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Abstract

In this paper, we propose a novel unfitted finite element method for the simulation of multiple body
contact. The computational mesh is generated independently of the geometry of the interacting solids, which
can be arbitrarily complex. The key novelty of the approach is the combination of elements of the CutFEM
technology, namely the enrichment of the solution field via the definition of overlapping fictitious domains
with a dedicated penalty-type regularisation of discrete operators, and the LaTIn hybrid-mixed formulation
of complex interface conditions. Furthermore, the novel P1-P1 discretisation scheme that we propose for the
unfitted LaTIn solver is shown to be stable, robust and optimally convergent with mesh refinement. Finally,
the paper introduces a high-performance 3D level-set/CutFEM framework for the versatile and robust solution
of contact problems involving multiple bodies of complex geometries, with more than two bodies interacting
at a single point.

keywords: unilateral contact, LaTIn, nonconforming finite element, CutFEM, ghost penalty, multiple level
sets, composite materials

1 Introduction

Unfitted or non-conforming finite element methods uncouple the description of the geometry from the repre-
sentation of the solution field itself. Typically, the geometry of the computational domain is projected over
a regular background grid. In this setting, boundaries or interfaces between objects cut through elements
of the corresponding mesh. Non-conforming methods are attractive for applications where coupling analysis
codes and third party meshing libraries is either impractical, numerically expensive and/or prone to errors. In
particular, contact problems in engineering applications often involve a large assembly of interacting solids of
complex geometry. These assemblies can be extremely challenging to mesh due to sharp angles or small gaps
between assembly parts. Here, the decoupling of the geometry from the finite element mesh, as featured within
non-conforming finite element frameworks, can help alleviate this meshing burden. Nonetheless, a number of
specific challenges needs to be addressed for unfitted numerical solutions to be computable. Firstly, integrals
need to be calculated over cut elements, which requires specialised numerical quadratures. Secondly, unfitted
approaches require stabilisation. This is because combinations of degrees of freedom may be poorly controlled
in regions where contributions from cut elements to integral forms are small. Finally, in the context of multiple
interacting materials, enrichment of the finite element solution space is required in order to allow for numerical
jumps or kinks to develop over embedded interfaces. Failure to do so may severely impair the convergence rate
of the unfitted finite element solver.

Over the last two decades, several encompassing frameworks have been developed to provide guidance for
the development of unfitted finite element solvers. The eXtended Finite Element Method (XFEM) [36, 18, 7, 21]
relies on the Partition of Unity Method [34] to enrich the approximation space. Within this popular framework,
non-conforming discontinuities can be introduced in an elegant and robust manner. Field discontinuities can
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also be enabled by making use of Embedded Discontinuity Methods [39, 37, 31], whereby discontinuous shape
functions are directly defined at the element level. The CutFEM framework [22, 10], which is fundamental
to the developments reported in this paper, uses an alternative concept to introduce non-conforming field
discontinuities, and to perform computations involving non-conforming geometrical domains. In the context
of multiple interacting materials, CutFEM solvers enrich the solution space by overlaying (i.e. doubling or
tripling) cut elements. Subsequently, penalty techniques such as the Nitsche method are employed to disallow
unwanted discontinuities, for instance to represent jumps in fluxes whilst preserving the continuity of the primal
field [22]. CutFEM solvers are usually equipped with a ghost-penalty stabilisation technique [9], which results
in optimal convergence rates whilst ensuring that the condition number of the system matrix degrades at the
same rate as that of the conforming finite element method when the mesh is refined.

Extending unfitted finite element methods to nonlinear problems, and especially to problems involving
complex interface behaviour, remains a challenge that needs to be addressed on a case-by-case basis. The
present paper focuses on problems involving unilateral contact between elastic solids. This class of problems is
important to engineers, and they are typically encountered when modelling joints between components in large-
scale engineering assemblies. Numerically, unilateral contact is notoriously difficulty to treat, even in the context
of fitted finite element approaches. References on the matter include [45, 30, 42, 1, 33]. Of particular interest to
us are LaTIn-based solvers [13, 28, 8, 32, 29, 2], which treat unilateral contact through a two-field formulation
of the interface equations, and resolve these fields iteratively using a dedicated two-stage solver. A number
of researchers have demonstrated the versatility of LaTIn solvers, owing to the fact that the predictor stage
(so-called “linear stage”), is weakly dependent on the type of interface conditions, and completely independent
of the current interface state. As a result, switching between nonlinear interface conditions is relatively painless
[24]. Moreover, dedicated space-time Model Order Reduction techniques may take advantage of the predictor
invariance to reduce the cost of time-dependent or multi-query computations [29, 24, 19]. However, a noteworthy
issue related to the hybrid-mixed LaTIn formulation is the difficulty of discretising displacement and traction
interface fields in a consistent manner. Whilst a piecewise constant discretisation of interface fields seems to
be physically sound when associated with P1 finite element spaces for the bulk equations, such a discretisation
scheme allows for the onset of numerically uncontrolled deformation modes whose associated amplitude creep
up with increasing LaTIn iteration count, and eventually alter the convergence rate of the finite element solver.
A claimed remedy to this numerical plague is to introduce additional degrees of freedom for the bulk fields,
by means of either h-refinement or p-refinement. An alternative to this numerically expensive procedure has
recently been proposed in [20], as discussed later on. Although both approaches seem to regularise the contact
problem efficiently, the effect on the convergence of the mixed finite element solver with mesh refinement has
not been thoroughly studied.

Over the years, several attempts to develop stable unfitted finite element solvers for unilateral contact have
been met with success. XFEM-based solutions have been proposed in [16, 25, 40, 17, 32, 20, 38]. Of particular
importance to us are LaTIn-based unfitted solvers, as the LaTIn is also a fundamental technological element
for the present contribution. The first of these solvers was proposed in [16] to solve crack propagation problems
(i.e. the historically favoured playground for XFEM). In [40], the XFEM-LaTIn idea was extended in order to
simulate fatigue crack propagation. In [32], the authors compared a LaTIn formulation to a penalty/Newton
approach, and claimed the superiority of the latter in terms of convergence rate and stability. Finally, the
authors of [20] proposed a regularised, LaTIn-type formulation of contact for XFEM. The main idea of the
approach is to relax the kinematic continuity condition between the bulk primal field and its interface trace and
to enforce it weakly via a regularised mortar method.

In contrast to XFEM-based developments, the CutFEM framework is relatively underdeveloped in the
context of unfitted unilateral contact. We mention the recent work described in [14, 15], which extends the
Nitsche-type treatment of interface conditions that is usually employed in CutFEM solvers to the case of
unilateral contact. The resulting fitted finite element solver is proven to be optimally convergent, stable and
numerically efficient. A very first nonconforming CutFEM strategy for unilateral contact is discussed in [11],
whereby the contact conditions are treated by an augmented Lagrange multiplier formulation, and the discrete
equations are stabilised by a ghost-penalty regularisation.

The present paper proposes a novel LaTIn-CutFEM solver for unilateral contact between multiple interacting
solid bodies. The solid bodies will be described by linearised elasticity, which implies that the location of
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contact interfaces is known a priori. Our algorithm relies on the traditional CutFEM enrichment strategy
[22]. However, contact conditions over nonconforming interfaces will be enforced via the LaTIn method. The
resulting algorithm is a two-stage solver, whereby the linear stage (i.e. linear predictor) consists in solving a
series of independent linear problems for each of the solid bodies, whilst the local stage (i.e. interface corrector)
is nonlinear. The method naturally inherits the coarse-grain parallel characteristics of LaTIn-based domain
decomposition methods [27, 28, 24], together with the previously mentioned versatility of LaTIn solvers with
regards to the type of interface conditions being dealt with (i.e. unilateral contact with Coulomb friction [8, 12],
frictional sliding [5, 6], cohesive fracture models with transition to unilateral frictionless contact [24]).

Two algorithmic elements of the proposed solver require particular care. Firstly, the LaTIn-CutFEM scheme
needs to be stabilised. We regularise each of the subproblems of the linear stage using a ghost penalty technique
[9]. We will show that, when using the appropriate scaling for the ghost penalty terms, the condition number
of the system matrices “degrades optimally” with mesh refinement (i.e. it degrades at the same rate as that of
the conforming finite element method). Secondly, we need to be careful when discretising the contact interface
fields. As mentioned before, a naive discretisation of the LaTIn hybrid-mixed formulation leads to the onset of
spurious interface solutions. We will show that the P1-P1 discretisation scheme that we propose (i.e. P1 for
the bulk primal field, P1 for both its trace and the trace of its normal flux) yields optimal convergence rates
with mesh refinement, and eliminates the onset of instabilities. Our scheme “nonlocalises” the local stage of
the LaTIn, as it relies on a two-scale treatment of the interface fields and nonlinear equations. We will also
show that the nonlinear solver of the LaTIn converges fast, in the sense that it quickly leads to iterates whereby
the discretisation error is larger than the algorithmic error, typically within twenty iterations. To our best
knowledge, these convergence results have never been reported in the context of LaTIn solvers, even in the
context of conforming geometries.

Our formal developments are accompanied by a high-performance computer implementation. The core of
our implementation is the finite element C++/Python library FEniCS [4], which, in particular, proposes a
range of high-level tools to rapidly developed finite element solvers. The CutFEM C++ library, LibCutFEM,
developed by S. Claus and A. Massing, and partially described in [10], defines additional tools that are specific
to unfitted finite elements. This library forms the basis for the LaTIn-CutFEM code. We will present results
in two and three space dimensions, which is made seamless by the FEniCS framework. Some of our examples
exhibit a high level of geometric complexity, which is handled through a robust implementation of multiple level
sets. In particular, we will study the convergence of contact problems exhibiting multiple interacting bodies
(i.e. more than two) at a single point, (see other contributions on the topic, in a different context, in [5, 6]).

This paper is organised as follows. The LaTIn hybrid-mixed formulation of contact is presented in a con-
tinuous setting in Section 2, together with the associated two-stage nonlinear algorithm. The non-conforming
regularised LaTIn-CutFEM formulation is presented in Section 3. Section 4 is dedicated to numerical inves-
tigations, where we demonstrate the optimal convergence and stability properties of the proposed framework.
We also showcase the versatility of our high-performance computer implementation.

2 LaTIn method for unilateral contact: the continuous setting

2.1 Domain decomposition

We consider a problem of linear elasticity over a 2 or 3-dimensional spatial domain Ω composed of nd non-
overlapping subdomains Ωi, where i ∈ IΩ := {1, . . . , nd}. The domain decomposition satisfies

⋃
i∈IΩ

Ωi = Ω.
Let us denote the set of all subdomains by ΞΩ. Subdomains may be multiply-connected. The boundary of
subdomain Ωi is denoted by ∂Ωi, for any i ∈ IΩ, whilst ∂Ω denotes the boundary of computational domain Ω.
Furthermore, we define interface domains Γi,j := ∂Ωi ∩ ∂Ωj for any (i, j) ∈ IΩ × IΩ such that the two indexes
satisfy i < j and the result of intersection ∂Ωi ∩ ∂Ωj is of non-zero measure. The union of these interfaces
is denoted by Γ. The set of pairs (i, j) of indexes such that Γi,j is defined as a valid interface is denoted by
IΓ, and the corresponding set of interfaces is denotes by ΞΓ. We also denote the union of all the interfaces of
subdomain Ωi by Γi =

⋃
(i,j)∈IΓ,(k=i or l=i) Γ

k,l, for any subdomain index i ∈ IΩ. We denote the outward normal

pointing from Ωi to Ωj on Γi,j by ni,j . We further note that we have ni,j = −nj,i, and we denote the outward
normal to Ωi over Γi by ni. As an illustration for this set of definitions, consider the case of the multiphase
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Figure 1: Schematic representation of a composite material made of three distinct phases.

domain depicted in Figure 1. The cubic domain Ω comprises three subdomains Ω1, Ω2 and Ω3. There are three
interfaces between the domains: Γ1,2, Γ1,3 and Γ2,3. Therefore, the interface of individual subdomains reads as
Γ1 = Γ1,2 ∪ Γ1,3, Γ2 = Γ1,2 ∪ Γ2,3 and Γ3 = Γ1,3 ∪ Γ2,3.

As further detailed in the next subsection, subdomain field variables will be governed by the equations of
linear elasticity, while contact equations to be solved over interfaces will couple subdomain problems to one
another. The LaTIn framework [26] is particularly well suited to the treatment of such problems where complex
nonlinear equations need to be solved over embedded interfaces [8, 29, 3]. In this particular context, the LaTIn
method relies on two main ingredients:

• a hybrid description of bulk and interface fields, and a mixed representation of the interface unknowns,

• a two-step iterative solution algorithm for the solution of the global nonlinear problem formulated in its
hybrid-mixed form.

Both these steps are described below.

2.2 Hybrid-Mixed LaTIn formulation of unilateral contact problems

Hybrid fields For every subdomain Ωi, where i ∈ IΩ, we introduce a displacement field ui : Ωi → R
d, where

d = 2 (2D problem) or d = 3 (3D problem).
For every domain interface Γi with i ∈ IΩ, we define two field variables:

• a force field F i : Γi → R
d that represents a density of tractions (i.e. flux) applied to subdomain i by

adjacent subdomains through interface Γi.

• a displacement field W i : Γi → R
d that represents the trace of ui over Γi.

As detailed below, ui will be governed by linear elasticity, while over an interface Γi,j between two domains Ωi

and Ωj , where (i, j) ∈ IΓ, interface models will provide a link between the restriction of fields F i, W i to Γi,j

and the restriction of fields F j , W j to Γi,j .

Bulk equations and boundary data For every subdomain Ωi, i ∈ IΩ, the displacement field ui ∈ [H1(Ωi)]d

is required to be sufficiently regular (continuous in particular), and to satisfy the following equations:

• Static equilibrium equation and constitutive relation:
For all δui ∈ [H1(Ωi)]d, the displacement field ui ∈ [H1(Ωi)]d satisfies

∫

Ωi

σ(ui;D
˜

i) : ǫ(δui) dΩ =

∫

Ωi

f · δui dΩ+

∫

∂Ωi

(
σ(ui;D

˜

i) · ni

)
· δui dΓ . (1)

In equation (1), f is a body force and ni is the outer normal of domain Ωi. The stress function is defined
as σ(ui;D

˜

i) := D
˜

i : ǫ(ui), where the strain is the symmetric part of the displacement gradient, i.e.

4



ǫ(ui) := 1
2

(
gradui + (gradui)T

)
and D

˜

i is a fourth-order Hooke tensor. In the case of isotropic elasticity,

we have that D
˜

i : ǫ(ui) = λiTr(ǫ(ui)) I
d
+2µi ǫ(ui), where λi and µi are the two Lamé coefficients. These

two coefficients are related to the Poisson and Young’s modulii, respectively denoted by ν and Ei, through
λi = Eiν

(1+ν)(1−2ν) and µi = Ei

2(1+ν) . All these coefficients are assumed to be constant in Ωi. The dependency
of the stress function to the Hooke tensor field will be omitted when possible. However, remember that
the Hooke tensor may depend on the spatial coordinates. In particular, it may be discontinuous across
an interface between connected subdomains. Such cases will be treated in the numerical example section.

• Boundary Conditions:
We shall assume that the boundary ∂Ω of domain Ω is decomposed into a Neumann part and a Dirichlet
part, i.e. ∂Ω = ∂Ωt ∪ ∂Ωu. For Neumann boundary conditions, we specify that

σ(ui) · ni = T over ∂Ωt ∩ ∂Ωi , (2)

whilst for Dirichlet boundary conditions, we set

ui = U over ∂Ωu ∩ ∂Ωi . (3)

Here, T is a density of prescribed tractions per unit of surface, U is a field of prescribed displacement.

Interface governing equations Any interface Γi,j , where (i, j) ∈ IΓ, will exhibit behaviour relating the
surface tractions to the displacement fields. Although extensions are relatively straightforward, we consider
only the case of frictionless unilateral contact, which is characterised by the following equations:

• Newton’s third law,
F i + F j = 0 , (4)

• Signorini’s law of unilateral contact, which reads as
(
W j −W i

)
· ni ≥ 0 ,

F i · ni ≤ 0 ,
(
(W j −W i) · ni

)
·
(
F i · ni

)
= 0 ,

(5)

• the condition that the tangential component of tractions must vanish

(I
d
− ni ⊗ ni) · F i = 0 . (6)

Interface compatibility conditions for the hybrid-mixed formulation In order to close the system of
equations, the interface fields must be linked to the bulk variables. This is done by enforcing the continuity
condition

F i = σ(ui) · ni , (7)

together with the kinematic condition
W i = ui (8)

over all interfaces Γi, with i ∈ IΩ.

2.3 Nonlinear iterative solver

We employ the standard LaTIn algorithm to solve the contact problem written in its hybrid-mixed form. The
LaTIn algorithm consists in searching for mixed interface fields (F i,W i) in two stages (see Figure 2). In the
so-called linear stage, we search for interface fields that satisfy the bulk equations and the interface compatibility
equations. The resulting problem is global, at least over each individual subdomain, but remains linear (similar
to a predictor in a Newton algorithm). In the so-called local stage, we seek interface fields that satisfy the
interface contact laws. The resulting problems are potentially non-linear (if contact is unilateral) but they are
local a priori (this is similar to an nonlinear update in a Newton solver). As both primal and dual interface
fields are unknown, search directions must be defined to close each of these two problems. Details about the
algorithm are provided below.
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Figure 2: Schematic of LaTIn algorithm.

Local Stage. For all Γi with i ∈ IΩ, we search for interface fields ŝi,n+
1

2 := (F̂ i,n+ 1

2 , Ŵ i,n+ 1

2 ) satisfying
unilateral contact equations (4)-(6), closed by the ascent search direction

(
F̂ i,n+ 1

2 − F i,n
)
− k+

(
Ŵ i,n+ 1

2 −W i,n
)
= 0 . (9)

Here, n ∈ R
+ denotes the iteration index, .n+

1

2 denotes a quantity predicted by the (n+ 1)− th local stage of
the algorithm (i.e. half iterate). The search direction “stiffness” k+ is a strictly positive scalar parameter.

Linear Stage. For all Γi with i ∈ IΩ, we search for interface fields si,n+1 := (F i,n+1,W i,n+1) satisfying the
interface compatibility conditions (7) - (8) and the subdomain equations (1) - (3), closed by the descent search
direction (

F i,n+1 − F̂ i,n+ 1

2

)
+ k−

(
W i,n+1 − Ŵ i,n+ 1

2

)
= 0 . (10)

We choose k− = k+, which is the classical setting of the LaTIn algorithm (conjugate search directions [26]). We
further set k− = ξE

L
, where ξ is a non-dimensional strictly positive parameter (set to 1 unless stated otherwise),

E is a reference Young’s modulus (set to be the Young modulus of the matrix phase, i.e. of the composite
materials that we will analyse in all the examples of the numerical section), and L is a reference length of the
problem.

In a variational setting, and dropping iteration index n, the linear stage can be written as a set of linear
problems that read: For any i ∈ IΩ, find ui ∈ [H1(Ωi)]d and compatible with the Dirichlet conditions such that
for all δui ∈ [H1

0 (Ω
i)]d

aiD(u
i, δui) + aik(u

i, δui) = lif(δu
i) + lik(δu

i) , (11)

where the bilinear forms aiD and aik are given by

aiD(u
i, δui) =

∫

Ωi

ǫ(ui) : D
˜

i : ǫ(δui) dΩ (12)

aik(u
i, δui) =

∫

Γi

k− ui · δui dΓ , (13)

and the linear forms lif and lik are given by

lif(δu
i) =

∫

Ωi

f · δui dΩ+

∫

∂Ωi∩∂Ωt

T i · δui dΓ , (14)

lik(δu
i) =

∫

Γi

(
F̂ i + k− Ŵ i

)
· δui dΓ . (15)

Remark. Problem (11) is always well-posed (at least at the continuous level), owing to the effect of the LaTIn
augmentation terms ai

k
, which ensure that the bilinear forms ai remain strictly coercive.
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Figure 3: Schematic of multiple level set description of domain and its piecewise linear approximation.

Convergence. A relaxation step is performed at the end of the linear stage to control the convergence
properties of the algorithm (the interested reader is referred to [26] for proofs of convergence of the algorithm).
The relaxation step reads as {

F i,n+1 ← η F i,n+1 + (1− η)F i,n,

W i,n+1 ← ηW i,n+1 + (1− η)W i,n (16)

for all i ∈ IΩ. The robustness of the algorithm is not very sensitive to the choice of relaxation parameter
η ∈ [0 1], but the convergence rate is. Based on our experience of the method, we set η = 0.85.

3 LaTin-CutFEM solver for embedded unilateral contact problems

We present the proposed unfitted finite element strategy by firstly detailing the method that we use to de-
scribe the geometry of the subdomains. And secondly, we explain how the LaTIn hybrid-mixed formulation of
unilateral contact problems are discretised and stabilised in the context of unfitted unilateral contact problems.

3.1 Description and approximation of the geometry

The geometry of the contact problems will be described independently of the background mesh using multiple
level set functions whose zero level sets describe the interface locations (see similar applications of multiple
level set approaches in [35, 43, 41, 44], amongst other contributions). Our general strategy is to describe each
subdomain of our problem as the union of auxiliary subdomains that can be easily defined using level set
functions. These functions can be given in an analytical form or in a numerical form. This approach is well
suited to the description of contact problems with nonconforming embedded interfaces and/or nonconforming
external boundaries. We will simply interpolate our level set functions in the finite element space, which will
automatically yield an analysis suitable, piecewise polynomial approximation of the geometry.

3.1.1 Formal domain decomposition using multiple level sets

Let Ω� be a domain that covers the physical domain Ω, i.e. Ω ⊂ Ω�, and let us decompose Ω� into n�

d

non-overlapping subdomains Ω̃i with n�

d ≥ nd. Ω� will be meshed later on, and we therefore require that its
geometry is of simple nature. Furthermore, let us assume that any physical subdomain Ωi is exactly represented
by one of the subdomains Ω̃i or by the union of several of these auxiliary subdomains.

The decomposition of Ω� into subdomains Ω̃i is defined through a multiple level set approach. We employ
n�

d − 1 level set functions φi : Rd → R, i ∈ {1, . . . n�

d − 1} to describe the n�

d subdomains Ω̃i. This is done
as follows. Let Iφ−(xxx) denote the set of indices of level set functions, which are smaller than zero in xxx, i.e.
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Iφ−(xxx) = {i ∈ {1, . . . , n�

d −1} : φi(xxx) < 0}. Then for each point xxx ∈ Ω�, the domain that xxx belongs to is defined
as

xxx ∈

{
Ω̃0 if Iφ− = ∅,

Ω̃i, i = max(Iφ−) else.
(17)

This definition implies that there exists a hierarchical relationship between level sets. Indeed, the domain
defined by the region of negative level set values of level set φi overlaps all the domains defined by the negative

regions of level sets φj with j < i. Also, domain Ω̃
0
is defined as the complement to all other domains Ω̃

i
,

i.e. Ω̃
0
:= Ω� \

⋃
i∈I

Ω̃

Ω̃
i
. In our numerical examples, domain Ω̃

0
represents the matrix phase of a composite

material. Figure 3a shows a graphical representation of how the domains are described using multiple level sets.

We now define the interface between Ω̃i and Ω̃j , Γ̃
i,j

(i < j), as

Γ̃
i,j

:= {xxx ∈ Ω� : φj(xxx) = 0 and φi(xxx) < 0} for i ∈ {1, . . . , n�

d − 1},

Γ̃
0,j

:= {xxx ∈ Ω� : φj(xxx) = 0 and φk(xxx) > 0 ∀k 6= j}.
(18)

Finally, we can formally map the subdomains of Ω� onto that of Ω with the mapping

Ωi =Mi
d

(
{Ω̃j}j∈J0,n�

d
−1K

)
=

⋃

j∈Ĩi⊂J0,n�
d
−1K,

Ω̃j . (19)

This mapping means that each of the physical domains Ωi is defined as the union of particular subsets of
subdomains of {Ω̃i}. Importantly, the union of subdomains Ω̃i that are included in Ω̄ := Ω�\Ω are void, i.e.
there is no partial differential equation written over Ω̄. In fact, Ω̄ 6= ∅ means that the boundary of the domain
will be treated in an implicit way, while Ω̄ = ∅ means that the boundary ∂Ω is meshed explicitly.

The interface sets Γ̃
i
and Γ̃

i,j
are completely described by the definition of their counterpart Γi and Γi,j

and the definition of the mapping of Ω̃
i
. However, it should be pointed out that interfaces between subdomains

of Ω̄ and subdomains of Ω� that also belong to Ω are implicitly defined boundaries. For these interfaces, the
mapping can be written as

Γi,j =
⋃

k,l | Ω̃k∈(Mk
d)

−1
(Ωi), Ω̃l∈(Ml

d)
−1

(Ωj)

Γ̃
k,l
, (20)

∂Ω =
⋃

k,l |
Ω̃k∈Ω̄,Ω̃l∈(Ml

d)
−1

(Ωj)

or Ω̃l∈Ω̄,Ω̃k∈(Mk
d)

−1
(Ωi)

Γ̃
k,l
, (21)

i.e. any interface between two physical domains is a physical interface and anything between a physical domain
and a ”void” domain is a physical boundary.

This apparently complex formalism allows us to easily and generically define our approximate geometry by
simply discretising all our level sets, as explained in the following.

3.1.2 Discretisation of the level set functions and approximate geometry

In this section, we describe the approximation of the physical subdomains Ωi and their boundaries and in-
terfaces. Let Th denote a tessellation of our background domain Ω�. Now, lets consider a piecewise linear
approximation of our level set functions φi

h resulting in a piecewise linear (in 2D) or piecewise planar (in 3D)

interface approximation Γ̃
i,j

h . This yields piecewise linear approximations of Ωi, Ωi
h, and Γi,j , Γi,j

h , as illustrated
in Figure 3b.

To ensure that the background mesh is fine enough to resolve the interfaces sufficiently, we impose the
condition on the background mesh that each Γi,j

h intersects any face of each element K ∈ Gi at most once and
that the mesh is quasi-uniform.

Note that the integrals of the discretised weak formulation introduced in the next section are evaluated
over Ωi

h and Γi,j
h , which includes the evaluation of integrals over arbitrary shaped areas in interface regions and

integrals over linear/planar interface parts. These integrals over the areas Ki = K ∩ Ωi
h are performed using

quadrature rules which are generated from a standard sub-triangulation as detailed in e.g. [10].

8



3.2 Mixed Finite element formulation

Using the piecewise polynomial description of our physical subdomains, we can now formulate our LaTIn-
CutFEM method. The key features, which make our method stable and optimally convergent are:

• a representation of both primal and dual interface quantities in the trace of the finite element space
defined over the subdomains. That means, we develop a stable hybrid P1-P1 scheme, i.e. we employ
a piecewise linear approximation of the displacement field in the bulk of the subdomains, and piecewise
linear approximations of the displacement and force fields over interfaces between subdomains;

• the regularisation of the equations of elasticity over each of the subdomains using the ghost-penalty
methodology;

• a weakened enforcement of the contact equation through a stabilised two-scale representation of the
interface fields.

3.2.1 Bulk and interface finite element spaces

Fictitious bulk finite element spaces. We integrate the equations of linear elasticity over each subdomain
Ωi
h (see Figure 3b) in our weak finite element formulation. In the case of small overlaps of the physical domain

Ωi
h with an element K, i.e. Ki = Ωi

h ∩ K small, the resulting finite element system matrix can become ill-
conditioned. To circumvent this problem, we will solve the problem of linear elasticity on an extension of the
physical domain (the so-called fictitious domains) instead of only on the domain Ωi

h. More precisely, these
fictitious domains are local background meshes for each of the subdomains i ∈ IΩ defined as the set of elements
in the background mesh Th that are fully or partially covered by the physical domain Ωi

h, i.e.

Ω̂∗,i := {K ∈ Th : K ∩ Ωi
h 6= ∅}. (22)

Figure 4 illustrates the three fictitious domains for the three phase particulate composite example mentioned
in the previous section.
To make this extension from the physical domain Ωi

h onto the fictitious domain Ω̂∗,i without loosing weak
consistency, we will employ a regularisation technique on the set of elements intersected by interface Γi

h. We
denote this set of elements by

Gi := {K ∈ Th : K ∩ Γi
h 6= ∅} (23)

and define a set of element faces associated with Gi

F i
G := {F ∈ F(K,K ′) : K ∈ Gi or K ′ ∈ Gi}, (24)

which we call ghost penalty faces. Here, F(K,K ′) = K ∩ K ′ denotes the face between element K ∈ Th and
its neighbouring element K ′ ∈ Th. The ghost penalty faces, F i

G, and the set of intersected elements, Gi, are
illustrated in Figure 5.

Now, we define our finite element space over the fictitious domains as: Let Uh denote the vector valued
space of continuous piecewise linear polynomials defined on the background mesh Th. Then, for each i ∈ IΩ,
we define the space

U i
h = Uh|Ω̂∗,i , (25)

i.e. U i
h is defined as the restriction of Uh to the fictitious domain mesh Ω̂∗,i ⊂ Th.

Recall that two different fictitious domains overlap in cells that are intersected by interfaces. This over-
lapping, subdomain-based definition of approximation spaces, which is consistent with the classical CutFEM
paradigm [23, 10], naturally leads to a displacement field that may be discontinuous across interfaces.
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Ω1
h

Ω2
h Ω3

h

Γ1,2

h Γ1,3

h

Γ2,3

h

∂Ω

Ω̂1,∗

Γ1,2

h Γ1,3

h

Γ1,2

h

Ω̂2,∗

Γ2,3

h

Ω̂3,∗

Γ1,3

h

Γ2,3

h

Figure 4: Schematic representation of fictitious domain meshes Ω̂
i,∗
.

Piecewise linear spaces for the LaTIn interface quantities. We will seek continuous piecewise linear
approximations of the interface displacements W i,j

h and interface forces F i,j
h , for all linearly interpolated sub-

domain interfaces Γi,j
h , with (i, j) ∈ IΓ. Similarly to the bulk equations, we will extend the interface quantities

from the interface Γi,j
h onto the entire band of elements which are intersected by the interface Γi,j

h defined as

Gi,j := {K ∈ Th : K ∩ Γi,j
h 6= ∅} (26)

to prevent ill-conditioning. These extensions will be denoted by W ∗,i,j
h and F ∗,i,j

h , respectively. In particular,
these extensions fulfil

W ∗,i,j
h |

Γi,j
h

= W i,j
h |Γi,j

h

, F ∗,i,j
h |

Γi,j
h

= F i,j
h |Γi,j

h

. (27)

Algebraic operations on interface quantities W i,j
h and F i,j

h are then performed implicitly through manipulating
the nodal values of their volume extensions. Now let us formally define the continuous piecewise linear finite
element space in which we will seek the interface quantity extensions W ∗,i,j

h and F ∗,i,j
h as

V i,jh = Uh|Gi,j , (28)
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Ω̂∗,3

Γ1,3

h

Γ2,3

h

G3

F3
G

Figure 5: Schematic representation of ghost penalty faces.

Figure 6: Cases of interface-element intersections that lead to ill conditioning of the system matrices in the
abscence of appropriate regularisation.

i.e. the vector valued space of continuous piecewise linear polynomials on Gi,j . Let Nd,Gi,j denote the number

of degrees of freedom in V i,jh .

3.2.2 Regularised formulation of the bulk equations

As briefly mentioned above, integration over element parts Ki = K ∩ Ωi
h in the interface region can lead to

conditioning issues. For instance, cutting an element in an arbitrary location may result in elements that have
an almost-zero intersection with the physical domain (see Figure 6). As a consequence, degrees of freedom of
such elements can move in an uncontrolled manner, which results in severe ill-conditioning and convergence
issues for linear and nonlinear solution algorithms.

In the context of our LaTIn-CutFEM method, we will address this issue through a ghost penalty extension
of the coercivity of the linear elasticity problems to the entire fictitious domains. This is done by penalising the
jump of fictitious tractions (i.e. defined over the entire fictitious domain) across elements that are cut by an
unfitted LaTIn interface. When the penalty term is scaled correctly, this consistent approach ensures that the
convergence of the condition number with mesh refinement is that of a conforming FEM. The interested reader
is referred to [9, 10] for extensive derivations and applications of the ghost penalty approach in the context of
Nitsche’s method.

The ghost-penalty regularised variational statements associated with the static equilibrium of the subdo-
mains read as

For all i ∈ IΩ, field u∗,ih ∈ U
i
h
defined over the fictitious subdomain Ω̂

∗,i
must satisfy, for any variation δu ∈ U i

h

,

aiD(u
∗,i
h , δu) + ait(u

∗,i
h , δu) + aiN(u

∗,i
h , δu) + jiu(u

∗,i
h , δu)

= lif(δu) + liN(δu) .
(29)

The terms introduced in the previous formulation are listed and commented below.
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• “Mechanical” virtual work. The virtual work of the internal forces in domain Ωi
h, i ∈ IΩ, reads as

aiD(u
∗,i
h , δu) =

∫

Ωi
h

ǫ(u∗,ih ) : D
˜

: ǫ(δu) dΩ , (30)

the work of the tractions from neighbouring subdomains reads as

ait(u
∗,i
h , δu) = −

∫

Γi
h

((
D
˜

: ǫ(u∗,ih )

)
· ni

)
· δu dΓ , (31)

and the work of the external forces, excluding that of the interface, reads as

lif(δu) =

∫

Ωi
h

f · δu dΩ+

∫

∂Ωt

h
∩∂Ωi

h

T · δu dΓ . (32)

• Nitsche terms for non-conforming Dirichlet boundaries. On approximate boundary ∂Ωu
h, Nitsche’s

method allows us to apply the Dirichlet conditions weakly. The corresponding terms read as

aiN(u
∗,i
h , δu) =−

∫

∂Ωu

h

δu ·

(
D
˜

: ǫ(u∗,ih )

)
· ndΓ−

∫

∂Ωu

h

u∗,ih ·

(
D
˜

: ǫ(δu)

)
· ndΓ

+

∫

∂Ωu

h

αEi

h
u∗,ih · δu dΓ ,

(33)

and

liN(δu) =

∫

∂Ωu,h

αEi

h
Uh · δu dΓ . (34)

The 1/h scaling ensures stability and optimal convergence of the symmetric Nitsche’s method (see e.g.
[10]). Note that, when using penalty-type formulations to enforce Dirichlet conditions, the test field δu is
not required to vanish over Dirichlet boundaries.

• The ghost penalty term reads as

jiu(u
∗,i
h , δu) =

∑

F∈F i
G

∫

F

γg h

Ei

s(
D
˜

: ǫ(u∗,ih )

)
· nF

{
·

s(
D
˜

: ǫ(δu)

)
· nF

{
ds . (35)

Here, Jx · nF K denotes the normal jump of the quantity x over the face, F , defined as Jx · nF K = x|K nF −
x|K′ nF , where nF denotes a unit normal to the facet F with fixed but arbitrary orientation. The ghost
penalty parameter, γg > 0, is chosen to be sufficiently large to regularise the solution in the interface
regions. In the previous definition, we have penalised the jump of stress across all ghost penalty faces as
defined in (24). These include intersected faces and faces of intersected elements that couple the element
to an element in the interior of Ωi

h. This way, we extend the traction vector into the fictitious domain to
prevent ill-conditioning in a consistent way (i.e. for smooth tractions the jump terms vanish).

3.2.3 Multiscale split of interface quantities and weak compatibility conditions

Heart quantities Forcing piecewise linear quantities {(F i,j
h ,W i,j

h )} to satisfy the nonlinear equations of
unilateral contact is doomed to failure due to the intrinsically nonlinear nature of unilateral contact. Recall
that the mainstream approach is to choose these quantities as piecewise constant, which is compatible with
complex interface laws. However, such approaches lead to numerical instabilities.

We propose to introduce a new pair of dual interface fields {W i,j
♥ }, {F

i,j
♥ }, chosen in L2(Γ). These quantities

are the ones that are required to satisfy the contact conditions, as represented in Figure 7. They are then weakly
connected to {(F i,j

h ,W i,j
h )}. More precisely, a regularised L2 projection of {W i,j

♥ }, {F
i,j
♥ } into the finite element

piecewise linear interface space is required to equate {(F i,j
h ,W i,j

h )} , whilst the remainder, which we term
“fluctuation”, will satisfy a Robin condition.

In practice, the contact conditions are satisfied by the heart quantities at a set of quadrature points, more
precisely the quadrature points of the subtriangulation of the cut interface (3 quadrature points per element in
the sub-triangulation of interface {Γi,j

h }).
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F i,j
h ,W i,j

h
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♥ F j,i
h ,W j,i

h
F j,i

♥
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♥

weak
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weak
continuity

weak
cont.

weak
cont.contact

Figure 7: Schematic of LaTIn-CutFEM interface/bulk and interface/interface coupling.

Compatibility between interface and bulk For all interfaces Γi,j
h , (i, j) ∈ IΓ, we couple the interface and

bulk quantities through approximate compatibility conditions

W i,j
h = u∗,ih , W j,i

h = u∗,jh on Γi,j
h ,

∫

Γi,j
h

F i,j
h · δu =

∫

Γi,j
h

((
D
˜

: ǫ(u∗,ih )

)
· ni

)
· δu dΓ ∀δu ∈ U i

h,

∫

Γi,j
h

F j,i
h · δu =

∫

Γi,j
h

((
D
˜

: ǫ(u∗,jh )

)
· ni

)
· δu dΓ ∀δu ∈ U j

h.

(36)

These are standard conditions whereby the kinematic continuity is enforced exactly, whilst the continuity of
dual quantities is only enforced on average, i.e. in a finite element sense. When solving our problem using the
LaTIn algorithm, these two conditions will be introduced in (29) to yield our working expression of the linear
stage.

Compatibility between interface and heart We project the heart quantities onto the continuous piecewise
linear approximation space V i,jh (28) for each Γi,j

h using a stabilised L2-projection as follows. Find the extensions
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F ∗,i,j
h ∈ V i,jh and W ∗,i,j

h ∈ V i,jh such that

∫

Γi,j
h

(F ∗,i,j
h − F i,j

♥ ) δF i,j
h dΓ + jF (F

∗,i,j
h , δF i,j

h ) = 0 ∀δF i,j
h ∈ V

i,j
h ,

∫

Γi,j
h

(W ⋆,i,j
h −W i,j

♥ ) δW i,j
h dΓ + jF (W

∗,i,j
h , δW i,j

h ) = 0 ∀δW i,j
h ∈ V

i,j
h ,

(37)

where

jF (F
∗,i,j
h , δF i,j

h ) =
∑

F∈F i,j
I

γΠh
2

∫

F

r
∇F ∗,i,j

h · nF

z
·
r
∇δF i,j

h , ·nF

z
ds (38)

regularises the interface fields with a penalty parameter γΠ > 0 in the band of elements intersected by Γi,j
h .

Here,
F i,j
I := {F ∈ F(K,K ′) : K ∈ Gi,j and K ′ ∈ Gi,j}. (39)

denotes the set of faces intersected by Γi,j
h .

Heart closure We close our hybrid-mixed formulation of contact by requiring that the fluctuation of the
heart quantities around F i,j

h and W i,j
h satisfy a Robin condition, which reads as

(
F i,j

h − F i,j
♥

)
− β

(
W i,j

h −W i,j
♥

)
= 0 , (40)

where β is an algorithmic parameter that is homogeneous to a stiffness. If we set it equal to the LaTIn
search direction parameter, the resulting local stage of the LaTIn solver is a classical local stage followed by a
“coarse-scale” filtering step, as described in the next section.

This closure introduces a lack of consistency in the formulation. However, we expect the associated con-
sistency error to vanish with mesh refinement with optimal order, as it directly affects the remainder of the
heart fields after projection in the finite element space. This will be shown numerically through examining the
convergence properties of the method.

It is noticeable that the non-local continuity equations (37) make the local stage non-local. In our opinion,
this is not a significant limitation of the method. This is because the non-linearities can still be treated locally
and semi-explicitly as per usual, in a first sub-stage, whilst the second sub-stage requires solving a unique set
of independent (and small) linear problems, each of these problems corresponding to an interface between two
adjacent subdomains.

3.3 Iterative algorithm for the fully discrete mixed cut finite element problem

We are now in the position to use the regularisation and modifications introduced previously to apply the LaTIn
algorithm to the mixed interface quantities {(F i,j

h ,W i,j
h )}.

3.3.1 Regularised linear stage over the fictitious domains

Linear system of equations

For all i ∈ IΩ, find the displacement field u∗,ih ∈ U
i
h
defined over the fictitious subdomain Ω̂

∗,i
such that, for any

variation δu ∈ U i
h
,

aiD(u
∗,i
h , δu) + aik(u

∗,i
h , δu) + aiN(u

∗,i
h , δu) + jiu(u

∗,i
h , δu)

= lif(δu) + l̂ik(δu) + liN(δu) .
(41)

Two terms corresponding to the LaTIn approximation of the virtual work of the forces applied by neighbouring
subdomains have been introduced. These forces are found iteratively as described in Section 2. At a given
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iteration of the LaTIn solver, the approximate equilibrium of the subdomain is described via an augmentation
term (i.e. “penalty” or “regularisation” boundary term induced by the descent search direction), which reads

aik(u
∗,i
h , δu) =

∫

Γi
h

k− u∗,ih · δu dΓ . (42)

Mixed quantities from the previous half-iterations appear on the right-hand side as follows

lik(δu) =

∫

Γi
h

(
F̂ i + k− Ŵ i

)
· δu dΓ . (43)

Note that the interface quantities F̂ i, Ŵ i over the interface Γi
h are given by the interface quantities F̂ i,j , Ŵ i,j

by the following sum

∫

Γi
h

(
F̂ i

h + k− Ŵ i
h

)
· δuh dΓ =

∑

j∈I
Γi

(∫

Γk,l
h

F̂ i,j
h + k− Ŵ i,j

h

)
· δuh dΓ, (44)

where (k, l) = (i, j) if i < j and (k, l) = (j, i) if i > j. Here,

IΓi = {j ∈ IΩ : Γi,j
h 6= ∅ if i < j; or Γj,i

h 6= ∅ if i > j}. (45)

For example, in Figure 1, Γ3 = Γ1,3 ∪ Γ2,3, IΓ3 = {1, 2}.

Post-processing of interface quantities For all (i, j) ∈ IΓ, we seek the extended interface displacement
fields, W ∗,i,j

h ∈ V i,jh , W ∗,j,i
h ∈ Vj,ih , which fulfil

W ∗,i,j
h |

Γi,j
h

= W i,j
h |Γi,j

h

= u∗,ih |Γi,j
h

,

W ∗,j,i
h |

Γi,j
h

= W j,i
h |Γi,j

h

= u∗,jh |Γi,j
h

.
(46)

We obtain these extended interface displacement fields by setting W ∗,i,j
h equal to u∗,ih and W ∗,j,i

h equal to u∗,jh

in each degree of freedom in the band of intersected elements Gi,j , i.e.

W ∗,i,j
h (xxxi) = u∗,ih (xxxi) ∀i = 1, . . . , Nd,Gi,j ,

W ∗,j,i
h (xxxi) = u∗,jh (xxxi) ∀i = 1, . . . , Nd,Gi,j .

(47)

This means, as W ∗,i,j
h and W ∗,j,i

h is equal to u∗,ih and u∗,jh in all degrees of freedom around the interface, it is

also equal to the u∗,ih and u∗,jh on the restriction to the interface Γi,j
h , hence we satisfy (46). The location of the

degrees of freedom, xxxi, in the surface band mesh Gi,j are illustrated in Figure 8.
Next, we can obtain the extended interface forces F ∗,i,j

h ∈ V i,jh and F ∗,j,i
h ∈ V i,jh for each (i, j) ∈ IΓ through

the search direction

F ∗,i,j
h (xxxi) = F̂ ∗,i,j

h (xxxi) + k−(Ŵ ∗,i,j
h (xxxi)−W ∗,i,j

h (xxxi)) ∀i = 1, . . . , Nd,Gi,j ,

F ∗,j,i
h (xxxi) = F̂ ∗,j,i

h (xxxi) + k−(Ŵ ∗,j,i
h (xxxi)−W ∗,j,i

h (xxxi)) ∀i = 1, . . . , Nd,Gi,j .
(48)

Note that this gives us a piecewise linear continuous representation of the interface quantities.

Multiscale local stage Having obtained the approximation for the interface force, F ∗,i,j
h , and the interface

displacement, W ∗,i,j
h , we proceed to calculating local quantities following the multi-scale strategy introduced in

section 3.2.3. This is done by performing the standard semi-explicit operations of the LaTIn local stage, at
each interface quadrature point. Then, in a post-processing step, a linear smoothing is used to implement the
multiscale regularisation using the stabilized L2-projection (37). This is detailed below.
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Figure 8: Decomposition of intersected cells for extended interface quantities into meshes Gi,j .

Firstly, to enforce frictionless unilateral contact, we determine the heart quantities for each interface Γi,j
h at

each quadrature point xxxq along the interface Γi,j
h by

F i,j
♥ (xxxq) =

1

2
(F ∗,i,j

h (xxxq)− F ∗,j,i
h (xxxq) + k+(W ∗,j,i

h (xxxq)−W ∗,i,j
h (xxxq))) · n

i,j
K (xxxq). (49)

Here, ni,j
K denotes a piecewise constant normal obtained from the level-set function φj

h

ni,j
K (xxxq) = −

∇φj
h(xxx)

|∇φj
h(xxx)|

∣∣∣∣∣
xxx=xqxqxq

. (50)

To fulfil frictionless contact, we test at each quadrature point, if F i,j
♥ (xxxq) > 0 (i.e. no contact), in which case we

set F i,j
♥ (xxxq) = 0. The heart quantity now satisfies frictionless contact at each point and we can determine the

local interface force extension F̂ ∗,i,j
h ∈ V i,jh from the stabilised L2-projection (37). Next, we use F̂ ∗,i,j

h to obtain

F̂ ∗,j,i
h (xxxi) = −F̂

∗,i,j
h (xxxi) (51)

Ŵ ∗,i,j
h (xxxi) = W ∗,i,j

h (xxxi) +
1

k+
(F̂ ∗,i,j

h (xxxi)− F ∗,i,j
h (xxxi))

Ŵ ∗,j,i
h (xxxi) = W ∗,j,i

h (xxxi) +
1

k+
(F̂ ∗,j,i

h (xxxi)− F ∗,j,i
h (xxxi)).

(52)

for all i = 1, . . . , Nd,Gi,j . Note that these algebraic relations together with the stabilised L2-projection (37) give

us the continuous and piecewise linear extended interface quantities that we are seeking, i.e. F̂ ∗,j,i(xxxi) ∈ V
j,i
h ,

Ŵ ∗,i,j
h (xxxi) ∈ V

i,j
h , Ŵ ∗,j,i

h (xxxi) ∈ V
j,i
h .

Remark. The extension of our LaTIn-CutFEM method to other contact laws is relatively straightforward. This
is done by simply modifying the local heart quantities at the quadrature points along the interfaces. Therefore,
our algorithm inherits one of the central characteristics of the LaTIn method, whereby different type of interface
behaviour are implemented by only changing the local quadrature algorithm.
For instance, for Coulomb friction under proportional loading, we simply extend the computation of the heart
quantities by adding a new test and computation of the tangential interface forces and displacements as it is
classically done within the LaTIn algorithm [12]. For non-proportional loading a time integration loop is required.
We have successfully performed preliminary tests of the LaTIn-CutFEM algorithm for Coulomb friction which
will be published in a forthcoming paper. The convergence and stability properties of our approach seem to be
unaffected.

3.3.2 Pseudo-code of the LaTIn-CutFEM method

Algorithm 1 summaries the LaTin-CutFEM algorithm presented above.
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Algorithm 1 LaTin-CutFEM algorithm for unilateral contact

1: Approximate level set functions through linear interpolation → φi
h

2: Compute intersection of level set functions with background mesh and obtain linear approximations of Γi,j
h

and Ωi
h

3: Set Ŵ ∗,i,j
h = 0, Ŵ ∗,j,i

h = 0 and F̂ ∗,i,j
h = 0, F̂ ∗,j,i

h = 0, ∀(i, j) ∈ IΓ.
4: while it < itmax do ⊲ itmax is maximum iteration count
5: procedure Linear Stage(Ŵ ∗,i,j

h , F̂ ∗,i,j
h )

6: Find u∗,ih by solving bulk equation (41) ∀i ∈ IΩ
7: Determine W ∗,i,j

h from (47) and F ∗,i,j
h from (48) using u∗,ih .

8: Perform relaxation (16) for W ∗,i,j
h and F ∗,i,j

h .

9: return u∗,ih , W ∗,i,j
h ,F ∗,i,j

h

10: end procedure
11: procedure Local Stage(u∗,ih , W ∗i,j

h ,F ∗,i,j
h )

12: for contact interfaces Γi,j
h :

13: Compute normals ni,j
K (50)

14: Obtain F̂ ∗,i,j
h from (37), (51) and Ŵ ∗,i,j

h from (52)

15: return F̂ ∗,i,j
h , Ŵ ∗,i,j

h

16: end procedure
17: it +=1
18: end while

4 Numerical investigations

4.1 Controlled Condition Number: Square Domain with a Crack

In our first numerical example, we demonstrate that the ghost penalty terms introduced in (35) prevent ill
conditioning of the system matrices associated with the linear stage of our LaTIn solver (recall equation (41)).
To fully control “bad cuts” (see Figure 6 for two typical bad cut cases), we design a crack test inspired by
previous studies published in [32] and [6]. The computational domain of our test case is decomposed into 4
subdomains with two vertical and one diagonal “crack” interface (see Figure 9). “Good” (large Ki) and “bad”
(small Ki) cut cases can be constructed through shifting these interfaces.

The geometry is defined by the following three level set functions

φ1(x, y) = y − x− ǫyh , (53)

φ2(x, y) = x−
1

3
− ǫxh , (54)

φ3(x, y) =
2

3
+ ǫxh− x , (55)

where the parameters ǫx and ǫy are chosen to range from 0.5 (good cut) to 10−11 (bad cut). We investigate two
test cases: (i) the vertical interfaces are kept fixed at a good cut position with ǫx = 0.5 and the diagonal crack
is moved in the interval 10−11 ≤ ǫy ≤ 0.25 (i.e. “simply bad” cut, see Figure 9a, 9b) ; (ii) both ǫx and ǫy are
varied in the interval 10−11 ≤ ǫx = ǫy ≤ 0.25 (i.e. “doubly bad” cut, see Figure 9c, 9d).

Our LaTIn-based domain decomposition strategy leads to uncoupled sets of linear systems of equations.
Therefore, we will only report the conditioning of the worst subproblem, which we denote by κ. Figure 10
shows this condition number for test case (i) (see Figure 10a) and test case (ii) (see Figure 10b). In both
cases, if the ghost penalty regularisation is switched off, e.g. γg = 0, then the condition number increases
drastically with decreasing ǫ (i.e. worsening the cut scenario). This problem appears despite the regularisation
effect of the LaTIn augmentation terms. This is because the search direction coefficient is chosen so as to scale
with macroscopic properties of the problem at hand. In other words, this term is chosen to ensure the fast
convergence of the LaTIn solver, and not to repair instabilities created by local bad cuts. However, with ghost
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Ω1

Ω2

Ω3 Ω4

(a) ǫx = 0.5, ǫy = 0.25. (b) ǫx = 0.5, ǫy = 10−10.

Ω1

Ω2

Ω3 Ω4

(c) ǫx = ǫy, ǫy = 0.25. (d) ǫx = ǫy, ǫy = 10−10.

Figure 9: Domains and interface cut locations for the two condition number test cases (i): (a), (b) and (ii): (c),
(d).

penalty regularisation the increasingly unstable behaviour with decreasing ǫ is cured. Even a very small value
of the ghost penalty parameter, e.g. γg = 10−3, is sufficient to guarantee a bounded condition number for very
small ǫ.

Most importantly, the ghost penalty regularisation does not impact the scaling of the condition number of
the system matrices with mesh refinement. This is demonstrated in Figure 11. In fact, this scaling is typical
for standard P1 finite element matrices. In other words, through the scaling that we have chosen for the ghost
penalty regularisation, we ensure that the regularisation properties stated previously are consistent throughout
the mesh refinement process.
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(a) ǫx = 0.5, ǫ = ǫy.
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Figure 10: Condition number dependence on cut location for test case (i): (a) and test case (ii): (b).
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Figure 11: Condition number dependence on mesh refinement.

4.2 Convergence with mesh refinement

We will now proceed to studying the convergence properties of the LaTIn-CutFEM algorithm, through three
test cases: (i) a problem with a simple elliptical inclusion in contact with a matrix, (ii) a problem with two
inclusions, which exhibits multiply connected points, and (iii) a problem that features a large elastic contrast
between interacting elastic phases.

4.2.1 Elliptical inclusion

We start with our first convergence study. Let us consider an elliptical inclusion Ω1 in a rectangular domain
Ω2 = Ω \ Ω1 with Ω = [−1.2, 1.2]× [−1.2, 1.2]. The elliptical inclusion is described by the level set function

φ1(x, y) =

√(x
a

)2
+
(y
b

)2
− r, (56)

where r = 0.654545, a = 1, b = 0.5. We apply a displacement of u =
(

0
−1

)
on the top of the outer domain, a

zero displacement at the bottom and zero Neumann conditions at the side of the domain (see Figure 12a). We
choose E1 = E2 = 1.0, k+ = k− = 1.0, γg = 0.1, γΠ = 0.1 and α = 10.
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The elliptical inclusion and the rectangular domain interact through unilateral contact interface ΓC . Fig-
ure 13 shows the displacement and stress components for a fine mesh with h = 0.00375 after 200 LaTIn iterations
(the LaTIn algorithm has reached a converged solution state, as shown later on). We observe that the inclusion
and the background block material are not in contact on the left and right of the ellipse and are in contact
on the top. There are stress concentrations where the contact boundary changes from “in contact” to “not
in contact”. We utilise this fine mesh solution as a numerical reference to investigate the convergence of our
LaTin-CutFEM algorithm with mesh refinement and with the number of LaTin iterations.

u =
(

0
−1

)

σ
·n

=
0

σ
·n

=
0

u = 0

Γc

Ω2

Ω1

(a) Schematic and boundary conditions. (b) Coarsest Mesh.

(c) First hierarchical refinement. (d) Finest mesh.

Figure 12: Schematic of elliptical inclusion with boundary conditions and regular background mesh refinement
strategy.

Convergence of algorithmically converged solutions with mesh refinement. The coarsest background
mesh is the regular mesh shown in Figure 12b. This mesh is refined in a hierarchical manner (each triangle
of the coarser mesh is subdivided into 4 triangles) to produce the finer levels of discretisation. We perform
200 iterations of the LaTIn solver for each of these meshes. We now investigate the rate of convergence of the
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(a) Horizontal displacement ux. (b) Vertical displacement uy.

(c) Stress component σxx. (d) Stress component σxy.

(e) Stress component σyy.

Figure 13: Displacement and stress components of elliptical inclusion for the finest mesh.
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(e) Energy norm error with iteration count for finest solution.

Figure 14: Convergence rates and energy norm error with iteration count for ellipse-shaped inclusion.
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numerical solution in the H1-norm, which is defined as

∥∥uh − uhf

∥∥
1
=

√√√√
∑

i∈IΩ

∫

Ωi
hf

((uih − uihf
)2 + (∇uih −∇u

i
hf
)2)dΩ (57)

and in the energy norm, which reads

∥∥uh − uhf

∥∥
E
=

√√√√
∑

i∈IΩ

∫

Ωi
hf

ǫ(uh − uhf
) : D

˜

: ǫ(uh − uhf
) dΩ , (58)

where uhf
denotes the reference solution (i.e. finest mesh). To evaluate these norms, we interpolate the

solution on the coarser mesh into the finest mesh and then evaluate the error norm over the linear geometry
approximation, Ωi

hf
, of the finest mesh. Figure 14b, 14c shows that the convergence rate of our scheme is 0.98

in the H1 and 0.95 in the energy norm. This is optimal, in the sense that the proposed mixed numerical solver
for unilateral contact uses P1 standard finite elements to solve the bulk equations and the optimal convergence
rate in the H1 and energy norm is therefore expected to be one.

h H1-error E-error

6.0·10−2 7.5087·10−2 5.2406·10−2

3.0·10−2 3.9379·10−2 2.8651·10−2

1.5·10−2 2.0446·10−2 1.4827·10−2

7.5·10−3 9.6445·10−3 7.3295·10−3

(a) Two quadrature points.

h H1-error E-error

6.0·10−2 7.5106·10−2 5.2414·10−2

3.0·10−2 3.9379·10−2 2.8651·10−2

1.5·10−2 2.0446·10−2 1.4827·10−2

7.5·10−3 9.6444·10−3 7.3294·10−3

(b) Four quadrature points.

Table 1: H1 and energy norm error values for two and four quadrature points per interface segment of elliptical
inclusion problem.

Effect of the quadrature order for the multiscale filter. The “heart” interface fields are evaluated at a
discrete set of points. This is required to integrate the right-hand side of projection (37). We set those points
to be the quadrature points of a standard Gauss quadrature rule, applied to each of the line segments (2D)
or triangles (3D) of the subtessalation associated with the embedded contact interfaces. The purpose of the
present study is to choose an appropriately large quadrature order for the remainder of our work. Considering
Figure 14b, 14c and Table 1, we see that switching from 2 points (i.e. Gauss quadrature of third order) to 4
(i.e. order 7) leads to only marginal changes in the error norms and to no measurable change in the overall
convergence order of the LaTIn-CutFEM algorithm. In other words, order 3 is sufficiently accurate to yield
results that cannot be distinguished from that obtained when using an overkill integrator. Therefore, we choose
to use order 3 quadrature rules in all our numerical examples. We emphasise that this study indicates that the
stable behaviour of the proposed P1-P1 LaTIn scheme is not due to some under-integration of the contact laws,
but to the two-scale nature of the (“non-localised”) local stage.

Convergence of the LaTIn algorithm. Next, we show that the LaTIn solver converges well with the
number of LaTIn iterations. We investigate the evolution of the error in energy norm with LaTIn iterations for
a fixed coarser mesh h > hf . More precisely, we measure the error of our numerical solution at LaTIn iteration
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it < itmax with respect to the finest solution at the maximum iteration itmax := 200. The results plotted in
Figure 14d indicate the LaTin-CutFEM algorithm reaches an algorithmically converged solution at it ≈ 20,
which is indicated by the flat part of the error curves. We can also observe that the error in the solutions
remains constant after it ≈ 20, i.e. the remainder is the discretisation error.

We emphasise that these results are non-classical (as far as we are aware, such convergence results for LaTIn-
based solvers have never been published). Most contributions only report the convergence of the algorithmic
error of LaTIn solvers. For our finest mesh, the algorithmic error is the one reported in Figure 14e, as the
reference solution mesh and that of the approximate one are the same. However, the error curves of Figure 14d
represent the combined effect of algorithmic and discretisation errors. When seen from this perspective, the
convergence of the LaTIn solver is faster than usually thought, as the algorithmic error quickly drops to the
level of the discretisation error, which can only be overcome by mesh refinement. As a corollary, the algorithmic
error alone decreases slowly (this has been acknowledged in several contributions), but there is in fact no reason
to make it converge to level of errors that are below the level of pure discretisation error.

(a) P1/P0 (b) P1/P0 (c) P1/P0

(d) P1/P1 (e) P1/P1 (f) P1/P1

Figure 15: Comparison of current stable P1/P1 discretisation versus unstable P1/P0 discretisation for it=
{5, 27, 210} LaTIn iterations.

Convergence of the LaTIn algorithm for P1/P0 approximation versus P1/P1 approximation.
Figure 15 shows the comparison of our stable P1/P1 LaTin-CutFEM discretisation with a P1/P0 scheme. In
the latter case, the bulk displacement is approximated by continuous piecewise linear polynomials but both
interface fields are approximated as piecewise constant (the continuity is enforced in a weak sense, by enforcing
that the projection of the corresponding residual in the space of piecewise constant interface fields vanishes).
Figure 15 shows the normal traction, F 2,1

h · n
2,1 , along the elliptical contact interface ΓC in terms of the angle

θ = arctan (y/x). We can see that with increasing LaTIn iterations the solution for the P1/P1 scheme has
reached a converged state at it = 27 and the solution remains virtually unchanged at it = 210. However, for the
P1/P0 scheme, we observe an onset of oscillations in the normal traction at it = 5, which grow substantially
with LaTIn iterations. At it = 27, we see substantial pollution of the normal tractions through these oscillations
and at it = 210, these oscillation completely destroy the normal tractions.
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4.2.2 Multiply-connected interface points: effect of simultaneous enrichments

Ω3

Ω1

Ω2

Γ1,2 Γ1,3

Γ2,3

u =
(

0
−1

)

u = 0

σ
·n

=
0

σ
·n

=
0

(a) Schematic. (b) Coarsest mesh h = 0.26.

Figure 16: Schematic of two inclusions with boundary conditions and piecewise linear approximation of the
geometry in coarsest mesh used.

In our next example, we consider two intersecting inclusions in a rectangular domain Ω = [−1.2, 1.2] ×
[−1.2, 1.2], which is the example referenced throughout this article. The two circular inclusions are described
by the level set functions

φ1(x, y) =
√
(x− x1M )2 + y2 − r, (59)

φ2(x, y) =
√

(x− x2M )2 + y2 − r, (60)

where r = 0.5, x1M = −0.25 and x2M = 0.25. We choose k+ = k− = 1.0, γg = 0.1, γΠ = 0.1 and α = 10.
The resulting geometry has two triple junctions which will yield high stress concentrations at these points. We
apply a displacement of u =

(
0
−1

)
at the top boundary of the rectangular domain, a zero displacement at the

bottom and zero Neumann conditions at the side of the domain (see Figure 16a). Figure 19 shows the vertical
displacement, the shear stress σxy and the normal stress σyy for the two inclusion problem with no contrast in
E1 = E2 = E3 = 1 on the left and with a contrast of E1 = 1 and E2 = E3 = 10 on the right. In the case of
stiffer inclusions than the matrix material, the inclusions deviate only slightly from their circular shape while
in the case of no contrast the inclusions undergo a much stronger deformation.

We choose a mesh configuration as displayed in Figure 16b and hierarchically refine the mesh as described in
the previous example. We compare our coarse numerical solution with the finest numerical solution (h = 0.008)
at LaTin iteration 200. The H1 and energy norm errors with mesh refinement are shown in Figure 17 for a
Young’s modulus of E1 = E2 = E3 = 1 in each domain and in Figure 18 for a contrast of the Young’s modulus
of E2 = E3 = 10 for the inclusions to E1 = 1 in the background domain. In both cases, with and without
contrast in the Young’s modulus between the inclusions and the background domain, we obtain convergence
rates of first order which is optimal for our strategy, which relies on the P1 finite element method.
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(c) Energy norm error with iteration count for coarser mesh sizes.
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(d) Energy norm error with iteration count for finest solution.

Figure 17: Convergence rates and energy norm error with iteration count for two inclusions with E1 = E2 =
E3 = 1.
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(b) Convergence rates.

Figure 18: Convergence rates and energy norm error with iteration count for two inclusions with E2 = E3 = 10
in a matrix with E1 = 1.
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(a) uy (b) uy

(c) σxy (d) σxy

(e) σyy (f) σyy

Figure 19: Displacement and stress components of two inclusion for finest mesh with E1 = E2 = E3 = 1 (left)
and E1 = 1, E2 = E3 = 10 (right).
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4.3 An advanced 3D geometry: braided composite material

In this section, we consider a 3D braided composite geometry formed of interwoven threads. Each thread is
created through the motion of an ellipsoid, given by

φthread
j (x, y, z) =

√√√√
(
x− xjM

a

)2

+

(
y − yjM

b

)2

+

(
z − zjM

c

)2

− r, (61)

along a sinusoidal path defined by (xjM , yjM , zjM ). For the ellipsoid, we choose r = 1.0, a = 0.2, b = 0.2
(width of the thread) and c = 0.1 (height of the thread). The three threads in x-direction in our example

geometry are described by xjM = x, yjM =
[
−λ

2 , 0,
λ
2

]
, zjM = A sin((

2π(x+z
j
C
)

λ
)), zjC =

[
λ
2 , 0,

λ
2

]
. Here, λ = 1

is the length of the path oscillation (sinus period), A = 0.1 is the amplitude of the path oscillation and zjC is
the phase shift. Each new thread is shifted in y-direction by half the period length and their phase is shifted
by half the period length. We form a union of all threads in x-direction to obtain one level set function, i.e.
φx(x, y, z) = minj(φ

thread
j (x, y, z)). The threads in the y-direction are combined into a second level set function

analogously. They are shifted by λ
4 with respect to the threads in the x-direction to build the interwoven

geometry.
We apply the boundary conditions displayed in Figure 20 to a domain Ω = [−1

2 ,−
3
4 ,−

1
4 ]× [1, 34 ,

1
4 ]. We set

a Young’s modulus of one in all subdomains and pull the threads and the matrix in y-direction. We choose
k+ = k− = 1.0, γg = 0.1, γΠ = 0.1 and α = 10.

The resulting normal stress component σyy and the shear stress component σxy are displayed in Figure 21.
Figure 22 shows the displacement in y-direction and the stress component σzz in a slice of the domain indicated
in red in Figure 22a. We can qualitatively verify the numerical solution by inspecting the slice displayed in
Figure 22b. A vertical axial stress component (compression) is transferred through interfaces where the tangent
plane is horizontal only when the vertical jump of displacement vanishes, which means that composite phases
are in contact. Conversely, we see that when phases are not in contact at interface points where the tangent
plane is horizontal, then the vertical compressive stress is zero.

Let us also point out that neither in 3D nor in 2D did we observe the development of numerical instabilities
around contact zones, which we believe is due to the proposed P1-P1 mixed LaTIn formulation, together with
the globalisation of the local stage and of course the ghost-penalty regularisation of the linear stages.
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Figure 20: Zero level set contours of braided composite with mesh and boundary conditions.
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Figure 21: The normal stress component σyy and the shear stress component σxy of the braided composite.
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(a) Diplacement in y-direction.

y

z

(b) Stress component σzz.

Figure 22: Displacement in y-direction and normal stress component σzz in a slice of the domain indicated in
red in (a).
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5 Conclusions

We have presented a novel LaTIn-CutFEM approach for the simulation of multiple-body contact mechanics. The
solver uses the enrichment technique that is the main characteristic of the CutFEM technology: the introduction
of overlapping meshes (i.e. duplication of interface elements) to allow the representation of discontinuities in the
solution fields across embedded interfaces. In order for the proposed scheme to be numerically stable, a P1/P1
reformulation of the LaTIn hybrid-mixed formulation has also been developed. Specifically, a weak enforcement
of the contact conditions by a piecewise linear pair of interface fields prevents the growth and onset of spurious
solution modes. Moreover, we have employed the ghost-penalty method, which prevents ill-conditioning of
system matrices in the presence of “bad cuts”. We have demonstrated that our scheme is optimally convergent
with mesh refinement, and that it is as stable as a conforming, primal finite element formulation.

We have also demonstrated the capabilities and notably the high geometrical flexibility of our implementation
of the proposed algorithm. The latter property has been obtained through the use of a versatile multiple-level
set approach to describe the geometry of complex interacting solids. In particular, we have shown that our
algorithm is robust in the case where multiple simultaneous enrichments are performed, which happens when
several solids interact at the same point.

This work is expected to be a strong basis for further contributions to the field. For now, our main focus
is to develop a robust stopping criterion for LaTIn. Indeed, we have shown that, in contrast to widespread
belief, the LaTIn algorithm is relatively fast. In our examples, where, arguably, the default search direction
parameter is close to its optimum value, 20 iterations lead to solution states whereby the algorithmic error is
blurred into the discretisation error. We hope to be able to make use of this observation to develop rational
estimates stopping criteria for LaTIn formulations of complex interface laws.
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[28] P. Ladevèze, A. Nouy, and O. Loiseau. A multiscale computational approach for contact problems. Com-
puter Methods in Applied Mechanics and Engineering, 191:4869–4891, 2002.
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