mzuriCh ETH Library

A scalable multi-level
preconditioner for matrix-free -
finite element analysis of human
bone structures

Report

Author(s):
Arbenz, Peter; van Lenthe, G. Harry; Mennel, Uche; Miiller, Ralph (); Sala, Marzio

Publication date:
2011

Permanent link:
https://doi.org/10.3929/ethz-a-006784136

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 543

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-5811-7725
https://doi.org/10.3929/ethz-a-006784136
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

A SCALABLE MULTI-LEVEL PRECONDITIONER FOR MATRIX-FREE
u~-FINITE ELEMENT ANALYSIS OF HUMAN BONE STRUCTURES

PETER ARBENZ*, G. HARRY VAN LENTHE', UCHE MENNEL*, RALPH MULLER/,
AND MARZIO SALA*

ABSTRACT. The recent advances in microarchitectural bone imaging are disclosing the possibility
to assess both the apparent density and the trabecular microstructure of intact bones in a single
measurement. Coupling these imaging possibilities with microstructural finite element (uFE)
analysis offers a powerful tool to improve bone stiffness and strength assessment for individual
fracture risk prediction.

Many elements are needed to accurately represent the intricate microarchitectural structure of
bone; hence, the resulting uFE models possess a very large number of degrees of freedom. In order
to be solved quickly and reliably on state-of-the-art parallel computers, the uFE analyses require
advanced solution techniques. In this paper, we investigate the solution of the resulting systems
of linear equations by the conjugate gradient algorithm, preconditioned by aggregation-based
multigrid methods. We introduce a variant of the preconditioner that does not need assembling
the system matrix but uses element-by-element techniques to build the multilevel hierarchy. The
preconditioner exploits the voxel approach that is common in bone structure analysis, it has
modest memory requirements, while being at the same time robust and scalable.

Using the proposed methods, we have solved in less than 10 minutes a model of trabecular
bone composed of 247734272 elements, leading to a matrix with 1’178°736’360 rows, using only
1024 CRAY XT3 processors. The ability to solve, for the first time, large biomedical problems
with over 1 billion degrees of freedom on a routine basis will help us improve our understanding
of the influence of densitometric, morphological and loading factors in the etiology of osteoporotic
fractures such as commonly experienced at the hip, the spine and the wrist.

Keywords: Algebraic Multigrid, Aggregation Methods, Matrix-Free Preconditioning, Micro Finite Element
Analysis.

1. INTRODUCTION

Osteoporosis is a disease characterized by low bone mass and deterioration of bone microar-
chitecture. It leads to increased bone fragility and risk of fracture, particularly of the hip, spine,
and wrist. Worldwide, lifetime risk for osteoporotic fractures in women is estimated close to 40%;
in men risk is 13% [32]. As reported by the World Health Organization, osteoporosis is second
only to cardiovascular disease as a leading health care problem. Osteoporotic fractures are a
major cause of severe long-term pain and physical disability, and have an enormous impact on
the individual, society and health care systems. For the clinician, predicting fracture risk for in-
dividual patients is mainly restricted to the quantitative analysis of bone density. Several studies
have shown that bone strength, an indicator for bone fracture risk, is only predicted moderately
by bone density. This is not surprising: bones are not solid structures, but are made up of an
outer shell of compact bone, enclosing a core of trabecular bone. This trabecular bone, which
is located at the end of long bones (e.g., radius; Fig. 1.A) and in cuboidal bones (e.g., spine;
Fig. 1.B), is a porous structure that contributes significantly to the load-bearing capacity of the

* ETH Zurich, Institute of Computational Science, 8092 Zurich, Switzerland.
T ETH Zurich, Institute for Biomechanics, 8092 Zurich, Switzerland.
1

2 P. Arbenz, G. H. van Lenthe, U. Mennel, R. Miiller, and M. Sala

cortical
bone

trabecular
bone

F1cUre 1. A. Distal part of a human radius, showing cortical and trabecular bone
as imaged using micro-CT scanning; part of the bone was artificially removed to
be able to look inside the bone;

B: four trabecular bone specimens (10 mm height, 8 mm diameter) taken from
human vertebrae. Note the large variance between samples, in the amount of bone,
but also in bone microarchitecture. (Fig. 1.B courtesy of Dr. Martin Stauber, ETH
Zurich, Switzerland)

human skeleton. It is not a random structure, but its trabeculae typically run in the main loading
direction. Mechanical testing has shown huge heterogeneity in bone mechanical properties, not
only across sites and specimens, but even within the same bone these properties can differ 50-fold.
Testing also showed that bone is not equally strong in all directions. This mechanical anisotropy
is expressed as the ratio of the stiffness in the strongest direction to the stiffness in the weakest
direction; it can range from basically 1 (no preferential orientation) to over 10 for both stiffness
and strength [26].

Investigation of the mechanical properties of trabecular bone presents a challenge due to its high
porosity and complex architecture, both of which, as mentioned before, vary substantially between
anatomic sites and across individuals. A promising technique that takes bone microarchitecture
into account is microstructural finite element (uFE) analysis [30,37]. Detailed uFE models have
typically been obtained through high-resolution micro-computed tomography (uCT) imaging of
trabecular bone specimens. Typically, these uFE models represent trabecular regions in the order
of 5 to 10mm cubes, a scale at which the bone behaves as a continuum. By taking the fine
trabecular network into account, these models have the advantage that the anisotropic properties
of trabecular bone are automatically accounted for, even when at the material level the properties
are isotropic. For linear deformation conditions, comparison between biomechanical compression
tests and uFE show very good agreement when a single homogeneous, isotropic tissue modulus is
applied [25,28]. This holds true for normal as well as osteoporotic bone [23].

AMG Preconditioners for Matrix-Free pFE 3

Ideally, the development of in vivo imaging systems with microstructural resolution better than
50 pm would allow measurement of patients at different time points and at different anatomical
sites. Unfortunately, such systems are not yet available, but the resolution at peripheral sites
has reached a level (82 pm) that allows elucidation of individual microstructural bone elements.
Using this technique, two recent cross-sectional studies have shown sex- and age-related changes in
trabecular structure and in cortical thickness of the distal radius [10,27]. The acquired structural
data was able to differentiate between osteopenic women with and without history of fracture,
whereas measurements of bone mineral density (BMD) did not [10].

Many finite elements are needed to accurately represent an intact human bone with its intricate
microarchitecture; hence, the resulting uFE models possess a very large number of degrees of
freedom. In order to be solved quickly and reliably on state-of-the-art parallel computers, the FE
analyses require advanced solution techniques. In this paper, we adopt a formulation based on the
strain-displacement formulation of linear elasticity [46,54]. We assume the materials involved to be
isotropic and homogeneous. The discrete formulation is based on a standard finite element (voxel)
discretization, the displacements in the three axis directions each being represented by piecewise
trilinear polynomials. The finite element discretization leads to a linear system of equations

(1) Ku=f,

where K is a sparse symmetric positive definite matrix. The number of nonzeros of K can be
written as nnz(K) = vn, where n is the order of K and v is the average number of nonzeros per
row; with piecewise trilinear polynomials in a 3D rectangular grid, v < 81.

Since the size of K rules out direct solvers, the method of choice for solving (1) is the conjugate
gradient (CG) algorithm [7,40]. CG solvers only require that the action of K on a given vector
can be computed. So, two solution strategies arise:

e In matriz-ready methods, the matrix K is assembled and fully stored in memory, requiring
memory space for about vn floating point numbers. Additionally, integer pointers are
needed to handle the sparse matrix data structure. Exploiting the 3 x 3 block structure
of K about vn/9 pointers suffice.

e In matriz-free methods the global stiffness matrix K is never assembled. In a finite element
context, the representation

(2) K =) T.KT'
€

can be employed. In this element-by-element (EBE) approach the element stiffness matrix
K. and the topology matrix T, occur, see e.g. [5,16,24,38,46]. The T, consist of a few
columns of the identity matrix of order n representing the mapping of the local to the
global node numbers. In fact, the T, are stored in a large so-called element-to-node table.

An alternative row-by-row (RBR) technique has been proposed in [38] and has similar
memory saving. However, an important advantage of the EBE method over the RBR
method is that different (isotropic) Young’s moduli can be specified for each element,
while competitive RBR methods allow only one material for the entire computational

domain. Since we are interested in cases where several materials coexist, we only focus on
EBE methods.

Matrix-free methods are particularly favorable for problems arising from voxel conversions, since
all elements generated in the voxel conversion have exactly the same shape, size and orientation.
This entails that all element stiffness matrices related to a given material are identical. So, a single
24 x 24 matrix K, has to be formed. (The order of K, is 24, reflecting the three displacements
at the eight vertices of the voxel element.)

4 P. Arbenz, G. H. van Lenthe, U. Mennel, R. Miiller, and M. Sala

The major drawback of the EBE approach is the difficulty to define efficient preconditioners.
In fact, although a considerable wealth of research on preconditioning for SPD systems has been
published, surprisingly little of this applies to matrix-free environments. Not having access to the
fully assembled matrix prevents the usage of many algebraic preconditioners. Therefore, the em-
phasis has been on the use of preconditioners derived from simplications of the problem for which
explicit matrices can be readily constructed. Widely used preconditioners for matrix-free environ-
ments are Jacobi preconditioning (diagonal scaling) or EBE preconditioning [24]. The analysis
of Wathen [29, 53] shows that these methods are spectrally equivalent to the unpreconditioned
system and hence are not suited for large scale problems.

The situation is radically different if K is assembled. Then, powerful scalable preconditioners
based on multigrid ideas can be used. In [3], the algebraic multigrid method based on aggregation
has been successfully used for the solution of linear systems arising in conventional analysis of
bone strength. Aggregation-based methods are also supported by theoretical results [51], and have
been proven scalable up to thousands of processors [3,4,31] for a variety of applications. However,
to the best of our knowledge, no article has yet shown the applicability of AMG preconditioners
to matrix-free approaches in bone analysis. The challenge is to construct an AMG preconditioner
with good convergence rate that is at the same time cheap to set up and to apply.

In this paper, we introduce a novel preconditioner that can effectively be used in matrix-free
environments. This preconditioner has modest requirements in terms of CPU time, is only slightly
slower than smoothed aggregation preconditioners for matrix-ready problems, is scalable up to
thousands of processors and billions of unknowns, is orders of magnitude faster than the widely
adopted Jacobi or element-by-element preconditioner, and reduces the memory consumption with
respect to AMG preconditioners for matrix-ready problems by a factor of about 3 to 3.5, while
converging in a comparable number of iterations. This memory savings is the main improvement
over the approach presented by Adams [3] and later implemented by us in the Trilinos frame-
work [4,33]. The proposed method can also be applied in other areas in which K exists only in
the form of a matrix-vector multiplication routine provided that the graph of the K is available
or can be cheaply generated.

This paper is organized as follows. In §2 we describe the mathematical model and the system
of linear equations it entails. In §3 we introduce multigrid preconditioners, and in §4 we focus on
smoothed aggregation preconditioners. A novel scalable, multigrid preconditioner for matrix-free
problems is presented in §5. Software issues are addressed in §6. Numerical results are reported
in §7. Finally, conclusions are drawn in §8.

2. ITERATIVE SOLUTION OF LINEAR SYSTEMS

The conjugate gradient (CG) algorithm is the method of choice for solving the sparse symmetric
positive definite problem (1). The number of CG iterations required to reach a prescribed tolerance
depends on the spectral properties of the linear system matrix K, and in particular its condition
number k(K), defined as the ratio of largest and smallest eigenvalue of K [7,40]. It is well-
known that for second-order elliptic boundary value problems like in linear elasticity discretized
by Lagrangian finite elements, x(K) = O(h~2). Here, h is the edge length of the voxel elements.
Note that in 3D the number of unknowns n in (1) behaves like n = O(h=3). So, k(K) > 1if h is
small as in yFE analyses. To avoid slow convergence, (1) is preconditioned, i.e., it is replaced by
an equation of the form

(3) KBv=f v=Blu,

AMG Preconditioners for Matrix-Free pFE 5

where B is the preconditioner, chosen such that k(K B) < k(K). The definition of B is the key
component of any CG solver and the main focus of this paper. In general terms, an efficient
preconditioner B is a transformation that

(1) is a good approximation of K~! in some sense,
(2) is cheap to construct, and
(3) is cheap to apply.
B should act so that KB is near to being the identity matrix and its eigenvalues are clustered
within a sufficiently small region of the complex plane. If the three criteria are satisfied then solv-
ing the preconditioned iterative method including the building of the preconditioner outperforms
that of the non-preconditioned iterative method. The literature on preconditioning is vast. We
refer the reader to [40,45] and the references therein for more details. In the sequel we will focus
uniquely on multigrid preconditioners, summarized in §3, and, in particular, on aggregation based
preconditioners in §4. In addition to the general terms mentioned before we will deal with issues
like
e parallel construction of the preconditioner, to take advantage of the architecture of modern
supercomputers, and
e matriz-free representation of the preconditioner, to save the most memory consuming
matrix in the multigrid hierarchy.

For the latter we assume that the matrix graph is either given or cheaply computable.

3. MULTIGRID PRECONDITIONERS

In a multigrid method [11, 20, 48] one tries to approximate the original problem of interest
on a hierarchy of levels and use ‘solutions’ from coarser levels to accelerate the convergence on
the finer levels. This approach is motivated by the fact that relaxation methods, such as Jacobi
or Gauss-Seidel iteration, are effective at reducing the high-frequency components of the error.
In the multigrid context, these iterative solvers are called smoothers. Smoothers are, however,
ineffective at reducing the low-frequency components of the error. Intuitively, these low-frequency
components can be redefined as high-frequency components by representing them on coarser grids.
That is, the approximate solution provided by a smoother can be projected to a smaller space
to provide a coarser-grid correction, and this procedure is applied recursively until the coarsest
level, where a direct solver can be employed.

Algorithm 3.1 Multilevel procedure with L levels

1: procedure MultiLevelSolve(Ky, by, xy, ¢)

2: if / == L—1 then

3: Solve Kyxy = by {Direct solve on the coarsest level}
4: else

5. x¢ = Sy(Ky, by, 0) {Presmoothing}
6: r1y=by— Kixy {Calculation of the residual}
7. bp1=Ryry {Restriction}
8: vir1 =0

9: MultiLevelSolve(Ky41,bpi1, Ver1, £+1)

10 xp=%x¢+ Pr vy {Coarse grid correction}
11: xp = S¢(Ky, by, xp) {Postsmoothing}
12: end if

13: end procedure

6 P. Arbenz, G. H. van Lenthe, U. Mennel, R. Miiller, and M. Sala

A typical multigrid procedure (known as V-cycle) is reported in Algorithm 3.1. In this proce-
dure, £=0 denotes the finest level (that is, Ky = K), K is the discretization of the operator on
level £ of the problem, P, and R, are the prolongator and restriction operators from level /+1 to
£, respectively, and Sy is the smoother for level £. The corresponding preconditioner simply reads
MultiLevelSolve(K, b, x,0).

Algorithm 3.2 Setup procedure for an abstract multigrid solver

1: Define the number of levels, L
2: for level / =0,...,L —1do
3: if /<L —1then
Define prolongator Py
Re= P!
Koy = RyKo Py
Define smoother S,
else
Prepare for solving with K,
10: end if
11: end for

The key aspect in all multigrid methods is the definition of the auxiliary operators P, Ry, and
K. A general setup procedure for a multigrid procedure is reported in Algorithm 3.2. Note that
we impose Ry = PET and presmoothing equal postsmoothing such that the final preconditioner
is symmetric. Note also that, since Kyy1 = RyK¢Pp, the multigrid setup is completed as soon
as the prolongator operator P, and the smoother Sy are defined. These operators can be defined
by using a user-provided hierarchy of grids as in geometric multigrid, or by resorting to algebraic
manipulations of the linear system matrix and possibly a few cheaply available information on
the problem at hand (like a near null space or near kernel), as in AMG. Theoretical and numer-
ical studies have shown that the converge rate of AMG in several applications is equivalent or
comparable to that of geometric multigrid methods.

Two AMG approaches have emerged in the recent years. In the ‘classical’ Ruge—Stiiben
AMG [39] a subset of the nodes of a certain level are identified as coarse-level nodes (so-called
C-nodes) and finer-level nodes (F-nodes). In the AMGe variant information of the finite element
mesh is taken into account in the coarsening procedure [12]. In smoothed aggregation (SA) multi-
grid [51,52] nodes of a certain level are grouped into contiguous subsets, called aggregates, that
form the nodes of the next coarser level. Both, classical and aggregation based approaches, are
implemented in open-source high-performance libraries [19,35,43]. A comparison of methods can
be found in [1]. Since the Ruge-Stiitben AMG extracts all information from the system matrix,
our matrix-free approach works only with SA multigrid, whose key aspects are reported in §4.

4. AGGREGATION-BASED ALGEBRAIC MULTIGRID PRECONDITIONERS

Algorithm 3.2 indicates that the decisive ingredients of an algebraic multigrid solver are the
prolongator operator P, and the smoother Sy that have to be defined on each level ¢, starting
with the finest level 0. The definition of the prolongator operator P, with aggregation procedures
requires the following phases:

(1) A graph representation of Ky, denoted by Gy, is defined. For scalar problems, Gy is simply
the graph of K. For vector PDEs as the one considered in this paper, the graph is defined
in a block fashion, meaning that one graph vertex is associated with all the unknowns at

AMG Preconditioners for Matrix-Free pFE 7

a grid vertex. (i,7) is an edge of the graph if there are any nonzeros in the block matrix
defined by the i** block row and j* block column. For highly anisotropic problems, it is
often advantageous to drop weak connections [15].

The vertices of Gy are grouped into contiguous and disjoint subsets, called aggregates, that
effectively represent the vertices of the coarser grid Gy, 1.

Aggregates can be defined in many ways, and their construction can significantly affect

the convergence rate and the complexity of the coarser grids. In a standard algebraic
multigrid method the most common way to create the aggregates is to resort to a greedy
algorithm, where an initial node is chosen along with all of its nearest neighbors. The
net effect of this type of procedure is to generate aggregates which are ‘ball-like’ with an
approximate diameter of three graph vertices, see [50]. This means that on a 3D regular
Cartesian grid, each aggregate contains 3 x 3 x 3 = 27 vertices. For large problems, this
approach leads to many aggregates. Therefore, the aggregation procedure must in general
be repeated several times until a coarse matrix is obtained that is small enough to be
solved efficiently by a direct solver. A way to reduce the number of levels is aggressive
coarsening, which consist in grouping a larger number of graph vertices (values from 50
to 200 are suggested in [31]) in each aggregate. These larger aggregates are constructed
by means of a graph partitioner like METIS or PARMETIS [34].
Once the coarser grid is determined, a grid transfer operator must be defined. The idea of
aggregation is to construct first a tentative prolongation operator, that takes care of the
near kernel of K;1. This is done by “chopping” the near kernel R(By) of K/, in as many
pieces as there are aggregates,

{4

BY

Bg =

4

Bily

The rows of B](-é) are precisely the rows of By corresponding to the grid points that have

been assigned to the j** aggregate. If BJ(-Z) = Qg.e) R;é) is the QR factorization of B](.E) then
we have [13]

By=PiBry, PP=1

MNe4+1
with ©
P = diag(Qg), . ,Qﬁf;)ﬂ) and By =
RY
Te+1

The columns of Byyi span the near kernel of Kyy1. Notice that the matrices K, are
not used in the construction of the tentative prolongators and the near kernels By. The
chopping is done entirely based on information provided by the graphs G,.

At this point, we have defined a tentative prolongator operator, P,. When we set

P, = ﬁg, then the method is referred to as nonsmoothed aggregation (NSA). Otherwise,
we move to the next step.
For elliptic problems, it is advisable to perform an additional step, to obtain smoothed
aggregation (SA). The idea is to improve the tentative prolongator B, to pull energy out
of the basis functions. The smoothing is typically performed with one step of a damped
Jacobi iteration to obtain the final prolongator,

Py = (I, —w D7 Ky) P,

8 P. Arbenz, G. H. van Lenthe, U. Mennel, R. Miiller, and M. Sala

where K, € R™*™ [, is the identity matrix of size n,, D, = diag(K/), and wy is a
damping parameter, typically defined as

4/3

(5) Wp = g,
Amax(-Dg 1K€)

where Amax(D, ' K¢) indicates the largest eigenvalue of D, ' K,. Formula (4) ensures that
the support of the basis functions do not extend beyond the nearest neighbors of aggre-
gates, thus maintening a “reasonable” complexity of the resulting multigrid operator.

The reader is referred to [9,51] for more details.

5. A NEw MULTIGRID PRECONDITIONER FOR MATRIX-FREE SOLVERS

In this section we present an algebraic multigrid preconditioner that can be applied to problems
where the underlying matrix is available only through matrix-vector computations, and the graph
of K = Ky is explicitly available. Note that, for linear, bilinear or trilinear Lagrangian finite
elements, the graph of Ky coincides with the grid connectivity, and can therefore be easily and
cheaply constructed from the grid data structures.

The key observation that lead us to propose this method is that K7 is considerably smaller than
Ky; as noted in §4, the reduction in size between two consecutive levels can vary from about 27 to
about two orders of magnitude, depending on how aggressive the coursening is executed. As such,
K does not have more nonzeros per row than Ky, and storing K7 will require a small fraction of
the memory used for Ky. From the multigrid literature it is known that the memory consumption
of the smoothed aggregation AMG preconditioner and the linear system matrix Ky is roughly 1.4
times the storage required for K alone. (This number is known as operator complexity.) Ideally,
our matrix-free AMG approach should require only 0.4 times the storage that would be required
for Ko, as no storage is required for the matrix itself. The gain in memory space is therefore

1.4

0.4
meaning that, our matrix-free AMG can solve problems 3.5 larger than the plain multilevel pre-
conditioner on a given number of processors. Of course, this ratio is just an estimate since it does
not take into account the memory needed for additional data structures and auxiliary vectors.
The numerical results reported in §7 however indicate that the memory savings are in fact about 3
to 4.

Exploiting this observation, we define an AMG preconditioner that operates on matrix-free
problems by explicitly constructing K in an efficient manner. Once K is stored in memory, we
can adopt a standard smoothed aggregation method for matrix-ready problems to generate the
remaining matrices Ky. This is equivalent to replacing step 6 of Algorithm 3.2 with a different
triple matrix-matrix product for £ = 0 only, as described in §5.1. As regards the S; operators,
for £ = 0 we need to solely use matrix-vector products, while for ¢ > 0 we can adopt more
conventional smoothers. This is outlined in §5.2.

3.5,

5.1. Construction of K;. The construction of K is divided into three phases:

(1) Definition of the aggregates. This operation only requires the graph Gy of the grid.

(2) Definition of the tentative prolongator]50. This requires the aggregates defined in the
previous step, and the near kernel R(By) of Kj. Once]30 has been defined, we set
Py = (R)T, Ry = PY.

AMG Preconditioners for Matrix-Free pFE 9

(3) Computation of the (7,) block-elements of K,
(6) Ki(i,j) = @] Ko®;.
®; is the i-th block column of ﬁo, for non-smoothed aggregation methods, and as
(7) K1 (i,5) = @] (Io — woKoDy ") Ko (Io — wo Dy ' Ko) @5,
for smoothed aggregation methods.

The only computationally expensive phase is the evaluation of either (6) or (7). Indeed, neither
equation should be used directly, as K7 is sparse and therefore most of its elements are zero. If
the intersection of the supports of two basis functions ®; and ®; is zero, then their inner product
in the Kgp-energy will be zero as well. The idea is therefore to collapse several ®;, so that a
single application of K\ can be used to evaluate a possibly large group of (block) elements of K.
The problem we are facing is similar to Jacobian evaluation [18]. This requires that the columns
belonging to the same group have all their nonzero elements on different rows. Coleman and
Moré [17] discussed the ordering in which the columns should be considered, in order to minimize
the number of groups. They showed that, for a general sparse pattern, the problem is equivalent
to a certain coloring problem on a suitable graph, and proposed the use of graph coloring to
obtain a small number of groups. All entries sharing a color can then be evaluated at the same
time, reducing the number of matrix-vector products.

The coloring adopted here is of the Curtis—Powell-Reed variety; two columns of the same color
contain no row in which both have a nonzero. Thus, K7 can be approximated by applying Ky to
all columns of the same color simultaneously. We note that obtaining an optimal or nearly optimal
coloring for matrices arising from structured grid is simple, while efficient parallel algorithms for
coloring matrices from unstructured grids remains an active research topic.

It is important to note that the required distance (in a graph sense) between two graph vertices
of the same color varies depending on the application. A simple and cheap-to-compute distance-1
graph coloring, for example, can be used to estimate the matrix diagonal (which will be required
by the smoother, see later §5.2). Equation (6) requires a distance-2 coloring. This means that
every colored vertex of the graph does not share a neighbor with any other node of the same color.
Equation (7) requires a distance-3 coloring. This increases the number of colors, and therefore
the applications of Ky and the memory requirements. For these reasons, in the following we will
just focus on (6).

The cost of the construction of K; can be easily estimated as a function of the number x
of colors. Recalling that the kernel dimension is 6 for elasticity, the number of matrix-vector
products is 6. In the numerical experiments reported in Section 7, we counted from 15 to 25
colors, meaning that about one hundred matrix-vector products will be required to fully determine
K.

We conclude this subsection by noting that the proposed preconditioner can be interpreted as
a two-level hybrid domain decomposition preconditioner [45], that uses aggregation ideas for the
construction of the level-1 matrix, and one or a few applications of a multigrid solver based on
aggregation for the coarse problem.

5.2. Definition of Matrix-free Smoothers. It is convenient (and efficient) to adapt Chebyshev
polynomial preconditioners to become multigrid smoothers [2]. Sparse approximate inverses have
been proposed as parallel smoothers [14]. However, their setup time and memory cost are too
high. Chebyshev smoothers, instead, have a modest setup cost, and only require the application
of the diagonally-scaled operator. Further, their performances are independent of the number of
processors used in the computation.

10 P. Arbenz, G. H. van Lenthe, U. Mennel, R. Miiller, and M. Sala

The setup phase of Chebyshev smoothers consists of determining an interval that contains the
upper part of the spectrum of D;lK ¢. The upper end of this interval is obtained by a few (here
10) steps of the Lanczos algorithm together with a security margin [2]. The lower end is simply
set to a fixed fraction of the upper bound.

6. SOFTWARE ISSUES

This section describes the software implementation that is used to obtain the numerical results
reported in the next section. Our fully parallel implementation, called PARFE [44], originates from
a FORTRANT7 program based on a serial FE code proposed in [46]. PARFE has been developed
for massively parallel, distributed memory architectures, is written in C+-+ with support for MPI
and optimized BLAS and LAPACK for computationally intensive tasks on dense matrices and
vectors.

All PARFE’s data structures are distributed across the available processors. Mesh data struc-
tures are partitioned using the so-called wvertez-oriented distribution [36], which is followed by
most high-performance scientific packages like TRILINOS [22], HYPRE [19] and PETSc [8]. As a
result, PARFE can be easily interfaced with the aforementioned libraries.

PARFE’s I/O operations are performed by the Hierarchical Data Format (HDF5) library [21].
HDF5 is a public domain library aiming at parallel, binary and portable I/O. It has been selected
because it allows easy handling of files containing several GBytes of data. For the problems
considered in this paper, file size is indeed an important issue: for example, if stored in ASCII
text format, a file containing a problem of about 150 million unknowns requires over 3GB of
storage. Its binary equivalent stored using HDF5 requires “only” 2GB, but more importantly,
can be read or written in parallel on any architecture that supports HDF5, an important advantage
for high performance computing.

To operate efficiently, high-performance HDF5 I/0 requires linearly distributed data, while all
the other software phases demands to equilibrate the workload assigned to each processor and
to minimize the information exchange. Roughly speaking, the workload of a process depends on
the number of vertices and elements assigned to that process while the communication volume
depends on the number of edges connecting neighboring subdomains. An efficient way to achieve
both goals is to adopt a mesh partitioning tool, either based on variants of coordinate bisection
or multilevel graph partitioning. Since coordinate bisection methods only require the vertex
coordinates, they can be used to provide a starting partition for more efficient and more costly
graph partioning algorithms, as performed by the PARMETIS [34] library. Fig. 2 displays the
initial linear distribution (induced by the HDF5 reader), and the final distribution produced by
PARMETIS.

As regards distributed linear algebra objects like vectors and matrices, we have adopted the
EPETRA library [22]. EPETRA, based on object-oriented design, furnishes efficient and flexible
implementations of fundamental distributed linear algebra objects like vectors, graphs and sparse
matrices. It also offers concise but powerful data redistribution capabilities. For matrix-ready
problems, K is stored in the distributed Variable Block Row (VBR) format [49]. This format
is particularly suited for vector problems, as it defines K as a matrix composed of dense 3 x 3
matrices. The underlying graph describing the non-zero pattern only has to store the block indices
and hence needs less memory and can be constructed faster. When using a matrix-free approach,
instead, K is defined by a PARFE-specific class, which is used to apply K to input vectors [33].

EPETRA objects are accepted by the CG implementation given by the AZzTECOO library [49]
and by the multilevel preconditioning package ML [43]. ML offers a large variety of aggregation

AMG Preconditioners for Matrix-Free pFE 11

FIGURE 2. Result of repartitioning a 1.5 million nodes highly porous model with
16 processors. The left picture shows the initial linear partition, while the picture
to the right shows a well balanced repartition.

schemes, smoothers and coarse solvers, either developed within ML itself, or as part of the Ir-
PACK [42] and AMESOSs [41] packages. In particular, the matrix-ready multigrid is implemented
by ML’s MultilLevelPreconditioner class, while the parallel matrix-free multigrid is implemented
by ML’s MatrixFreePreconditioner. Both classes define black-box solvers, that require as input
either the matrix or the operator and its graph, a near kernel, and a list of options. EPETRA, ML,
IFPACK and AMESOS are all available for download at the TRILINOS web site [47].

7. NUMERICAL EXPERIMENTS

In this section, we will present numerical results, obtained on a CRAY XT3 computer, located
at the Swiss National Supercomputing Centre (CSCS, Manno, Switzerland). The machine consists
of 1664 2.6 GHz AMD Opteron single-core processors equipped with 2GB of memory connected
by a Cray SeaStar interconnect, see http://www.cscs.ch for details. In all simulations, the linear
system (1) has been solved up to a tolerance of 10~° in the relative residual, with a zero initial
vector. We have grouped the numerical experiments in problem sets that are used to discuss
different aspects of our algorithm.

7.1. Problem set JACOBI. First we compare the performances of matrix-free AMG and Jacobi
preconditioners for a mesh composed of 320’751 elements and 521’118 vertices, resulting in a
linear system with 1'563’354 equations. Only one processor is used in this experiment. The
finest-level coarsening of the AMG preconditioner is based on aggressive coarsening, and each
aggregate contains on average 128 nodes, while all other levels are built with standard diameter-
3 coarsening. PCG with AMG preconditioning converged in 138 iteration steps, with Jacobi
preconditioning in as many as 4719.

7.2. Problem set WEAK_SCAL. We now focus on the weak scalability of AMG preconditioners.
The term weak scalability refers to a scaling study where the problem size per processor is kept
constant. These problems were obtained by mirroring a small cube of human trabecular bone,
scanned with a high resolution puCT system. This procedure was used to obtain arbitrary sized
cubic models as illustrated in Fig. 3. An overview of the problem sizes is reported in Table 1.

12 P. Arbenz, G. H. van Lenthe, U. Mennel, R. Miiller, and M. Sala

name elements nodes matrix rows file size
c01 60’482 98’381 295’143 9
c02 483’856 74T 2’324°151 74
c03 1’633’014 2’609°611 7'828°833 250
c04 3’870°848 6’164°270 18°492°810 593
c05 7'560’250 12°038’629 36115887 1’157
c06 13°064’112 20’766°855 62’300’565 1’997
c07 20745326 32’983’631 98’950’893 3’172
c08 30966784 49’180°668 147°542°004 4’732
c09 44°091’378 70°042’813 210°128°439 6.737
c10 60’482°000 96°003’905 288°011°715 9235
cl2 104’512°896 165'834’762 497504286 15’953
cl4 165’962’608 263’271’435 789’814°305 25’327
c1b 204’126°750 323’887°399 971°662’197 31’155
cl6 247°734°272 392’912°120 1°178°'736’360 37’798

TABLE 1. Overview of problem sizes for problem set WEAK_SCAL. File size is ex-
pressed in MBytes.

FI1GURE 3. On the left, bone tissue models generated by 3D mirroring to test weak
scalability, displayed models for 1, 8, 27, and 64 processors. On the right, a zoom
on the 1-processor model stresses.

The matrix size n is roughly 300’000 x 3 for problem cz. The loading conditions simulate the
compression tests that can be performed experimentally.

A perfectly weakly scalable code executes in a time that is independent of the number of pro-
cessors employed. We have analyzed matrix-ready methods using problems from c01 to <10,
employing p = 2 processors for problem cxz. We could solve problems c03 to c16 with the
matrix-free methods using the same amount of memory per processor. We estimate that the
current matrix-ready implementation requires more than 4000 CRAY XT3 processors to solve
problem c16. Note that the matrix-ready implementation admits about 300’000 degrees of free-
dom per CRAY processor.

AMG Preconditioners for Matrix-Free pFE 13

name p tinput trepa,rt tmatrix tprec tsolve toutput tiotal Tt
c01 1| 1.25 228 6.25 8.58 289 0.10 4732 | 51
c02 81 1.27 3.84 6.64 9.03 31.0 0.52 52.28 | 53

c03 271200 418 703 967 342 0.78 57.88 | 56
c04 64| 3.66 420 712 10.1 326 133 5894 | 53
c05 125 | 5.03 478 726 159 327 233 6797 | 52
c06 216 | 8.23 492 726 159 323 381 7247 | 51
c07 3431 9.58 527 738 16.1 31.6 5.25 7521 | 49
c08 512 | 173 539 729 170 30.2 803 8533 | 47
c09 729 | 21.0 6.18 736 24.0 302 11.0 99.78 | 45
cl0 | 1024 | 179 768 7.76 19.8 31.8 21.0 106.02| 45

TABLE 2. Problem set WEAK_SCAL for matrix-ready environments. Execution times
in seconds are given for reading input data, repartition the mesh for load balancing,
matrix assembly, setup of the preconditioner, solving with the conjugate gradient
method, writing the results, and the total execution time. Column n; displays
iterations steps until convergence.

The CPU times for the different phases of matrix-ready methods, as well as the CG iteration
counts ny are reported in Table 2. The CPU times are diplayed in graphical form in Fig. 4, too.
The AMG preconditioner is defined by a smoothed aggregation procedure, with a Chebyshev
smoother for all levels except the coarsest one, where a serial direct solver is adopted. All phases
scale almost perfectly, except I/O, which still needs improvements. The lack of I/O scalability

120

T T T T
[input time (s)
B mesh repart time (s)
|:|assembly time(s)
[prec setup time (s)
[solution time (s)
-output time (s)

100H

0
B®764 125 216 343 512 729 1024

FI1GURE 4. Problem set WEAK_SCAL with the matrix-ready AMG preconditioner:
Execution times in seconds of the various subtasks versus processor numbers.

14 P. Arbenz, G. H. van Lenthe, U. Mennel, R. Miiller, and M. Sala

is due to the limited number of available I/O nodes with respect to computational nodes and,
probably, due to congestion of the SeaStar network. Nevertheless, note that the 210M degrees of
freedom test c09 is solved in less than 100 seconds on 93 = 729 CRAY processors.

name b torec Tsolve | Mit | X | Mprec
c03 2 56.3 85.4 | 21 | 15| 456
c04 16 | 79.4 883 |20 |16 | 434
c05 32 | 88.7 87.8 20 |16| 501
c07 8 | 87.4 95.0 | 21 |17 | 484
c09 144 | 88.6 86.2 | 21 | 18 | 476
c09 183 |1 96.7 96.4 | 21 | 16 | 516
cl0 260 | 86.7 98.4 | 22 |16 | 483
cl2 460 | 103 97.8 | 22 | 18 | 506
cl5 860 | 156 105 |22 | 17| 512
cle | 1024 | 225 106 | 22 | 17| 444

TABLE 3. Problem set WEAK_SCAL for matrix-free environments. Execution times
in seconds are given for setting up the preconditioner (fprec) and solving with the
conjugate gradient method (¢so1ve). Myt displays iterations steps until convergence.
X gives the colors used during the preconditioner setup (cf. §5.1). mprec shows the
memory requirement of the preconditioner in MB.

Results for matrix-free methods are reported in Table 3. The table focuses on the linear system
solution; the other phases, being executed by the exact same code, behave as in Table 2 and are
not reported. (The actual numbers differ from those of Table 2 as the problem sizes differ.) The
matrix-free preconditioner uses non-smoothed aggregation coarsening (with aggressive coarsening)
to define the level-1 matrix, then classical smoothed aggregation. The level-0 smoother is given
by 5 steps of the Chebyshev method, two sweeps of symmetric Gauss-Seidel with damping factor
of 0.67 for all the other levels except the coarsest one, where a serial direct solver is used. The
largest considered problem, c16, with about 1/4 billion elements and about 1.2 billion matrix
rows, only requires 21 iteration steps and less than 6 minutes for solving the linear system. The
overall time for this simulation was about 10 minutes. Clearly, forming as well as solving with the
matrix-free preconditioner takes longer the matrix-ready preconditioner. Nevertheless, by solving
a certain problem on a smaller number of processors reduces the number of messages sent but
increases the average message length, which both have a positive impact on execution time.

7.3. Problem set STRONG_SCAL. In this problem set we analyse the strong scalability of AMG
preconditioners. Strong scalability means that the problem size is kept fixed, independent on the
number of processors. We have considered a simulated compression test of the distal part (of 20%
of the length) of a human radius; see Fig. 5. This bone was scanned in vitro with a resolution of
93 pm. The model consisted of 3’687°438 elements and 4’841°054 vertices. The material properties
used are Young’s modulus F = 17 GPa and Poisson ratio v = 0.3. The preconditioner is defined
as in WEAK_SCAL. When assembled, the linear system matrix consisted of 14’523’162 rows and
986’399’316 nonzeros. We needed at least 44 processors on the computer used for our testing. In
this case, on each processor 1312 MBytes were required to store K, and additional 266 MBytes
to store the preconditioner. On the same number of processors, adopting a matrix-free approach,
required only 131 MBytes of memory for the matrix data structures, and 194 MBytes for the
preconditioner. The minimal number of processors required to run this with the matrix-free

AMG Preconditioners for Matrix-Free pFE 15

FIGURE 5. Finite element modeling of the distal part (20% of the length) of the
radius in a human forearm. Left: full uFE model; middle: part of the model
removed to show the trabecular architecture; right: calculated effective strain
distribution, as resulting from an axial compression test. (Images courtesy of
Andreas Wirth, ETH Zurich, Switzerland)

p=12 p=16 p=20 p=36 p=40 p=44 p=60 p="72
b otal T T 1 T T 167.91 120.89 92.17
t 1060.54 765.23 514.23 417.51 360.72 344.50 186.44 193.33

total

TABLE 4. Problem set STRONG_SCAL. CPU time in seconds required to solve the
problem using matrix-free (top) and matrix-ready preconditioners (bottom) on p
processors. The symbol t indicates failure to run because of lack of memory.

approach was 12, or about 1’210°263 matrix rows per processor. Table 4 reports the CPU time
for several values of p.

7.4. Problem set COMP. We finally report the memory usage and the setup time required in
matrix-ready and matrix-free environments to build an AMG preconditioner. We have considered
nonsmoothed aggregation (with diameter-3 aggregates) and Chebyshev smoothers. This problem
set gives an estimation of the memory savings of the preconditioner presented in §5. Results are
reported in Table 5. By adopting matrix-free AMG preconditioners, for the considered problems
we estimate to solve problems about 3 times bigger. This is counterbalaced by an increased setup
time, which is about 4 times larger than that of an equivalent matrix-ready AMG preconditioner.

8. CONCLUSIONS AND FUTURE DEVELOPMENTS

We have described the model and the implementation details for multi-level pFE analysis of
human bone structures. We have in particular shown how to construct an aggregation based
multilevel preconditioner without assembling and storing the system matrix, i.e., the matrix of
the finest grid. This reduces the memory consumption of the overall program by a factor 3
to 4. By using the presented techniques, we have solved a model of trabecular bone composed

16 P. Arbenz, G. H. van Lenthe, U. Mennel, R. Miiller, and M. Sala

problem matrix-ready matrix-free
/ / 1
/ / / " " " Mmat TMprec prec
name m m m t m m t —— =
p mesh mat prec prec mat prec prec mgl at +mgrec t{o rec

c01 1 101 867 290 5.43 54 296 47.84 3.30 8.81
c02 8 123 876 308 5.51 89 328 27.37 2.83 4.96
c03 27 | 124 877 320 6.90 90 340 30.94 2.78 4.48
c04 64 | 123 882 303 7.80 88 324 34.44 2.31 4.99
c05 125 | 124 878 310 10.92 | 89 335 35.44 2.80 3.24
c06 216 | 125 912 323 9.92 92 331 36.75 291 3.70
c07 343 | 124 802 299 10.64| 84 316 40.65 2.75 3.82
c08 012 | 126 928 325 9.39 93 342 42.13 2.88 4.48

TABLE 5. Problem set COMP: comparison of memory requirements (matrix and
preconditioner) and preconditioner setup time for matrix-ready and matrix-free
preconditioners.

by 247°734°272 elements, leading to a linear system with 1’178’736’360 equations, in less than
9 minutes using 1024 CRAY XT3 processors. Numerical results show excellent weak and strong
scalability of the method and of the overall code, in terms of both iteration count and CPU time.

The short solution times which we have obtained is an important step towards the assessment
of the mechanical quality of bone in vivo on a routine basis. Furthermore, solving the even larger
models of whole bones measured in vitro becomes possible. We expect these findings to improve
our understanding of the influence of densitometric, morphological and loading factors in the
etiology of spontaneous fractures of the hip and the spine.

Obviously, the complexity of trabecular bones is pushing researchers to extend the linear elastic-
ity model to incorporate nonlinear effects (where the nonlinearity is given by the nonlinear prop-
erties, as well as large deformations and geometric instabilities), time derivatives, mesh smoothing
and mesh adaption, just to mention a few. Efficient implicit nonlinear methods are generally built
around one of the numerous variants of Newton’s method [3,6]. Newton’s method is also well-
known to exhibit a convergence rate that is independent of spatial resolution in systems arising
from elliptic-like PDEs. The fundamental algorithmic challenge for Newton’s method is to solve
linear systems with the Jacobian matrix, for which the AMG solver described in this paper can
be applied.

ACKNOWLEDGMENTS

The computations on the Cray XT3 have been performed in the framework of a Large User
Project grant of the Swiss National Supercomputing Centre (CSCS), Manno, Switzerland. We
acknowledge the help of the XT3 support team of the CSCS. G. H. van Lenthe and R. Miiller
were funded in parts through the Swiss National Science Foundation (PP-104317/1).

REFERENCES

[1] M. Adams. Evaluation of three unstructured multigrid methods on 3D finite element problems in solid me-
chanics. Internat. J. Numer. Methods Engrg., 55(5):519-534, 2002.

[2] M. Adams, M. Brezina, J. Hu, and R. Tuminaro. Parallel multigrid smoothing: polynomial versus Gauss—Seidel.
J. Comput. Phys., 188(2):593-610, 2003.

[3] M. F. Adams, H. H. Bayraktar, T. M. Keaveny, and P. Papadopoulos. Ultrascalable implicit finite element
analyses in solid mechanics with over a half a billion degrees of freedom. In ACM/IEEE Proceedings of SC2004:
High Performance Networking and Computing, 2004. Available from http://www.sc-conference.org/sc2004/
schedule/pdfs/papi1l.pdf.

[4]

[5]

[9]

(10]

AMG Preconditioners for Matrix-Free pFE 17

P. Arbenz, G. H. van Lenthe, U. Mennel, R. Miiller, and M. Sala. Multi-level p-finite element analysis for human
bone structures. In Proceedings of the PARA’06 State-of-the-Art in Scientific Computing. Umea, Sweden, June
18-21, 2006 (accepted).

C. E. Augarde, A. Ramage, and J. Staudacher. An element-based displacement preconditioner for linear elas-
ticity problems. Computers and Structures, 84(31-32):2306—2315, 2006.

C. E. Augarde, A. Ramage, and J. Staudacher. Element-based preconditioners for elasto-plastic problems in
geotechnical engineering. Internat. J. Numer. Methods Engrg., (in press), 2007. doi:10.1002/nme.1947.

O. Axelsson. [terative Solution Methods. Cambridge University Press, Cambridge, 1994.

S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. Mclnnes, B. F.
Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National
Laboratory, 2004.

R. Blaheta. Algebraic multilevel methods with aggregations: An overview. In I. Lirkov, S. Margenov, and
J. Wadniewski, editors, Large-Scale Scientific Computing, pages 3-14. Springer, 2005. (Lecture Notes in Com-
puter Science, 3743).

S. Boutroy, M.L. Bouxsein, F. Munoz, and P.D. Delmas. In vivo assessment of trabecular bone microar-
chitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab.,
90(12):6508-6515, 2005.

A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comp., 31(138):333-390, 1977.

12] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. McCormick, and

J. W. Ruge. Algebraic multigrid based on element interpolation (AMGe). SIAM J. Sci. Comput., 22(5):1570—
1592, 2000.

M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge. Adaptive smoothed
aggregation (aSA) multigrid. STAM J. Sci. Comput., 25(6):1896-1920, 2004. Reprinted in SIAM Rev. 47(2):
317-346, 2005.

O. Broker, M. J. Grote, C. Mayer, and A. Reusken. Robust parallel smoothing for multigrid via sparse approx-
imate inverses. SIAM J. Sci. Comput., 23(4):1396-1417, 2001.

T. F. Chan and P. Vanék. Detection of strong coupling in algebraic multigrid solvers. In E. Dick, K. Riem-
slaagh, and J. Vierendeels, editors, Multigrid methods VI, pages 11-23. Springer, 2000. (Lecture Notes in
Computational Science and Engineering, 14).

R. T. Chapman and D. L. Cox. A unique element storage implementation of the vectorized element by element
preconditioned conjugate gradient. In Iterative Equation Solvers for Structural Mechanics Problems, pages
57-65, New York, 1991. ASME.

T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph coloring problems. SIAM J.
Numer. Anal., 20:187 — 209, 1984.

A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse Jacobian matrices. IMA J. Appl.
Math., 13(1):117-119, 1974.

R. D. Falgout and U. M. Yang. HYPRE: a library of high performance preconditioners. In P. M. A. Sloot,
C. J. K. Tan, J. J. Dongarra, and A. G. Hoekstra, editors, Computational Science - ICCS 2002 Part 111, pages
632-641. Springer, 2002. (Lecture Notes in Computer Science, 2331).

W. Hackbusch. Multi-grid Methods and Applications. Springer, Berlin, 1985.

HDF5: Hierarchical Data Format, 2005. Reference Manual and User’s Guide are available from http://hdf.
ncsa.uiuc.edu/HDF5/doc/.

M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R.
Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley. An overview of the Trilinos project. ACM Trans. Math. Softw., 31(3):397-423,
2005.

J. Homminga, B.R. McCreadie, R. Huiskes, and H. Weinans. The dependence of the elastic properties of
osteoporotic cancellous bone on volume fraction and fabric. J. Biomech., 36(10):1461-1467, 2003.

J. R. Hughes, R. M. Ferencz, and J. O. Hallquist. Large-scale vectorized implicit calculations in solid mechanics
on a Cray X-MP/48 utilizing EBE preconditioned conjugate gradients. Comput. Methods Appl. Mech. Engry.,
61(2):215-248, 1987.

J. Kabel, B. van Rietbergen, M. Dalstra, A. Odgaard, and R. Huiskes. The role of an effective isotropic tissue
modulus in the elastic properties of cancellous bone. J. Biomech., 32(7):673-680, 1999.

T. M. Keaveny, E. F. Morgan, G. L. Niebur, and O. C. Yeh. Biomechanics of trabecular bone. Annu. Rev.
Biomed. Engrg., 3:307-333, 2001.

18

27]

(28]

P. Arbenz, G. H. van Lenthe, U. Mennel, R. Miiller, and M. Sala

S. Khosla, B. L. Riggs, E. J. Atkinson, A. L. Oberg, L. J. McDaniel, M. Holets, J. M. Peterson, and L. J. Melton
II1. Effects of sex and age on bone microstructure at the ultradistal radius: A population-based noninvasive in
vivo assessment. J. Bone Miner. Res., 21(1):124-131, 2006.

A. J. Ladd, J. H. Kinney, D. L. Haupt, and S. A. Goldstein. Finite-element modeling of trabecular bone:
comparison with mechanical testing and determination of tissue modulus. J. Orthop. Res., 16(5):622-628,
1998.

H.-C. Lee and A. J. Wathen. On element-by-element preconditioning for general elliptic problems. Comput.
Methods Appl. Mech. Engrg., 92(2):215-229, 1991.

G. H. van Lenthe and R. Miiller. Prediction of failure load using micro-finite element analysis models: Towards
in vivo strength assessment. Drug Discovery Today: Technologies, 3(2):221-229, 2006.

P. T. Lin, M. Sala, J. N. Shadid, and R. S. Tuminaro. Performance of fully coupled algebraic multilevel domain
decomposition preconditioners for incompressible flow and transport. Internat. J. Numer. Methods Engrg.,
67(2):208-225, 2006.

L. J. Melton III, E. A. Chrischilles, C. Cooper, A. W. Lane, and B. L. Riggs. How many women have os-
teoporosis? J. Bone Miner. Res., 7(9):1005-1010, 1992. Reprinted in J. Bone Miner. Res. 20(5): 886-892,
2005.

U. Mennel. High performance computing for the structural analysis of human bones. Master thesis, ETH
Zurich, Institute of Computational Science, May 2006.

METIS - Family of Multilevel Partitioning Algorithms. http://glaros.dtc.umn.edu/gkhome/views/metis.
The Prometheus Project Home Page. http://www.columbia.edu/ ma2325/prom_intro.html.

A. Quarteroni, M. Sala, and A. Valli. An interface-strip domain decomposition preconditioner. STAM J. Sci.
Comput., 28(2):498-516, 2006.

B. van Rietbergen, H. Weinans, R. Huiskes, and A. Odgaard. A new method to determine trabecular bone
elastic properties and loading using micromechanical finite-elements models. J. Biomech., 28(1):69-81, 1995.
B. van Rietbergen, H. Weinans, R. Huiskes, and B. J. W. Polman. Computational strategies for iterative
solutions of large FEM applications employing voxel data. Internat. J. Numer. Methods Engrg., 39(16):2743—
2767, 1996.

J. Ruge and K. Stiiben. Algebraic multigrid (AMG). In S. McCormick, editor, Multigrid Methods, Frontiers in
Applied Mathematics, pages 73—130, Philadelphia, PA, 1987. STAM.

Y. Saad. [terative Methods for Sparse Linear Systems. STAM, Philadelphia, PA, 2nd edition, 2003.

M. Sala. Amesos 2.0 reference guide. Technical Report SAND-4820, Sandia National Laboratories, September
2004. Available from [47].

M. Sala and M. Heroux. Robust algebraic preconditioners with IFPACK 3.0. Technical Report SAND-0662,
Sandia National Laboratories, 2005. Available from [47].

M. Sala, J. Hu, and R. Tuminaro. ML 3.1 smoothed aggregation user’s guide. Technical Report SAND-4819,
Sandia National Laboratories, September 2004. Available from [47].

M. Sala, U. Mennel, P. Arbenz, C. Flaig, H.G. van Lenthe, and A. Wirth. The PARFE Project Home Page.
http://parfe.sourceforge.net.

B. F. Smith, P. E. Bjgrstad, and W. D. Gropp. Domain Decomposition: Parallel Multilevel Methods for Elliptic
Partial Differential Equations. Cambridge University Press, Cambridge, 1996.

I. M. Smith and D. V. Griffiths. Programming the Finite Element Method. Wiley, Chichester, 4th edition, 2004.
The Trilinos Project Home Page. http://software.sandia.gov/trilinos.

U. Trottenberg, C. W. Oosterlee, and A. Schiiller. Multigrid. Academic Press, 2000.

R. Tuminaro, M. Heroux, S. Hutchinson, and J. Shadid. Official Aztec user’s guide: Version 2.1. Technical
Report Sand99-8801J, Sandia National Laboratories, Albuquerque NM, November 1999. Available from [47].
R. S. Tuminaro. Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel ma-
chines. In Supercomputing ’00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing (CDROM),
Washington DC, 2000. IEEE Computer Society. (5 pages).

P. Vanék, M. Brezina, and J. Mandel. Convergence of algebraic multigrid based on smoothed aggregation.
Numer. Math., 88(3):559-579, 2001.

P. Vanék, J. Mandel, and M. Brezina. Algebraic multigrid based on smoothed aggregation for second and
fourth order problems. Computing, 56(3):179-196, 1996.

A. J. Wathen. An analysis of some element-by-element techniques. Comput. Methods Appl. Mech. Engrg.,
74(3):271-287, 1989.

O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method for Solid and Structural Mechanics. Elsevier,
Oxford, 6th edition, 2005.

