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SUMMARY

The behavior of high-order time stepping methods combined with mesh-free methods is studied for the
transient convection-diffusion equation. Particle methods, such as the Element-Free Galerkin (EFG)
method, allow to easily increase the order of consistency and, thus, to formulate high-order schemes in
space and time. Moreover, second derivatives of the EFG shape functions can be constructed with a
low extra cost and are well defined, even for linear interpolation. Thus, consistent stabilization schemes
can be considered without loss in the converge rates.

key words: Meshless, Mesh-free, finite elements, convection-diffusion, transient, least-squares,

streamline-upwind Petrov-Galerkin

1. INTRODUCTION

A great deal of effort has been devoted in the recent years to the development of finite element 
methods for the numerical approximation of transient convection-diffusion problems. It is well 
known that the standard Galerkin is not ideally suited to deal with the spatial discretization 
of convection dominated problems. Thus, other spatial discretization techniques are necessary 
to introduce the suitable amount of numerical dissipation in the presence of internal and 
boundary layers. In truly transient problems, another equally important aspect is to ensure 
an adequate coupling between the spatial approximation and the time integration scheme. 
Now, it is also well known that the combination of a standard Galerkin spatial discretization 
with classical second order accurate time stepping schemes, such as Lax-Wendroff and Crank-
Nicolson methods, fails to produce satisfactory numerical results when convection dominates 
the transport process (no internal or boundary layers being present) [1, 2]. In conclusion, 
transient convection-diffusion problems need stabilization because of the internal and boundary
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layers, and high-order time stepping schemes for accuracy in convection dominated problems.
Note that in real engineering problems the relative weight of the convective and diffusive term
may vary in space and time. This effect is usually accentuated by a non uniform mesh due
to geometrical considerations. In order to overcome some of these difficulties, in [3] a unified
approach for high-order implicit time stepping is presented. Then, in [4, 5] these methods are
combined with classical stabilization techniques in the framework of the finite element method.

However, finite element methods are usually non consistently stabilized. The second
derivatives needed in the stabilization term are usually neglected. This implies a loss of
convergence, which is more dramatic in high-order time accurate methods as it will be shown
here. Several solutions are apparent and some of them have been explored. For instance, the
stabilization parameter (i.e. the intrinsic time τ) could be modified for each integration scheme
in order to ensure high-order time convergence rates, even if second derivatives are still not
computed. Another alternative in order to preclude the computation of second derivatives
is to take into account flux jumps across element boundaries [6]. Finally, second derivatives
can be approximated [7]. This implies a global reconstruction for linear elements (a global
least-squares problem). For high order elements, a local (element by element) reconstruction
or the usual computation of the second derivatives can be envisioned. As claimed in [7] both
alternatives have a similar computational cost and ensure the theoretical convergence rates.

In mesh-free methods, see [8], second derivatives are computed at a reduced extra cost, that
is an extra cost considerably lower than in finite elements. Moreover the mesh-free interpolation
space is a subset of H2(Ω) and thus, the standard stabilization techniques can be formulated
naturally in H2(Ω). Second order space derivatives of the interpolation are well defined in
the whole domain even with linear consistency. There are not neglected terms in the weak
form and the convergence rates of the high-order time integration schemes are preserved.
Moreover, the moving least-squares (MLS) interpolation allows increasing the order of the
spatial discretization in a simple manner. With a mesh-free interpolation, space and time
high-order consistent stabilized formulations are easily defined and implemented.

This paper extends the time accurate schemes with classical stabilization techniques
presented in [4] to mesh-free methods. And compares the performance of such consistently
stabilized methods with finite element results. It is organized as follows. In section 3
the Galerkin formulation, the stabilized least-squares formulation and the Streamline-
Upwind Petrov-Galerkin formulation are considered in combination with two different time
stepping multi-stage implicit methods, with second and fourth order respectively. In fact, all
formulations are first recalled in the framework of finite elements in section 3.2. Then, section
3.3 is devoted to the particularization of these formulations for a mesh-free interpolation. In
section 4, a 1D numerical example allows to analyze the converge in time for the proposed
formulations. The numerical experiments agree with the conclusions derived in the previous
sections. Finally, numerical examples with mesh-free interpolation are shown in section 5 in
order to illustrate the importance of time accurate computations and the need of stabilized
formulations in the resolution of transient convection-diffusion problems.

2. PRELIMINARIES ON THE ELEMENT FREE GALERKIN METHOD

This section will not be devoted to develop or discuss mesh-free methods in detail. There
are well known references with excellent presentations of mesh-free methods, see for instance
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[10, 11, 12, 13, 14]. Here some basic notions will be recalled in order to introduce the notation
and the approach employed in following sections.

Mesh-free methods, or particle methods, are based in a functional interpolation of the form:

u(x) ' uρ(x) =
∑

j∈Iρ

Nρ
j (x)u(xj), (1)

given a number of particles {xj}j∈Iρ in the domain Ω, Ω ⊂ R2. The interpolation functions,
Nρ

j (x), must be determined in a proper manner. In reproducing kernel particle methods [12, 13]
(RKPM) the interpolation functions are obtained in the framework of the MLS interpolation.
The element free Galerkin method [15, 16] (EFG) can be viewed as a particular case of the
previous formulation [13].

Let us recall, in the context of the EFG method, how the interpolation (shape) functions
are obtained. They are defined as:

Nρ
j (x) = PT (xj) α(x) φ(

x− xj

ρ
), (2)

where the vector α(x) in Rl+1 is unknown and P(x) = {p0(x), p2(x), . . . , pl(x)}T includes a
complete basis of polynomials of degree less or equal m. In one dimension, it is usual that
pi(x) coincides with the monomials xi, and, in this particular case, l = m. The function φ(x)
is a weighting function (positive, even and with compact support) which characterizes the
mesh-free method. For instance, if φ(x) is continuous together with its first k derivatives,
the interpolation is also continuous together with its first k derivatives. In (2) the weighting
function has been translated, i.e. centered in xj , and its support scaled by the dilation
parameter ρ.

The unknown vector α(x) is determined imposing the so-called reproducibility or consistency
condition. In fact, it is equivalent to a Moving Least Squares development. This reproducibility
condition imposes that the interpolation proposed in (1) is exact for all the polynomials in P,
i.e.

P(x) =
∑

j∈Iρ

P(xj)N
ρ
j (x). (3)

After substitution of (2) in (3) the usual linear system of equations, that determines α(x),
is obtained:

M(x) α(x) = P(x), (4)

with
M(x) =

∑

j∈Iρ

P(xj)PT (xj)φ(
x− xj

ρ
). (5)

The matrix M(x) must be regular. In [13] and [17] there is a discussion on the necessary
conditions for the particle distribution. Finally, the approximation that will be used in the
weak form of the boundary value problem is (1) where the shape functions Nρ

j (x) are defined
by (2), (4) and (5), and uρ

j are the coefficients to be determined.
For computational purposes, it is usual to centre in xj and scale with ρ also the polynomials

involved in previous expressions. Thus, another equivalent expression for the shape functions
is usually employed, see [13, 17] for details.
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Remark 1. The weighting function introduced in (2) may be defined in various manners.
Here, for simplicity a rectangular support is chosen. Thus, φ(x) = φ1D(|x1|) φ1D(|x2|) where
φ1D is the cubic spline in one dimension,

φ1D(s) =





2
3 + 4(s− 1)s2 0 ≤ s ≤ 0.5
4
3 (1− s)3 0.5 ≤ s ≤ 1
0 1 ≤ s.

However similar results can be obtained with circular supports, φ(x) = φ1D(|x|). Since φ ∈ C2,
the EFG shape functions are C2 (see [13]) and thus, as can be seen in Figures 1 and 2, first
and second derivatives of the shape functions are well defined the whole the domain, even with
linear consistency.

Remark 2. The interpolation is characterized by the order of consistency required, i.e. the
basis of polynomials employed P, and by the ratio between the dilation parameter ρ and
the particle distance h, ρ/h (see [17]). Note that the order of the interpolation can be easily
increased and thus high-order schemes, in both space and time, can be implemented in a simple
way.

Remark 3 (Computation of derivatives) Belytschko and coworkers proposed in [8] an
efficient computation of the derivatives of the shape functions. It is based on implicit derivation
of (4). For example, in 1D the first and second derivatives of the shape function (2) can be
expressed as

dNρ
j

dx
= PT (xj)

[
αx(x) φ(

x− xj

ρ
) + α(x)

1
ρ
φx(

x− xj

ρ
)
]

,

d2Nρ
j

dx2
= PT (xj)

[
αxx(x) φ(

x− xj

ρ
) + 2αx(x)

1
ρ
φx(

x− xj

ρ
) + α(x)

1
ρ2

φxx(
x− xj

ρ
)
]

,

where ¤x denotes de derivative d¤/dx. Vectors αx and αxx can be obtained solving two small
linear system of equations

M αx = Px −Mxα, M αxx = Pxx −Mxxα− 2Mxαx,

which are easily deduced by implicit derivation of (4). Note that matrix M ∈ R(l+1)×(l+1) and
its factorization has been computed previously in order to obtain vector α, so computation
of first and second derivatives only involves the resolution of two small systems of equations
through two backward and forward substitutions. Second derivatives of the shape functions
can be easily computed in EFG with negligible extra computational cost.

3. TIME AND SPACE DISCRETIZATION FOR THE TRANSIENT
CONVECTION-DIFFUSION EQUATION

We are concerned with an accurate solution of the following transient convection-diffusion
boundary value problem with constant coefficients: “Given the velocity field a(x), the constant
diffusion coefficient ν and the source term s(x, t), find u(x, t) such that it verifies

ut + a · ∇u− ν∇2u = s in Ω× (0, T ), (6)
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and the initial,
u(x, 0) = u0(x) in Ω,

and boundary conditions,
u = uD in Γ,
ν∇u · n = f in ∂Ω\Γ,

where n is the unitary outward normal vector”. Symbolically the partial differential equation
(6) may be rewritten as

ut + L(u) = s, (7)

where the spatial differential operator is defined as

L := a · ∇ − ν∇2. (8)

The numerical solution of such a problem clearly involves a double discretization process, that
is, time discretization and space discretization. In this paper, the methodology proposed in [4]
is considered: (1) multi-stage time stepping schemes of high accuracy are used and (2) standard
stabilization techniques are implemented. The objective is to adapt the standard stabilization
techniques, well known in stationary problems, to transient problems in combination with
multi-stage time stepping schemes. Consequently, in the following, time discretization precedes
spatial discretization.

3.1. Time discretization

For illustration proposes, only two implicit multi-stage methods are presented. A more
complete presentation can be found in [3]. These schemes can be written in incremental form
as

∆u

∆t
−W∆ut = wun

t , (9)

where the unknown ∆u ∈ Rnstg is a vector whose dimension is the number of stages, nstg. The
vector ∆ut is the partial derivative of ∆u with respect to time. The time derivatives in (9)
are replaced by spatial derivatives using the original differential equation (7):

∆u

∆t
+ WL(∆u) = w [sn − L(un)] + W∆s (10)

The precise definition of ∆u, ∆s, w and W depends on each particular method:

Second order Padé approximation: R11 (Crank-Nicolson)

∆u = un+1 − un, ∆s = sn+1 − sn,
W = 1

2 w = 1.
(11)

Note that in this case nstg = 1 and the vectors and matrix in (9) become scalars. In fact, this
scheme corresponds to the well known Crank-Nicolson method.
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Fourth order Padé approximation: R22

∆u =
{

un+ 1
2 − un

un+1 − un+ 1
2

}
, ∆s =

{
sn+ 1

2 − sn

sn+1 − sn+ 1
2

}
,

W = 1
24

[
7 −1
13 5

]
, w = 1

2

{
1
1

}
.

(12)

For this methods the truncation error induced by (9) is precisely O(∆t2nstg). However, it is
important to note that the methodology proposed here is independent of these two particular
schemes and can be implemented with any multi-stage algorithm.

Note that equations (9) and (10), with the corresponding initial and boundary conditions,
define a problem in strong form which must be solved at each time step n. That is, at each
time step, the solution at time tn, un, is assumed to be known and the partial differential
equation (10), which only involves spatial derivatives, must be solved in order to obtain ∆u.
Then, the solution at time tn+1, un+1, is computed from un and ∆u.

Once the time discretization has been performed, both the mesh-free EFG interpolation
or the finite element interpolation can be used in the discretization of the resulting partial
differential equation, (9) or (10), at each time step. Next, the Galerkin formulation and the
standard stabilization techniques are recalled in the context of the finite element interpolation,
then these formulations are extended for the mesh-free interpolation.

Remark 4. The multi-stage time integration schemes used here, and proposed in [3], have
strong similarities with implicit Runge-Kutta methods based on the Lobatto IIIA quadrature.
While the present schemes are based on non-overlapping step increments, the corresponding
Runge-Kutta methods employ total increments. For instance, the method corresponding to
R22 would use {

un+1/2 − un

un+1 − un

}

as the unknown. This minor detail does not affect linear problems with a Galerkin formulation.
However, see [5], it has major consequences as regards numerical stability when implemented
in connection with stabilized spatial formulations.

3.2. Finite Element spatial discretization. Galerkin and stabilized formulations

Application of the Galerkin formulation to the time stepping scheme (9) results in the following
weak form (

v,
∆u

∆t

)
Ω
− (

v,W∆ut

)
Ω

=
(
v,wun

t

)
Ω

∀ v ∈ [Vh
0 ]nstg , (13)

with Vh
0 subset of the usual functional space H1

0 = {v|v ∈ H1, v = 0 on ∂Ω\Γ} and with the
standard definition of the vector scalar product

(
v,u

)
Ω

=
∫
Ω

u · vdΩ.
Note that the right-hand side of (13) is known, and that the second term of the left-hand side,

i.e. ∆ut, includes the Laplace operator, which is integrated by parts (see [3, 4] for extended
details).

In order to stabilize the convective term in a consistent manner (ensuring that the solution
of the differential equation is also solution of the weak form), Hughes and coworkers have
proposed several techniques [18, 9]. An extra term weighted over the element interiors is added
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to the Galerkin weak form. This added term is a function of the residual of the differential
equation to ensure consistency. These methods are designed for the steady convection-diffusion
equation and subsequently extended to transient problems with second order time schemes
and to space-time formulations. The combination of high order time stepping schemes such as
(9) with standard stabilization techniques is proposed in [4, 5]. The considered stabilization
techniques are steamline-upwind Petrov-Galerkin (SUPG), Galerkin least-squares (GLS), sub-
grid scale (SGS) and a least-squares (LS) type stabilization. Here, only the LS and the SUPG
formulation are recalled. However, generalization to other formulations is straightforward.

In order to have a consistent stabilization a residual must be defined. The residual in this
case is chosen after time discretization. Thus, from (9) the residual is defined as

R(∆u) :=
∆u

∆t
−W∆ut −wun

t (14)

and the consistently stabilized weak form is

(
v,

∆u

∆t

)
Ω
− (

v,W∆ut

)
Ω

+
∑

e

(
τP(v),R(∆u)

)
Ωe =

(
v,wun

t

)
Ω
. (15)

Note that the stabilization term is added to the Galerkin weak form. In the stabilization term
a free parameter τ appears, the intrinsic time scale, see [9, 6]). The operator P characterizes
the stabilization technique, see for instance [19] for a general presentation. The truncation
errors are not explicitly indicated: a term O(∆t2nstg) can be added to (14) and (15).

The SUPG stabilization is defined by taking

P(v) := W(a · ∇)v. (16)

Note that the matrix W, which affects the convection term, induces a non scalar stabilization
(each equation of the multistage formulation is affected by different coefficients). The weak
form for the SUPG method is obtained after substitution of (16) in equation (15).

Remark 5. The stabilization term involves the residual, which includes the second-order term
∇2u. When linear finite elements are used this term vanishes or is largely under-represented,
with the corresponding degradation in the consistency of the stabilized formulation. The lack of
consistency leads to errors of order O(τ), apart from the errors inherent to the time integration
scheme.

Remark 6. In order to keep the convergence rates in time, several possibilities can be useful.
The stabilization parameter τ can be defined to be asymptotically of order O(∆t2nstg). That
is, a specific intrinsic time τ should be designed for each one of the time integration schemes.
Other possibility is to include flux jump terms across the element boundaries in the stabilized
formulation to take into account the neglected terms (see [6] for details). In fact, reference [7]
shows that when linear finite elements are used the lack of consistency due to the neglected
terms leads also to reduced convergence in space. For linear finite elements, it proposes a
global reconstruction of second derivatives. This method recovers the ability to approximate
the residual in the stabilization term yielding a better consistency, through an iterative process.
However, the increase in the computational cost is not negligible: a system of equations with
global mass matrix must be solved at each iteration.
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Remark 7. The use of high-order finite elements, such as quadratic elements, allows including
second derivatives of the approximation in the residual in the stabilization term, and thus,
consistent stabilized formulations can be defined. However, the computational cost and the
implementation difficulties are highly increased due to the computation of second derivatives
of the element mapping [7].

To implement a least-squares (LS) formulation the spatial strong form is directly employed to
construct the integral equation. Here, since time discretization is already performed, equations
(9) and (10) are used. Consequently, one gets

( v

∆t
+ WL(v),R(∆u)

)
Ω

= 0. (17)

The correct implementation of a standard least-squares formulation requires to work in H2,
i.e. v and u should be in subspaces of [H2(Ω)]nstg . A mixed formulation reduces the regularity
of the spaces but increases the number of nodal unknowns, see [20]. Here, an equivalent form
to (17) following the same rationale as for standard stabilized methods, see equation (15), is
devised. It is equivalent in the sense that its unique solution is also the unique solution of (9)
or (17). The first argument in (17) is split by linearity and the term containing L(v) is only
evaluated in the element interiors, namely

(
v,R(u)

)
Ω

+
∑

e

(
∆tWL(v),R(∆u)

)
Ωe = 0. (18)

Note that in (18) the interpolation and tests functions can be taken in a subspace of [H1+]nstg ,
where H1 ( H1+ := {w ∈ H1(Ω) / w|Ωe ∈ H2(Ωe) for all element Ωe} ( H2. The final
formulation is still symmetric (note that this is not the case for other stabilization techniques
such as SUPG, GLS or SGS because W is, in general, not symmetric), and now C0 finite
elements can be used. This approach can also be cast in the form of a standard stabilization
technique with the following definition of the operator P and the intrinsic time τ

P(v) := WL(v), and τ := ∆t. (19)

Remark 8. As in the standard stabilization techniques, some terms with second-order
derivatives are neglected or under-represented when finite elements are considered to discretize
the least-squares formulation. This leads to errors of order O(∆t) added to the errors of the
time integration scheme.

3.3. EFG spatial discretization. Galerkin and stabilized formulations

The EFG interpolation (1), see section 2, can also be considered in the spatial discretization
of the Galerkin weak form (13). However, in the presence of internal or boundary layers the
typical instabilities of the Galerkin formulation will soon appear. In fact, all the considered
stabilized formulations (15) can be discretized with the mesh-free interpolation. Moreover,
with a mesh-free method, the interpolation space is a subset of H2(Ω), and thus, this other
equivalent expression for the stabilized formulations (15) can be considered

(
v,

∆u

∆t

)
Ω
− (

v,W∆ut

)
Ω

+
(
τP(v),R(∆u)

)
Ω

=
(
v,wun

t

)
Ω
. (20)

Note that, since the interpolation is performed in H2(Ω), the integration of the stabilization
term can be done in the whole domain Ω. Moreover, the natural expression of the least-squares
formulation, equation (17), in H2(Ω) can be employed.
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In order to preserve the high-order convergence rates of the time stepping schemes, a
consistent formulation must be used. With a mesh-free method, such as EFG, second order
derivatives of the interpolation are well defined in the whole domain, and thus, consistent
stabilized formulations, without neglected terms, can be easy defined and implemented.

Remark 10. Note that the spatial discretization limits the precision. That can be observed
in the Galerkin case with the R22 scheme and ν = 10−2. Moreover, note that with the mesh-
free interpolation it is enough to discretize the domain with 201 particles in order to obtain
an accuracy in space similar to the accuracy with 2000 finite elements, more or less 10−5.
That is, a number of degrees of freedom ten times smaller in EFG than in finite elements. In
fact, it is well known that with linear consistency the finite element shape functions can be
recovered from the EFG shape functions when ρ/h ' 1 and, in most of the problems, the EFG
interpolation with an appropiate ratio, for example ρ/h = 3.2, performs better than the finite
element interpolation.

Similar results are obtained for the SUPG stabilized formulation, see figures 5 and 6. When
finite elements are used, the intrinsic time τ is computed using the formula proposed in [9],
see [6] for an interesting review, that is

τ = τFE :=
∆t

2

(
1 +

(
a∆t

h

)2

+ 36
(

ν∆t

h2

)2
)− 1

2

. (21)

Note that h can be interpreted as a mesure of the radius of the support of the FE shape
functions, equivalent to the dilation parameter ρ in EFG. So, when the EFG interpolation
is considered the intrinsic time is computed with the same expression (21) just replacing the
element size h by the dilation parameter ρ, that is,

τ = τEFG :=
∆t

2

(
1 +

(
a∆t

ρ

)2

+ 36
(

ν∆t

ρ2

)2
)− 1

2

. (22)

Once again, when particles are used, the consistent SUPG formulation in H2(Ω) (20) preserves
the convergence rates of the time integration scheme (see Figure 6). On the other hand, when
linear finite elements are used, results are degraded due to the neglected O(τ) terms, see
Figure 5. For, ν = 10−2 the intrinsic time τ is small enough so that the effect of this O(τ)
error is negligible in comparison with the truncation errors of the R11 time stepping scheme
and almost negligible with the R22 scheme. However, for the convection dominated problem
with ν = 10−4, the error O(τ) reduces drastically the convergence rates: the error is of order
O(τ) when the truncation errors of the time stepping schemes are small enough.

5. NUMERICAL EXAMPLES

There are two important topics in the resolution of the transient convection-diffusion equation:
(1) accurate transport of the unknown quantity u is necessary, and thus, high-order time
stepping schemes are needed, and (2) in the presence of boundary or internal layers, it is
necessary to stabilize the solution in order to avoid oscillations. Sections 3.3 and 4 already
discussed how the smoothness of the EFG interpolation allows to easily define stabilized
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interpolation in H2(Ω). There are not neglected terms and the convergence rates of the
high-order time integration schemes are preserved. Moreover, in EFG the order of the space
discretization can be increased in a simple way. With a mesh-free interpolation, space and time
high-order consistent stabilized formulations are easily defined and implemented.
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