon macrocubes 

were measured by means of non-magnetic, synthetic cali-
pers (WIHA, Vernier Calipers #41103). Two cameras were 
used to observe the self-assembly experiments: a Dino-lite 
pro USB microscope and a Nikon 1 J2 compact flash  
camera. The latter was equipped with a Macro-Switar 
1:1.9 CMT lens (focal length = 75 mm) and an 85 mm ex-
tension tube. The results were stored as photographs, see 
for example Figs. 2 and 4, or as videos (see Supporting In-
formation).  

3 Results and discussion 
3.1 Levitation of single macrocubes Single, non-

surface treated macrocubes were levitated in the paramag-
netic fluid with different magnet separations. The resulting 
measured particle levitation heights are plotted in Fig. 1(B). 
The separation distance h between the two cylindrical 
magnets was changed by raising magnet 1. As a result, the 
point of zero field is raised as well. In this way levitation 
heights over 4 mm could be achieved. The measured heights 
are compared to the expected values based on a magneto-
static model, which takes into account the distribution of 
magnetic field energy throughout the area of interest. The 
model neglects magnetic interparticle interactions and as-
sumes that the particles are small, so the force density is 
constant  over  the volume of  the particle.  Details  can be  
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Figure 1 (A) Schematic illustration of the home-built setup. Sili-
con macrocubes are introduced to a cuvette that contains a para-
magnetic liquid. The cuvette is positioned between two magnets, 
which are placed with similar poles facing. The resulting mag-
netic field gradient causes the particles to be forced towards a 
central region between the two magnets, labelled Magnet 1 and 
Magnet 2. A piezo-actuator introduces vibrations into the cuvette, 
which allows self-assembly to occur. Cameras were used to visu-
alize the self-assembly process and the resulting arrays of parti-
cles. (B) Measured levitation height (green dots) of a single sili-
con macrocube as a function of magnet separation h. The meas-
ured data are compared to values expected based on our theoreti-
cal model (solid line). The dashed line is the minimum separation 
of the magnets, as dictated by the dimensions of the cuvette. The 
maximum separation is indicated by the arrow. 
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found in Appendix A. The theoretical and measured values 
are found to be in excellent agreement, see Fig. 1(B), 
which confirms that our model provides a good description 
of the experiment.  

 
3.2 Two-dimensional self-assembly Two-dimen-

sional self-assembly of macrocubes was performed on the 
bottom of the cuvette. The cuvette acts as a template and 
makes sure that all the particles are positioned in the same 
plane. Figure 2(A) is a photograph of the macrocubes on 
the bottom of the cuvette before self-assembly. It is appar-
ent that the particles are randomly positioned, resulting in a 
high amount of disorder. Figure 2(B) is a photograph of the 
macrocubes after self-assembly for 20 minutes. The gener-
ated vibrations allow the particles to optimize their posi-
tion in the magnetic field, that is, find those positions 
where the total energy of the array is as low as possible. In 
the final array, the particles have aligned themselves neatly 
next to each other, resulting in a square distribution of the 
macrocubes, which is the target configuration. Some devia-
tions from the ideal square distribution are observable.   

 

immobile

A

B

 
Figure 2 (A) Collection of randomly distributed silicon macro-
cubes before 2D self-assembly. The particles are lying on the bot-
tom of the cuvette, which acts as a template. The macrocubes are 
surface treated to make them less hydrophilic and have edges of 
525 ± 10 µm. (B) Array of silicon cubes after self-assembling for 
20 minutes. During this time the piezo-actuator was operated in 
order to introduce a vibration to the system. The particles are 
aligned next to each other in a square distribution. Deviations 
from the ideal configuration are observable. A video of the self-
assembly process can be found in the Supporting Information 
(video 1, SA_2D_Templated). 

The theoretical model employed in the previous section 
is also used to analyse the magnetic energy of these tem-
plated 2D arrays. In this case the model is modified 
slightly in order to take the rotational orientation of the 
cubes into account. Details can be found in Appendix B. 
We have analysed the magnetic energy of the 2D array of 
macrocubes at intervals of 50 seconds for a 1500 seconds 
self-assembly experiment, see Fig. 3(A). In these photo-
graphs, the position of each individual macrocube was de-
termined manually with the aid of a MATLAB script that 
transforms the perspective (see Appendix C). Subsequently 
the known distribution of the magnetic field energy in the 
cuvette was used to calculate the cumulative energy of the 
array. The calculated energy is given with respect to the 
value of the magnetic energies of a square configuration, 
see insets in Fig. 3(A).  At time <600 seconds, a rapid de- 
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Figure 3 (A) Difference between calculated energy of observed 
2D arrays and of target configuration versus time. The energy dif-
ference decreases with time, indicative of energy minimization. 
After 600 seconds, the energy difference remains at around 
U = 3 nJ. The insets show the square target configurations for the 
number of cubes in the field of view. There are some missing 
cubes at the corners of the structures, since the number of macro-
cubes was insufficient for full squares. At 600 seconds an addi-
tional cube entered, which is reflected in the target structure. (B) 
Number of good contacts in arrays resulting from templated self- 
and levitated self-assembly of surface treated macrocubes. The 
vertical bars depict the standard deviation of the measurements. 
The levitated and templated experiments were repeated 12, re-
spectively 3 times. 
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crease of the energy difference between the actual and the 
square array is observed. From this result we surmise that 
energy minimization is indeed achieved when operating 
the piezo-actuator. This means that there is a good balance 
between the vibrational energy in the system and the en-
ergy forcing the macrocubes together. Consequently, we 
confirm that this setup is very suitable for this self-
assembly process. After 600 seconds, the energy difference 
levels off at a value of around U = 3 nJ. Since the energy 
difference remains constant at a value which is non-zero, it 
is apparent that the lowest possible energy is not obtained. 
The optimal configuration has lower energy. A possible 
explanation is that the introduced vibrations are still too 
energetic. In this respect, it is tempting to compare the en-
ergy levels with the energy pumped into the system by the 
piezo. From the upper limit of 15 mJ provided by the 
power source, a fraction is taken up by the array of parti-
cles. If we assume this fraction is the volume of the parti-
cles to the entire volume of the system (about 15 × 103), 
the energy a single particle can absorb is about 1 µJ. Since 
this value is a factor of thousand above the observed  
energy levels, this approach is probably too naive. Other 
attempts to estimate the disturbing energy in the system 
from macroscopic inputs, such as the velocity of the piezo, 
lead to much too high values as well.  

 
 3.3 Three-dimensional self-assembly Self-assem-

bly in three-dimensions was demonstrated by means of two 
examples: (i) templated, see Fig. 4(A) and (ii) levitating, 
see Fig. 4(B). As a template, again the bottom of the cu-
vette was used as in the 2D situation, but magnet 1 was not 
lowered as much. In the levitated case, the macrocubes 
were made less hydrophilic, to enhance the interaction.  

In both cases, the target structure is a large 3D perfect 
primitive cubic crystal built from individual macrocubes. 
In both cases we find that many of the macrocubes are 
nicely aligned with each other and that the structure ob-
tained closely matches the target structure. The result for 
the templated case appears to be much better than the levi-
tated case, as expected. This result is understandable from 
the intuitive argument that in the templated case, pre-
organization along one of the plane directions in the crystal 
is provided.  

To quantify these results, we used photographs of the 
resulting 3D structures, similar to those in Fig. 4, to deter-
mine the percentage of observable good contacts between 
particles as a ratio with the total number of observable con-
tacts. The six faces of each macrocube that could be ob-
served were assessed. Contacts with an overlap of more 
than 95% were rated as good. All other contacts are re-
jected, but counted. Furthermore, in the case of rotational 
misalignment, the contact is also rejected as bad. Faces that 
cannot be seen are not counted. For both types of 3D self-
assembly, the relative number of good bonds was deter-
mined and compared in Fig. 3(B). 

For the templated case, we find around 75% good con-
tacts, compared to around 25% for the levitated experiment. 

B

A

On template

Levitatingxy

z

 
Figure 4 (A) Photograph of the resulting array after 3D self-
assembly in a paramagnetic liquid of hydrophilic silicon cubes on 
a template. The template is formed by the bottom of the cuvette. 
The macrocubes are succesfully organized in a structure that 
closely resembles the target 3D cubic crystal, see for example the 
positions at the arrows. (B) Photograph of the resulting array after 
3D self-assembly of levitating surface treated silicon cubes. The 
structure is a good match to the target cubic crystal, however 
small structural mismatches are identifiable, see for example the 
arrow. In particular, rotational and positional alignment errors are 
visible in between separate crystal planes. A video of the self-
assembly process can be found in the Supporting Information 
(video 2, SA_3D_Templated). 
  

This result confirms the qualitative observation that the 
templated results are better than the levitated self-assembly.  

In the levitated case, when the macrocubes are made 
less hydrophilic the number of faces that had no observable 
rotational misalignment appeared to increase. The surface 
treatment, however, seems to have no significant effect on 
the number of good contacts. The effect of a change in hy-
drophilicity requires more research before definite conclu-
sions can be drawn.  

In the photograph in Fig. 4(B) we find deviations from 
the perfect primitive cubic crystal structure. There appear 
to be planes of cubes aligned vertically (yz-planes), that are 
rotated with respect to each other (around the x-axis). We 
speculate that this is related to the anisotropy in the dis-
turbing energy, caused by the fact that the piezo introduces 
sound waves along the long axis of the cuvette.  

One can observe an elongation of the entire assembly 
in the xy-plane. This effect is due to the shape of the force 
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field, which is slightly ellipsoidal, with the short axis along 
the z-direction. This shape can be adjusted by modifying 
the distance between the magnets.  

From these results it is apparent that this method has 
high potential for 3D self-assembly. We surmise that by 
tuning the hydrophilicity of the particles and the making 
the vibrational energy in the system less directional may 
result in an even closer match with the target structure. 

  
4 Conclusions We have demonstrated two- and three-

dimensional self-assembly of anisotropic silicon cubes 
with edges of 525 µm, treated with HDMS to make them 
less hydrophilic. To provide a driving force for self-
assembly and avoid sedimentation, the cubes were levi-
tated in a paramagnetic GdCl3 solution. We have shown 
that the levitation height is controllable up to appoximately 
4 mm by changing the distance between the two permanent 
magnets that generate the magnetic field.  

A piezo element in our setup provides energy that 
drives the energy of the system towards a global minimum. 
For two-dimensional self-assembly, this was demonstrated 
by calculating the magnetic energy as a function of time.  

The use of a non-structured surface as template is 
beneficial for successful self-asssembly. For the 3D ex-
periment, the fraction of cube faces that are fully aligned 
increases from 25% to 75% after inserting a template. The 
resulting structure is a good match with the target cubic 
crystal structure.  

Further optimization is expected to be possible by tun-
ing the hydrophilicity of the macrocubes and of the vibra-
tional energy in the system. This method is a promising 
route towards magnetically driven 3D self-assembly for 
applications such as 3D photonic bandgap crystals [7] or 
memory crystals [10].  

Supporting Information Additional Supporting Informa-
tion may be found in the online version of this article at the pub-
lishers web-site.  
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Appendix 
A Diamagnetic levitation Diamagnetic materials are 

repelled from magnetic fields [28], which makes diamag-
netic materials perfect for magnetic levitation. The degree 
to which a material is diamagnetic is measured in the mag-
netic susceptibility χ. For diamagnetic materials this is a 
negative number, for paramagnetic materials – materials 
attracted to magnetic fields – this is a positive number. 
Strongly diamagnetic materials, like pyrolytic graphite, are 
easy to levitate [14] in contrast to weakly diamagnetic ma-
terials. The challenge to levitate a weakly diamagnetic ma-
terial, like silicon, can be overcome with a paramagnetic 

medium [29]. By surrounding the weakly diamagnetic ma-
terial with a strongly paramagnetic medium, levitation can 
be achieved [30]. The paramagnetic medium is attracted to 
the magnets, pushing the diamagnetic material away: 
Magnetic levitation is achieved. The forces involved with 
diamagnetic levitation in a paramagnetic medium are two-
fold: On the one hand, there is a buoyant force, depending 
on the gravity, densities of the two materials, and volume 
of the diamagnetic particle. On the other hand, there is a 
magnetic force, which is dependant of the magnetic sus-
ceptibilities of the two materials, volume of the diamag-
netic particle, and the applied magnetic field. Since both 
forces are a function of particle volume, the force density 
can be determined [30]. Assuming that the susceptibility is 
small, so that the liquid is not saturated, and that the parti-
cles is small, so that the force density is more or less con-
stant,  

( ) ( ) ( )l p
l p

0

/ ,V
-

= - - - ◊F g B B
χ χ

ρ ρ
μ

∇  (1) 

where F is the force on the particle, V is its volume, ρ is 
the density and χ the magnetic susceptibility of particle p 
and liquid medium l. Vector g is the gravitational accelera-
tion, µ0 the vacuum permeability and B the magnetic field. 
The density of silicon is  ρp = 2329 kg/m3 [31], the density 
of a 2 M GdCl3 solution in water was measured to be 
ρl = 1459 kg/m3. The magnetic susceptibility can be calcu-
lated for the GdCl3 solution in water, see Eq. (2) [29].  

3
l 27 930 10 4π ,C-= . ¥ ◊ ◊χ  (2) 

where C is the concenteration of GdCl3 in water, in this 
work 2 M. At these concentrations, the magnetic suscepti-
bility of silicon is negligible 6

p( 3 215 10-= - . ¥χ  [29]).  
In order to obtain a stable levitation point, two magnets 

can be placed close to each other with similar poles facing 
[32]. To calculate the forces on a particle, the magnetic 
field needs to be determined. For the calculation of the 
magnetic field of a single magnet, the Biot–Savart equation 
was used, see Eq. (3) [28].  

( ) ( )0 2 12
1 23

12

d ,
4π

V
r
¥= ÚÚÚ

j r rB r μ  (3) 

where B is the magnetic field, µ0 is the permeability of  
free space, 12 1 2= -r r r  is the full displacement vector, j is 
the current density in V2, and V2 is the volume of the mag-
net. To take advantage of the cylinder symmetry (in this 
work, cylindrical magnets were used), a cylindrical coordi-
nate system is used. In the cylindrical coordinate system r,  
φ and z are used as coordinate variables. The vectors r1 and 
r2 take the form of 1 1 1 1r zϕÈ ˘

Î ˚= , ,r  and 2 2 2 2 .r zϕÈ ˘
Î ˚= , ,r  As 

indicated in Eq. (3), r2 is used for the integration volume, 
i.e. the magnet. The vector r1 is the location at which the 
magnetic field is calculated. Assuming the magnetisation is 
constant  throughout the volume of  the magnet, and using 
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= —¥j M  [28], then j is  given  by Eq. (4),  

2 2 2 ˆ( ) ( ) ( ) ,zM r R u z u L z ϕ= - -j δ  (4) 

where R is the radius of the magnet, L is the length of the 
magnet, δ is the Dirac delta, u the step function and ϕ̂  is 
the unit vector of the φ direction. Note that φ2 can be taken 
as zero for our axisymmetrical system. The magnetisation 
of the magnets used in this work was calculated from a 
magnetic field measurement at the edge of the magnets, 
and is 1.25 T.  

To obtain a two magnet model, the field of the second 
magnet is shifted by z L h= +  and superimposed on the 
field of the first magnet, where h is the separation between 
the magnets.  

To avoid elliptical integrals [33], implementation of 
Eq. (3) includes a discrete summation of the integral over φ. 
All analytical calculations were performed using MAT-
LAB2. The analytical model was verified with finite ele-
ment method (FEM) simulations using COMSOL 3 ; the 
FEM model agrees with the analytical calculations within 
0.3 in the region between the magnets. The analytical cal-
culations of the magnetic field were used to model the levi-
tation height as in Eq. (1).  

 
B Energy of assembly To calculate the magne-

tostatic forces on the particles and the energy of their en-
semble, we derive an approximate solution of the quasi-
static, no-current, Maxwell equations. The liquid and the 
particles are modeled as linear permeable regions. Their 
permeabilities are respectively l 0 l(1 )= ◊ +μ μ χ  and 

p 0 p(1 ),= ◊ +μ μ χ  where the χ’s are magnetic susceptibili-
ties and µ0 the vacuum permeability. The applied magnetic 
field is due to exterior sources. We define ,ϕ-— = H  

( ) ,μ= +B H m  so .— ◊ = -— ◊H m  It is convenient to take 
l .=μ μ  Then the induced magnetisation m = 0 in  the liq- 

uid and p l 0 l( ) /= -m Hχ χ μ μ  in the particle.  
Our main approximation concerns the boundary condi-

tions imposed on φ at the interface between regions with 
different permeability. These conditions are: (I) φ is con-

tinuous over the interface and (II) l p
l p

,∂ ∂=
∂ ∂n n
ϕ ϕμ μ  

where n is the, say, outer surface normal. For small suscep-
tibilities ( 1),χ  we can violate condition (II) a bit and 

take p l
p p

,∂ ∂ª
∂ ∂n n
ϕ ϕμ μ  so ϕ∂

∂n
 is continuous. Then H is 

determined solely by the free-space field of the exterior 
sources. Consequently, there is no inter-particle interaction. 
Next to this, we will use l 0 .ªμ μ   

 
 

 
2  MATLAB R2013a, MathWorks, Nathick, US. 
3  COMSOL 4.3, COMSOL BV, Zoetermeer, The Netherlands. 

With these approximations, the energy of a particle in 
the susceptible liquid background is then given by  

1 d ,
2

U V= - ◊Úm B  (5) 

p

2
p l

0

1 ( ) d
2 V

U V= - - ,Ú Bχ χ
μ

 (6) 

where Vp is the volume of the particle, and the field 
0μ=B H  is given by the free-space/vacuum field of the 

sources (i.e. the static magnets). Upon differentiation with 
respect to the particle position we obtain the force on the 
particle  

,U= -—F  (7) 

( )
p

2
p l

0

1 ( ) d
2 V

V= - — ,ÚF Bχ χ
μ

 (8) 

or  

( )
p

p l
0

1 ( ) d
V

V= - ◊— ,ÚF B Bχ χ
μ

 (9) 

where we used 0—¥ =B  (which holds, as B is given by  
a free-space field). For small gradients of B over the parti-
cle volume, the force is well represented by the force den-
sity  

( )p l
0

1/ ( )V = - ◊— .F B Bχ χ
μ

 (10) 

This is a familiar expression [30], applicable in case of 
small particles and small susceptibilities.  

Equation (6) has been used to calculate the energy  
of a system of particles. Numerically, 2B  was calcu-
lated/tabulated once (as function of radial distance and z) at 
high resolution. We used this table together with linear in-
terpolation to integrate over the particle volume by means 
of Riemann summation, taking the position and orientation 
(i.e. rotation) of the particle into account. The energy of the 
ensemble is the sum of the energies of the individual parti-
cles.  

 
C Perspective transformation To calculate the en-

ergy of the particles in the 2D self-assembly process, we 
determined their position and orientation in photographs 
(e.g. Fig. 2). For this purpose it is convenient to have a top-
view of the particles. We applied a perspective transform 
to attain this view.  

For the perspective transformation we consider a ma-
trix, A, that maps 2D world coordinates (x, y) to im-
age/pixel coordinates (i, j) [34]. A general linear transfor-
mation is given by  

1 1

x i
y A j

È ˘ È ˘
Í ˙ Í ˙= ◊ ,Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

 (11) 
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xi xj x

yi yj y

i j

a a a
A a a a

a a a

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

= .  (12) 

Such transformation matrices are routinely inverted in 
camera calibration methods that employ a calibration grid 
(e.g. checkerboard pattern) with known world coordinates 
[34]. Here, we do not have such a fixed grid. However, we 
know the dimensions of the cubical particles. For instance, 
the vertices of the top face of a cube are related by  

2 1

3 4

3 2

4 1

,
,
,
,

- =
- =
- =
- =

p p u
p p u
p p v
p p v

  (13) 

where 1 . 4..p  are the vertices oriented in a counterclockwise 
fashion. Since the top face of a particle is square in real 
world coordinates, the edges are orthogonal and related via  

,

.

x

y

y

x

u
u

u
u

È ˘
Í ˙
Í ˙
Í ˙
Î ˚

È ˘
Í ˙
Í ˙
Í ˙Î ˚

=

-
=

u

v
  (14) 

Substituting (11) and (14) in (13) results a set of equa-
tions in terms of (I) the elements of matrix A (i.e. the a’s),  

  

 
Figure 5 Example of the perspective transformation. (A) A raw 
photograph with manually detected vertices of the top faces of the 
particles; (B) the image after perspective transformation and color 
enhancement; the top faces have been transformed into squares. 
(C) Positions and orientations of the particles, which were manu-
ally detected in the transformed image. 

(II) the M pairs of diagonal coordinates ( x mu ,  and )y mu ,  and 
(III) the 4M ¥  pairs of vertex coordinates in the image 

1 .4( mi .. ,  and 1 .4 ).mj .. ,  Unknown are (I) and (II), known are (III). 
Additionally, we defined the origin in the photograph as 
the central pixel (resulting in 1 1 0)x ya a= =  and we define 
the x-axis by  

0 0Δ Δ 1 0 ,xi xja i a j+ - =  (15) 

where 0 0(Δ Δ )i j,  is the vector in the image that corresponds 
to the unit x-axis. The matrix elements of A are solved by 
minimizing the mean squared error in (13) and (15). For 
this, the vertex coordinates were determined manually (i.e. 
by eye) in a photograph. For the actual transformation we 
used the imtransform function of the MATLAB image 
processing toolbox. This transformation was applied to en-
tire photographs, however, only the pixels that correspond 
to positions in the plane of the top faces of the cubes are 
correctly transformed. Figure 5 shows an example of the 
perspective transformation.  
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