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FREE VIBRATION OF AXISYMMETRIC AND BEAM-LIKE
CYLINDRICAL SHELLS' PARTIALLY FILLED WITH LIQUID

ABSTRACT

This report presents a theory for the determination of free vibration
characteristics of anisotropic thin cylindrical shells, partially or
completely filled with liquid for two circumferential wave numbers, n = 0
breathing and n = 1 beam-like. The method used was a hybrid one, based on
the finite element method and supported by classical shell theories. The
shell was subdivided into cylindrical finite elements and the displacement
functions were obtained using the shell's equations. Expressions for the
mass and stiffness matrices for a fnite element and for the whole structure
were obtained. Similarly, a finite element was developed for the liquid in
cases of potential flow. The natural frequencies of the shell in vacuo and
partially filled were obtained and compared with existing experiments and
other theories.
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CHAPTER 1

INTRODUCTION

1.1 General

Thin shells have been and are still very important elements employed
virtually throughout modern chemical, nuclear, aeronautical and space
industries. There 1is a plethora of published static and dynamic shell
studies. Many theories have been put forth and possible applications of
these theories have been investigated.

Aron, in 1874, was one of the first to attempt to formulate a theory
for thin curved shells, starting with the general elasticity equation. He
was foiiowed, in 1888, by Love [1] with his approximation theory. Since
that time and up to the present, linear elastic shell theory has been
examined and re-examined by scientific researchers throughout the literature

([2] to [7]).

More specifically relating to cylindrical shells, Arnold and Waburton
derived the dynamic equations for a uniform cylindrical shell by using the
energy method, the Timoshenko stress-strain relationships and the Lagrange
equations[8]. Baron and Bleich [9] based their theory on an energy method,
treating the shell as a membrane and introducing a correction factor that
took the curvature into consideration. Galletly [10] reapplied Arnold and
Waburton's study to the reinforced cylindrical arched shell, The free
vibration of non-uniform cylindrical shells was studied theoretically by
Al-Najafi and Waburton [11], and Falkiewicz [12] investigated them experi-
mentally.



Dynamic studies, based on simple equations of motion for particular
vibration problems, were undertaken by Seide [13]. Reissner was interested
in shells with sandwich-type arch [14]; but the essence of these studies
appeared in Ambartsumyan's paper [15], which 1involved several cases of
anisotropic she]]é.

The effects of a fluid on the dynamic state of a shell can manifest
itself in many ways. If the shell contains a low-pressure gas, then the
vibration system (shell-gas) differs very little from that of the empty
shell. However, this is not the case when the shell contains high-pressure
gas. furthermore, if the fluid 1is compressible, the compressibility can
affect the effective stiffness of the system. In addition, if the density
of the fluid is relatively high, as is the case for the liquid, what will
occur is a considerable intertial load upon the shell, which will result in
a reduction in the systems natural frequency.

There have been several studies conducted on cylindrical shells partia-
1y filled with liquid. Niordson [16] was the first to present a study
concerning the effect of the liquid on the natural frequency of the shell.
Berry and Reissner [17] studied the case of a simply supported cylindrical
containing pressurized gas. However the natural vibration of a shell
completely or partially filled with non-pressurized liquid were theoreti-
cally and experimentally investigated by Lindholm and Kana [18].

1.2 Research objectives

This report is an attempt to determine the natural frequencies of
anisotropic cylindrical shells and shells partially filled with liquid for
the following two cases of circumferential modes: axisymetric (n = 0) and

beam=1ike (n = 1).



A hybrid method was used, based on the finite element method and
classical thin shell theory. The finite element chosen for a cylindrical
element had two nodes with four degrees of freedom for each node for n = 1,
and one to two degrees, for n = 0. This therefore made it possible to
employ the thin shell equations so that we could determine the displacement
functions and then the mass and stiffness matrices of the element. This is
not feasible however, if a triangular or rectangular element is employed
[19] and [20]. Similarly, the method in reference [22] was used to obtain
the fluid's potential flow for a finite element. The natural frequencies of
the empty and the partially liquid-filled shells were determined and compa-
red to values found in the literature and existing experiments.

1.3 Outline of the report

The present study is divided into nine chapters. A description of the

e oy ande 129171 A hrmdafly ha Aduvan
L 111 HUW Rl iIci iy W Yivite
Chapter 2 is a review of basic thin shell theory and an outline of the

numerical method used.

Chapter 3 presents formulations of three equations of motion for this
study in conjunction with the displacement of the shells of reference and
components of the matrix of elasticity, as derived from the general equa-
tions for shells of revolution and their elasticity relationships.

In Chapter 4, the displacement functions are chosen for a finite
element from the exact solutions of the three equations presented.

The mass and stiffness matrices of each element, as well as for the
system as a whole are determined in Chapter 5.



The liquid's apparent mass and stiffness as well as absorption matrices
are developed in Chapter 6. The study of free vibrations in a cylindrical
shell partially filled with liquid is then dealt with.

In Chapter 7, the method of computing natural frequencies and eigen
vectors of the (1iquid shell) system are described.

The synthesis obtained from numerical calculations and from our
research, compared with the findings of other authors, are given in Chapter

8.

Finally, Chapter 9 presents the general conclusions.



CHAPTER 2

BASIC THEORY AND METHOD

2.1 Classical thin elastic shell theory

The classical thin elastic shell theory is derived from the approxi-
mation of the tridimensional theory of elasticity. It originates out of the
first approximation of Love [1], which is based on the following hypo-
thesis:

a) thickness (t) is small compared to the minimal radius of curvature

( m1n)’

[N b o -T1 P B T

b) the wall displacements of the shell are small compared to shell thick-
ness;

c) the constraints which follow a normal axis to the surface of reference
are insignificant;

d) the normals at the surface of reference remain normal and are not
subjected to any elongation;

Hypothesis (a) represents the definition of thin shells (r/t > 10).
The higher-order terms for displacement are negligible when compared to the
frist-order terms with assurance of linearity of the differential equations.
Hypothesis (c) and (d) assume that the constraints normal to the surface and
the transverse shear deformation are negligible.



In this report Sander's theory is used, based on the first Love appro-
ximation and the fact that unit deformations are cancelled for all rigid-
body movement. The equations of equilibrium, the strain-displacement and
stress-strain relationships are given in Appendix A-1.

2.2 Method

As previously mentioned (in section 1.2), the method used was one,
developed in references [21], [22] and [23] specifically for cylindrical
shells with a circumferential mode equal to or greater than 2 (n > 2). This
same method was applied to cylindrical shells for two cases: axisymetric
( n = 0) and beam-like behaviours (n = 1). The principle points of this
method are as follows:

a) The shell is subdivided into several cylindrical elements (Fig. 2).

by two nodes i, J and the houne

~J vvvvvvvvvvvvvvvvvvvvvvv

The cylindrical element is determine
daries of the nodal surface (Fi 3). The displacement functions can

be determined by:

U(x,0) 5
Wix,0)) = [N] 61
Vix,0) J

Where &, represent the nodal displacements and [N] is a matrix of general

position functions.



The displacement functions chosen must adequately represent the real
displacements of the shell. Accordingly, thin shell equations were
used to determine the displacement functions. These yield more precise
results than if the displacement functions are expressed in polynomial
form. The fundamental equations from Sanders in A-1 were reduced to
three differential equations as a function of axial, radial and
circumferential displacements of the surface of reference. The
solution of these equations gives us the displacement functions.,



CHAPTER 3

EQUATIONS OF MOTION FOR ANISOTROPIC CYLINDRICAL SHELLS

3.1 Equations of equilibrium, strain-displacement and stress-strain

relationships

Sander's theory of thin shells [4], was used to describe the behaviour
of cylindrical curved shells (Appendix 1).

By eliminating the shear forces QX and Qe by means of equations A-1.5
d,e, we obtain the three equilibrium equations:

9N . 1 aN ., 1 oM ., n
X + X Xvu =y
ox r 86 - 2r? 296
N 4, 1 N, , 3 Mg 1 3My _ (3.1)




The deformation vector {e} is given by:

Fe N\ léﬁl AN
X gXx
W
Se + Z_'
1 83U
2€x0 T 50
{E}:
“x (3.2)
< %W - v
o 962 96
2% 9°W_+ 33V - 1 3U
x6 -

%98 2r 9x 2r? 36

Where U, V and W are, respectively, displacement that are axial tangential
and radial to the shell's surface of reference.

The relationships between the stress and strain vectors and the
reference surface for an anisotropic shell are given as foilows:

68 _ [p] {e} (3.3)
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Where [P] is the matrix of elasticity [15].

Elements Py, n [P] characterize the mechanical properties of the shell
material, and so in general we assume that:

B P | 0
PII P12 0 14 18§

P P 0 P P 0
21 22 24 25

‘ P
[P]: 0 0 P33 0 0 36 (3.4)

L Puz 0 b4 Pus 0

P 0
P51 P52 0 PSH 55

0 0 P63 0 0 Pse__

By substituting (3.2) to (3.4) in the equations of equilibrium (3.1),
new equations (3.5) are obtained in conjunction with [P] elements Pij and
with the axial tangential and radial displacements, U, V and W of the
reference surface of the shell:

Ll(U,V,W,Pij) =0
Lz(U’V'W'Pij) =0 (3.5)
La(U,V,W,Pij) =0

(these equations are given in Appendix A-2).
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Similar to Donnell [24], Sander's (3.5) equations of motion have been
simplified for the n

]

1 case and become:

’SI(U,V,W,Pij) =0
§, (U, V, WP, ) = 0

(these equations are given in Appendix A-2).

3.2 Matrix of elasticity

The matrix fo elasticity [P] is generally given by equation (3.4); thus
this theory can be applied to:

(i) shells composed of only one layer or an arbitrary number of isotropic

i mimdibaodm i d o T mrspmes s
O Ortnotropic i1ayers;

(i1) double-walled shells, with slabs or ribs;
(ii1) ring-stiffered shells with grooves of known characteristics;
(iv) shells where [P] can be experimentally evaluated.

We will now restrict ourselves to shells made of only one layer or of
an arbitrary number of symmetrical isotropic or orthotropic layers relati-
vely placed at the surface coordinate.

For the case of an arbitrary number of orthotropic layers [15], we
assume that there is no sliding between them and that the principle direc-
tion of elasticity at each point or the shell coincides with the line direc-
tion coordinates.
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(i) For a number of layers equal to 2V, P.. of [P] can be written as

1]
follows:
J s

Pij = 2 ég% Bj 5 (tg = tgyq)i 1 = 1 to3and j=1to-3

Y 5 3 3 ' |
Py = (2/3) gg& Bi_3,3-3 (td - Td,q): i =4 to 6 and

j =41t 6

Pij =0; iz 1to3andj—-4tob; i=4tob6andj=1%1t 3

(3.7)

(ii) For an odd number, 2V + 1, we have:

V+1 . V. s .
Pij = 2 Bij toay ééi By (tg = tgyp)]i 1= 1to3
and § = 1 to3
v :
v+l S : :
Pyj = (2/3) [Bif3,j—3 tyer ¥ g%& Bi-3,5-3 (ts ~ ts+1ﬂ‘
i = 4to6and j = 4 to6 (3.8)

Pij = 0; i = 1lto 3and j = 4 tog; i = 4to g and§ - 1 to3



13

where

os]
i

S S S S S S S
13 E /(1 - vlvz)]; B,, = [Ez/(l - vlvzﬂ

S S S S 8 S 0.5 GS
B,, =B, =1}V, El/(l - vlvz) : B33 = 0. 12
S
B.. =0 elsewhere
1]

t_is the coordinate of the 6 th layer using the surface of reference as a

ference point as illustrated in Fig. 4; (E?v?) and (E%vé), which are,

-
M wv
=

t ic modulus and atio in relation to dire
tions X and 6; and Giz is the shear modu

(]

us of elasticity.

et
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CHAPTER 4

DISPLACEMENT FUNCTIONS

4.1 Choice of displacement functions

In accordance with the hybrid method mentioned in 2.2, the shell is
subdivided into several uniform cylindrical elements (Figures 2-3). The
cylindrical element is defined by two nodes i, j, and the three components
U, V and W respectively represent the axial, tangential and radial displa-
cements, from a point located on the shell's surface of reference,

ne equations of motion (A-2) are given by:

S, (U, V,W,P;4) = 0

SZ(U,V,W,Pij) =0 (4.1)
The displacement functions can be written as:

U(x,0) u(x)

Wix,0)} = [T] {w(x) | ’ (4.2)

Vi(x,0) v (x)
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[T] is a (3x3) matrix 6 given in Appendix A-4 and u(x), v(x) and w(x) are

function only of x.

Setting:

Ax/r (4.3)

eAx/r eAx/r

u{x) = A v(x) = B w({x) = Ce

and

Substituting (4.3) and (4.2) in (4.1), we obtain three homogeneous
equations which are functions of constants A, B and C.

>

(4.4)

w
t
o

[p]

__
@]
“Rwga!

In order to arrive at a non-trivial solution, the determinant of
matrix [D] must be equal to zero. From this the following characteristic

equation is derived:
ID| = hga® + B A® + h A" + h,A% + hy =0 (4.5)

The values of coefficient hj in the polynomial are given in Appendix A-4.
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Each root A, of this equation yields a solution for the equations of
motion (4.1). The complete solution is obtained by totalling the sum of the
eight solutions independently from the constants A., B, and C.(j = 1,2...8).

J J J

A, X/x A. x/r

» 8 8
u (x) > A.e J v(x) = 3 B.e J
j=1 J j=1 J

] (4.6)

i
0
0}

w(x)

As constants A, , Bj and Cj are not independent, we will express Aj and

J
iynction with C

B, in conjunction with C.
J J
A, = 0.C
3]
) j =1, 2, ... 8 (4.7)
B = B_-C;.
J J J

The values o and Bj (i = 1,2...8) can be obtained by nears of
following relationship:

13
(4.8)

23
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where dkk are the coefficients of matrix [D] given in Appendix A-4.

By introducing expressions (4.6) and (4.7) into (4.2), displacements
U(x,8), V(x,8) and W(x,8) can only be expressed in conjunction with the
eight Cj constants and may be written as:

U(x,06) _
W(x,0)} = [T] [R] {c} (4.9)

Vi(x,08)

where [R] is a (3x8) matrix given in Appendix A-4 and {C} is an eight orders
vector of constants Cj

€} = {c, c, ...c)T

To determine the eight Cj constants, eight boundary conditions for the
finite element must be formulated.

Hence, displacements at boundaries 1i(x=0) and j(x=8) (Fig. 3) are
expressed by:

8 9 ow T
1!2 {u, W, _‘l>i V. U, W. -—)j v} (4.10)
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and {C} becomes:

}

[A] is an (8x8) matrix given Appendix A-4 and derived from matrix [R] by
successively setting x = 0 and x = &.

fc} = [a™"] %zi! (4.11)
j

Substituting (4.11) into (4.9) we obtain

U(x,06)
o |8 8,
W(x,0)} = [T] [R] [A™ ] ‘ = [N] 1‘ (4.12)
s ) '
V(x,0) J 63

representing the displacement functions.

o e e 62 o D 6D O OB M €D e 0 L Wh 6D 08 @D ED m

The equations of motion (A-2) are given by:

Ll (U,V’W’Pij) feed 0
L, (U,V,W,P;3) = 0 (4.13)
=0

La(U’V'W'Pij)

In the particular case of axisymmetric motion, the displacements are
only a function of x. All those derived in relation to 6 then become zero
and equations (4.13) are written as:

i
o

[ ]
Ll(U,W,Pij)

L;(U,W,Pij)

L;(V,Pij) =0

fi
o

(4.14a-c)
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(these equations are given in Appendix A-2).

Two systems of equations have been obtained: one, the so-called
torsional system, is represented by equation (4.14c) and is a function of V
only; the other is a non-torsional method, represented by the two equations
(4.14a=b) which are functions of U and W.

a) Non-torsional system
Setting:

u({x) = Ae)‘x/r wi(x) = Cexx/r ' (4.15)
and substituting (4.15) in (4.14a-b), we obtain two homogeneous equations
which are functions of constants A and C

A 1Y
[P, ] ol = | (4.16)

Proceeding analagousiy in this fashion, the case of an arbitrary load

becomes the characteristic equation:

y 2
[pof= nix, = hiA® + hy =0 (4.17)

The values of coefficient h3 in this polynomial are given in Appendix A-4.
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Setting Aj = “jcj and substituting them in (4.15) we obtain:

(ux))

= [rR ] {c}
W(x)‘ 0 | {4.18)

where [Rg] is a (2x4) matrix given in Appendix A-4; {C} is a fourth order
vector for constant Cj

T
{c} = {c, c,...c.}
The values for a, are given by:
P P .
@ =l(___1_‘.*_ Ay - 12)/P“ (3 = 1,2..4) (4.19)
\ T Aj /

To determine the four Qj constants, four boundary conditions for each
element must be formulated. To this end, displacements for boundaries i
(x = 0) and j(x = &) are expressed by:

o S,
{A) = ; =[a,] {c} | (4.20)
5.
| 5 |

where {A} can be determines by one of the two models below:



21

Model I
| = iwi x/)i 5 532)3;
Model II

The [A,] matrices are given in Appendix A-4 and vector {C} is given

by :

[ 61
{c} = [a,] !6 t (4.21)

B
)

Substituting (4.21) into (4.18) we obtain:

8

U (x) i

= [R,] [2;']

= [No]
W(x)

%3
(4.22)
. 8.
J J
which represents the displacement functions.

b) Torsional system
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The displacement function can be represented by:

(4.23)

Vi) = By + B~X Such that
—1g 1% 83
{vix)} = [rR;] [a] ] = [n;] (4.24)
§. S,
J J
where
361‘ Vi
s.b = = [a'] {B
3 v, .4 1B}

(4.25)

and matrices [Af] and [Ry] are given in Appendix A-4.,
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CHAPTER 5

MATRIX CONSTRUCTION

This chapter will deal with determination of the mass and stiffness
matrices and the method of constructing global matrices.

5.1 Arbitrary load in beam like conditions (n = 1)

By using equations (3.2) and (4.12), vector {e} takes the form of:

8, ‘ S,

1
0 B ull 1
. . [o] [A ] N [B] N (5.1)

3 |
l 5
s et

J L")

e} =

where matrices [T], [A] and [Q] are given in Appendix A-4.

5.1.2 Stress=-strain relationships

e am oo 6 o o G D B e £ @D TS an o T o e ©3 6 eD o E I 6 @

By using equations (3.3) and (5.1), the stress is given by:

NX
Ng
Mo - . 83 %
{o} = = [P] {e} = [P] [B] = [sT] (5.2)
M S 6.
X J J
Mg
M
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5.1.3 Mass and stiffness matrices

The mass and stiffness matrices can be expressed as

ff[B]T [p] [5] aa

pt f [N]T [N] aa

—
~
)
i

(5.3)

[m]

where dA = rdedx

Matrices [P], [N] and [B] are determined in (3.4), (4.12) and (5.1);
substituting them in (5.3) and integrating them with respect to o, we

obtain:
L
k = [AEIJT [nr &/[ [Q]T [PJ [0] ax] [A”IJ - [AQIJT [c] [A-xl
0 (5.4)
(A

[m] = pt [a™']7 [wr f [RIT [R] ax] [a™'] = ot [2™"]7 [s]
0

[a~'] (5.5)

The elements of matrices [G] and [S] are determined in conjunction with

elements [P], A and «a.

For Aj + xi %0
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nr’ (xi * Xj)ﬂ/r .o
G(l,j) = X—.———;-‘“r [e - l] Z(l,])
i J
(5.6a-b)
ﬂrz (xi ¥ Aj)K/r .
S(1,3) = y—55— [e - 1] r(i,j)
1 3
and A1 + Aj = {
G(1,3) = =»ra x Z(i,J)
S(i,3) = mra x 1(i,3)
where
. L 2
2(i,3) = Pjyaza, + (P, * Pyg/r) (a;by asb;) - Py, (A;ay

2 2 2
+ )\jai)/r + bibj (P,, + 2P25/r + P55/r ) - (qu

2 2 2
+ P,s/T) (Aibj + Ajbi)/r + Pas(cidj + cjdi)

2 2 4
+ P”cicj + Pssdidj + P““Aikj/r

I'ii,j) = (o,a. * B.B. *+ 1) (5.7a~b)



where

a. = a.A./r
R

ol
]

c; = (ByA, - a,)/r

5.2 Symmetric load (n = 0)

b, = (B,
1

(x5 + 3B;2,/2 + ai/z)/r2

+ 1
L

\ 4
7

s

e
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1
[ ad
=
[
<0

Proceeding analogously to the case involving arbitrary loads, we set:

5.2.1 Non-torsional

1] "3
2 (A,
GQ (iij) = )\ zv_l‘r)! e 1
0 i As
21rr2 (Ai

Selind) = x5 17

+ Aj)ﬂ/r

+ Xj)l/r

- 1] z,(i,3)

- 1] T, (i,3)

(5.8a-b)



and Ay + N, =
G, (i,5)

So (ilj)

where

Z,(i,3)

and
r, (i
with

(¢ 2
1

0

2melz, (i,3)

2mrlr, (i,3)

]

= P“aiaj + P

2
+ P22/r

12(ai

lj) = (a:a,} + l)
£ ]

= aiki/r

5.2.,2 Torisonal

o oo om an @B o en en @n

k(1,1)

m(l,1)

where

= k(2,2) =

-k (1,2)

=
L Y
(X
=
™
Sonne®
{

= 2m (1, 2)

(Pys

-k(2,1)

2m{2,1)

+ 9P, /4r® + 3P, /r)

2 2 3
- P“(Aj + Ai)/r -+

I

2 2 4
qukikj/r

2nrh/2

2nrlpt/3

27

2 2 2
+ aj)/r - P”(Aiaj + aikj)/r

(5.10a-b)
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Comments:

The complete expansion of n = 0 is given in Appendix A-3.

5.3 Global mass and stiffness matrices for the shell

The shell is subdivided into several cylindrical elements. The mass
and stiffness matrices of each element are assembled in such a way that
equilibrium forces and continuity of the displacements at each node must be
satisfied. The vectors {F,} and {Fj} represent the internal forces active
on nodes (i, j) and {51} and {6j} are the displacements associated with Fi
and Fj’ The sum of the forces and the moments of a node must be equal,
respectively, to the sum of the external forces and the sum of the moments

applied at this node.

and 53' = 6“]

Through these relationships, the mass and stiffness of each element
can be superimposed to yield the global mass and stiffness matrices of the
shell. {Ky} and [My} are square matrices of the order NDF (N + 1), where N
is the number of finite elements and NDF is the number of degrees of freedom
at each node. This is schematically represented in Figure 5,
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CHAPTER 6

FREE VIBRATION OF CYLINDRICAL SHELLS
PARTIALLY FILLED WITH LIQUID

This chapter presents the final formulations of the equations of
motion for cylindrical shells partially filled with Tiquid, by using the
relationships established in this report together with the ones formulated
in reference [22]

6.1 Equations of motion

The dynamic behaviour of a shell subjected to a pressure field can be
represented by the following system:

([M,1 - [m'13 183 + {[c,] -~ [c I} 8} + {[X,] - [K;1} {8}

= {F} (6.1)

where

{6} is the displacement vector; [My] and [Kq] are, respectively, the mass
and stiffness matrices of "in vacuo" systems, [M¢], [Ct] and [K:] represent
the inertial, Coriolis and centrifugal forces of the liquid flow; [Cy] is
the system damping matrix and the external forces {F} represent the random
pressure field induced by the boundary layer [22].
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6.2 Inertial, Coriolis and centrifugal forces of the flow

It is considered here that the shell is subjected to only a potential
flow which induces inertial, Coriolis and centrifugal forces participating
in the vibration pattern. These forces are coupled with the elastic defor-
mation of the shell.

The mathematical model used is based on the following hypothesis [22]:

a) The liquid flow is potential;

b) Vibration is linear (small deformation);
c) Pressure on the wall is purely lateral;
d} The velocity distribution of the liguid is assumed constant through

out the shell section and finally;

6.2.1 Determination of the apparent mass, stiffness and damping matrices

o g w e e G e N ED O O 6D R TN S5 €O T G G I 6 0N O B e S5 o5 68 OD OB €5 G D OR 6D W U o G 6 GD U R £ 6 6 0P 6 G 6 EB G o G5 an €3 5 GD 4B @3 60 ) 6B O D B

o o en ap o o0 an o €3 D e T o e eD W

1 |a%0 3”0 , 30 v |
720 = - |— + 20, —— + U2 (6.2)
¢ |at” X axat %’




31

where
¢ is the speed of sound in the fluid; Ux is the velocity of the liquid

through the shell section and @ is the potential function that represents
potential velocity.

_ 9% | _ 12939 . _ 92
V. = U + P Vg = Tgpii Vo= o2 (6.3)

where

vx, Vo and Vr are the axial, tangential and radial components of the fluid
velocity.

(6.4a~-b)

v}

0]

]
i
ko)

[0)
i
o @
e e

o

+
e

%

o
Ql @
K S

0]
Y

[a]

i}

b}

+
rf

where

(a) and (t) are, respectively, the radius and thickness of the shell, and
subscripts 1 and e indicate the internal and external Tocations of the
structure,
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Finally, the condition

/r\r\ /P\rv ’\1;.;!\
(V) = (22 = (X + y 22} (6.5)
r'r=a dr /r=a ot X 90X Jr=a

must be satisfied in order to obtain the contact between the shell's surface

and the peripherial layer of the fluid.

Assuming that the form of the displacement functions is given by

equation (4.12) and setting:

8 (6.6)

o
&

8
g=1

a(w
Y aan 4

4 4

we obtain the pressure exerted on the wall as follows (for more detailed
information, the reader is refered to references [22,23] or to Appendix

A-5):

_ . ..
(g; {[-a. 5Py i%q aepesq] Wq + 2 [- p1a1Ux1rq + peanxesq] W

+ [-ajo;Up;r, * 23"1
a;P4 Xqu %ePe yesq v, (6.7)

q
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where

_ (A x/a + iwt) A . .
W (x,8,t) =C e'’q cos ne is given by (4.12); P e is the

densityﬁof the f]uid;; w is the natural frequency and

Ly = 1/[n - ma (iﬁgga)/Jn(mqgv]

zq = 1/[n - mqa (%égga)/Yn(mqay] (6.8)
et T [A; ~ (a*/ch) (*gzx . iwﬂ%

J (m_a) and Yn(mna) are, respectively, Bessel functions of the first and
n‘'q Mg
second kind and of order n,

Substituting (4.1) into equation (6.7), using the finite element
method and then integrating them for x and 6, we obtain the inertial,
Coriolis and centrifugal forces as follows [22]:

[m.1 = [a7'17 [s.] [a7"]

8x8

[c.] = [a717 [p.] [277] (6.9)
8x8

[k.1 = [a717 [61 [a7']

8x8



2

2
Sf(k,q) - =T 61 Y; rq qu (Z,ai) o 6e Yo sq (ﬂ,ae)
Df(k,q) = 2\ ﬂA[~6i u.ov, ry qu (£,ai) + 6e U, Yo sq (£,ae)]
{(6.10)
2 2 w2
Gf(k,q) = AT [wéi u; Ly qu (Z,ai) + Ge U sq qu (K,ae)]
The non-dimensional terms in equations (6.10) are determined by:
8§, = (a;/t,) (py/P)) ; 8, = (a/t,) (p /)
—2 —
U, = P(1,1,1)/p,t, i U; = Up3/0y 3 Yo = UO/r%a_1*\
ﬁé = Uxe/UO s Y. = ai/r1 : Yo = ae/r1

P> t1 and ry are respectively, the radius, thickness and density of the
The element p (1,1,1,) is the first term of

first element of the shell.

elasticity matrix [P].

qu

qu

(£,a.

l,e

(£,a.

)

)

i

o Le
g k
ﬂ/al ,e for

(kq

¥ Ak)ﬂ/ai,e

_1]

for

A

q

+ Ak Z 0

Matrices [M.], [C.] and [K¢] are, respectively, the global mass,
stiffness and damping matrices of the fluid column, which are obtained by
overlaying the mass [m f], stiffness [kf] and damping [cf] matrices for each

element.
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Note: The foregoing development given for the n = 1 case is still valid for
n = 0, with the following changes:

The matrices [Sf], [Df] will be remultiplied by two and k,q = 1,2..4.
Matrix [A] will be given by [A].

6.3 Eigen value and eigen vector problems

For free vibration, equation (6.1) may be rewritten as follows:

o .. - 2 Teh
0 2wl(s) i wm o 1(s
: ’ Wy Wy ‘
+ 4 ’ - {0} (6.13)
L 7 : 4 ¢
Loy Lot 0 R |]6
w§ w,
I N - ol & S
where
[M] = [ 1 - [M.] 5 [x] = [T = [K]
[el = [cgl (6.14)

M1 = [M,3/0,8,r, 5 (K] = [K1/P(1,1,1) 5

2
wz = P(1,1,1)/p,t,x,.
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and the problem for eigen values will be given by:

[Dp] = A[1] | = 0

where
0 I
[DD] = ‘ (6.15)
- Lk - A xe
w() wO
A =-T% (w is the natural frequency of the system).

Particular cases

If the shell is partially or completely filled with Tiquid (UX = 0),
the eigen value and eigen vector problem is restated as:

1 =1
-5 K M - AM[I]| =0 | (6.16)

Wo

and w(rd/secs = V1/A

Matrices [K], [M] and [C] are square matrices of order NDF (N + 1),
where NDF is the number of degrees of freedom at each node and N is the
number of finite elements in the shell.
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CHAPTER 7

CALCULATION METHOD

7.1  Calculation method and the computer program

The non-uniform cylindrical shell 1is subdivided into a sufficient
number of finite elements., Calculation of eigenvalues and eigenvectors is
done with the help of a computer program, which determines the mass and
stiffness matrices of an element, assembles the global matrices of the
system and calculates the free vibrations and corresponding principle modes.

The program is written in Fortran IV and is performed on a CDC (Syber
Model 173). The flow chart for the principal program is given in Figure 6.

a) The program is composed of finite elements with the radius, thickness
and length of each element defined, as are the mechanical properties
and the harmonic number in order to calculate (n = 0 or 1).

b) The program proceeds as follows for each finite element:
(i) The roots of the characteristic equation of Aj (i =1,2...8) for n =1
are calculated by the Newton-Raphson iterative method and then %j and

Bj are obtained.

(ii) The intermediate matrices [A], [G] and [S] are calculated as, given
respectively, by equations (A-4), (5.6a=b).

(i1i) Mass [m] and stiffness [k] matrices are determined by equations (5.4)
and (5.5), respectively.



(i1)

(iii)

(iv)

The mass and stiffness matrices for the entire system are assembled as

described in section 5.3.

The boundary conditions are applied; [Kq] and [Mg] are now reduced to
square matrices of order NDF (N + 1) - j, where j is the number of
constraint equations imposed. The geometric boundary conditions are
simply specified: hence, for a shell free at the ends, j = 0; for a
shell simply supported (V = W = 0), j = 4, and for a shell clamped at
both ends, j = 8.

The natural frequencies wi and the corresponding modes of a real, non
symmetric square matrix of the form [Mo-l]red [Kg] are obtained.
Where i = 1,2.. NDF (N + 1) = §, [Ko]..q [Mo] are real symmetric
matrices. The calculations are done with the help of an EIGZE sub
routine from the IMSL catalog. The frequencies and corresponding

modes are real .
For the liquid component:

Matrices [Sf], [Gf] and [Df], which are given by system equations
(6.10), are calculated.

Matrices [mc], [ks] and [ce] are then determined, as given by (6.9),
for each element of the fluid column.

These matrices are superimposed on to the mass and stiffness matrices
of the empty shell.

The frequencies and principle modes are obtained by solving the system
equation (6.15) where [K], [M] and [C] are square matrices of order
NDF (N + 1) = j. Two sub routines, HSVEC and HESSEIN from the IMSL
catalog to the calculation.



39

CHAPTER 8

CALCULATIONS AND DISCUSSION

The main purpose of this study was to compare results obtained with
the methods proposed with results from other classical numerical and experi-
mental methods for different boundary conditions.

The first section was devoted for determining the eigen values and
eigen vectors of the empty uniform cylindrical shells. The second section
consisted of a study of the natural vibration of cylindrical shells, partia-
11y or completely filled with liquid.

8.1 Natural vibration of a cylindrical shell in vacuo

The first example of calculations to determine the natural frequencies
and corresponding modes for a cylindrical shell simply supported at both
ends was the analysis done by Michalopoulos and Muster [28] and also by
Baron and Bleich [9]. This shell had the following proprieties:

L = 18.65 in., t = 0,047 in., r = 4,08 in., E = 29.5 x 10°
1b/in2; p = 0.734 x 103 1b - sec2/in* et v = 0.3
we calculated the natural frequencies of this shell using our method and

compared results with what Michalopoulos and Must [28] obtained for n = 0,1
and m = 1 (Table 1).
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Baron and Bleich [9] based their theory on the energy method, treating
the shell as a membrane, and introducing a correction factor to take the
bending into consideration. By wusing the energy method, and Lagrange
equations, and by expressing the displacements in Fourier series, Michalo-
poulos and Muster [28] derived the equations of motion in matrix. The
natural frequencies were obtained by a Jacobi integration method form.

In our case, the shell was subdivided into ten equal finite elements.
The results from this method were in strong agreement with results obtained
by the other theories, in particular in Michalopoulos and Muster [28].

In this particular case, the first natural frequencies associated with
n =0and n = 1 were, respectively, 8 and 4 times higher than the lowest
frequency (436 Hz) which was associated with (n > 2), which was due to a
very high level of dissipation energy deformation for n = 0 and n = 1. This
phenomenon has already been discussed in detail in references [8,33 and
34].

The normalized eigenvectors were calculated and are presented in
Figure 7. In this case, radial motion was dominant for n > 2 [28] and
circumferential motion dominant for n < 2 (see table in Figure 7).

The second of example calculation determine the number of finite
elements required to correspond to the appropriate natural frequencies.

The shell under study here was the same as the one in the first
example for n = 0,1, and the number of finite elements varied from 2 to 10.
the results obtained are presented in Figures 8a (m = 1) and 8 (m = 2
and 3). For m = 2 and m = 3, the natural frequencies converged more
rapidly.



The third example consisted of determining the natural frequencies of
a cylindrical clamped=-free shell whose proprieties were as follows:

r/t = 100, r/L = 0.448, r = 10.16 cm, v = 0.3, g = 980 cm/sec

Ay v Vo oWty

p = 7.84 x 107° kg/cm3 et E = 2.11 x 10° kg/cmz.

the results obtained are given in Table 2 where they are compared with
results from other dynamic discretization methods used by Tottenham and
Shimizu [29] and Sankran [30].

Following Donnell's equations and expressing the displacements in
series form, Sakran [30] resolved the equations of motion by using the
numerical integration technique.  Tottenham and Shimizu [29] used the
progression method and Fliigge's theory.

In this case, the shell was subdivided into ten equal finite elements
and the results obtained with our method were 1in agreement with other
numerical metheds ([29] and [30]), especially for low modes, but increasing
differences showed up with higher modes, which were dependent upon the
degree of "discretization" and the number of elements chosen. In Sankran's
article [30], seven points of integration were used.

The fourth example of calculations consisted of determining the fre-
quency parameters (Q) for different values of r/t and L/r for different
boundary conditions of a cylindrical shell.
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The results obtained with our method (10 elements) were compared with Baron
and Bleich's [9] results for a simply supported shell, and with Sharma and
John's [31] findings for a clamped-free shell., The Sharma and Johns method
was based on Fliigge's theory, and Rayleigh-Ritz's method. The frequency
parameters (Q) are indicated in Tables 3 and 4 for n = 1 and the first five
axial modes. Table 5 describes the results for n =0 and m = 1.

For n = 1, the natural frequencies increased with increasing axial
mode (m) for all the parameter values of r/t and L/r and for different
boundary conditions (see Tables 3 and 4 and Figure 9, respectively).

The natural frequencies for n = 0 and n = 1 essentially depended upon

ratio L/r. The r/t ratio was only weakly affected, especially for L/r > 4
and n = 1 (Figure 10) and L/r > 2.5 for n = 0 (Table 5). This can be
accounted for by the fact that the deformation energy of the membrane was
the curvature [81]. Me

v due to the curvatu

For n = 1 and m = 1, the motion's radial and circumferential ampli-
tudes were almost identical and greater than longitudinal amplitudes for L/r
> 3. In the case of L/r < 3, radial motion was dominant (Figure 11). For n
= 0 and m = 1, circumferential motion dominated when L/r » 2 and radial
motion dominated when L/r < 2.

8.2 Free vibration of cylindrical shells partially or completely filled

with Tiquid

For the first set of calculations, it was necessary to determine the
frequency parameters (Q) for different values of r/t and L/r and the diffe-
rent boundary conditions for a shell completely filled with liquid.
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The results obtained (10 elements) for n = 1 and the first five axial
modes are indicated in Table 3 in the case of a simply supported shell, and
in Table 4 for a clamped-free shell,

We concluded that the frequency parameters (Q) depended both on L/r
and on r/t, (contrary to the empty shell case where the r/t ratio was only
weakly supported (Figure 13)), as a result of the lateral pressure of the
1iquid being exerted on the structure.

The particular case of a cylindrical shell completely filled with
Tiquid and simply supported at both ends was analyzed by Niordson [16]. The

shell had the following properties:

r/t =60, L/r = 24.98, r = 35.43in., v = 0.3, E = 29.5 x 106

1b-sec?/in',

The results obtained (10 elements) with our method for n = 1 and the first
four modes were in accordance with Niordsons [16] results. (Table 6).

Experimental results were obtained by lindoholm and Kana [32] for a
clamped-free cylindrical shell partially filled with 1liquid having the
properties:

L = 14.95in., r = 1.485in., t = 0.0lin., E = 29,5 x 10°

1b/in2, p = 0.734 x 10~=3 1b-sec?/in" et Py = 0.935 x 10%

1b-sec?/in“,
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Our results (10 elements) as shown in Figure 14, were in agreement
with the experimental results above.

Finally, a calculation example was studied in the case of n = 0 and n
= 1 for a cylindrical shell simply supported at both ends and partially
filled with Tiquid. The shell proprieties were:

L/r = 2, r/t = 100, t = 0.01in., E = 29.5 x 106 1b/in2
v=20.3 p= 0.734 X 10-3 1b-sec?/in? et p/Q = 0,935 x 10-*%
1b-sec?/int,

The results obtained for b/L = 0.0, 1/5, 2/5, 1/2, 4/5 and 1 are
presented in Figure 15. For n = 1 and m = 1,2,3, the natural frequencies
decreased considerably with the variation in Tiiquid Tevei. In the case
where n = 0 and m = 1,2,3, the natural frequencies decreased rapidly for b/L
< 0.4.

The normalized eigen vectors are presented in Figure 16 for n = 1 and
1. For the empty and full shell, the eigen vectors were identical to a

m
half-period of "sin" and "cos". With the dropping Tevel of liquid, however,
longitudinal displacement tended towards zero at the base of the shell,
while at the same time, the peaks of the radial and circumferential displa-
cement curves were tending towards the shell base.

Above the Tiquid Tlevel, the radial and longitudinal displacements
tended to move rapidly towards zero for n = 0,
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CHAPTER 9

CONCLUSION

The present report developed a particular method for determining the
natural frequencies and corresponding modes of anisotropic cylindrical
shells, partially or completely filled with liquid. It was a hybrid method
based upon classical thin shell theory and the finite element method.

A cylindrical finite element was used, contrary to the earlier prac-
tice of using triangular or rectangular elements. Consequently the deriva-
tions of the displacement functions for classical shell theory were formula-
ted and hence the mass and stiffness matrices of each element were obtained.
dealt

Only the a

with in this paper. In the axisymmetric case (n = 0), two systems of dis-

oc n o= 1Y wanr
[Sapct i1y

{n = were
ptacement functions were derived for the torsional and non-torsional
motions. The equations of motion derived from classical shell theory were
solved to obtain functions which adequately represented real displacements.
Then, we used the finite element method to obtain the mass and stiffness
matrices of an element in vacuo and then partially filled with liquid. This
method was developed in references [21], [22] and [23] for cylindrical
shells with a circumferential mode equal to or greater than 2 (n > 2).

The eigen values and eigen vectors of a shell were determined with the
help of a computer program. The results obtained with this numerical method
were in several cases in accordance with those from other classical numeri-
cal or experimental theories. The method used in this research may be
applied to the static and dynamic analysis of axisymmetric non-uniform
shells and more precisely to free or forced vibration problems [22].
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APPENDIX A-1

SANDERS SHELL THEORY

a) General equations of equilibrium

The development of equations for the static equilibrium of thin shells
has been the focus of several books and publications [4,6]. For our pur-
poses here, we shall limit ourselves to the final five equations of motion
only, as given by Sanders [4] in the form (Figure 1):

AN, L OAN,, A, g B, ARQ, LA, D
acl - 9z, 8;2 9z, R, 2 8@2
1 1y = A
I- - ___\Ml;l = 0 _ (a)
|._ R1 R2/ _J
oA ﬁlg + aAlNz + aAz ﬁlz - 8A1 N + AlAz Q2 + ﬁi _3
9z, oz, 9z, g, R, 2 9z,
1 1% —
=M, =0 (b)
R, R,
9A.Q 3A .0 N N

2y + %1%y M1 o+ T2V AR, =0 (A-1.1) (c)




3A2M1 + aAlMlz + IT/I'
3T, oz
OA,M,, , A M, M
3L, oz,
with ﬁlz - % (Nl
My, = 3 M,

oA dA -

12 oM, 2 AIAZQI =0
BCZ Bcl
oA dA

- 2 - Mx 1 - AlAzQz =0
3L, CR e

2t Nyy)

2 le)

rmation vector {e} is given by
1oau,, 1 odA g W
SRy 9L, AR, 9T, Ry
1 09U 1 2A W
2 * 22Uy, .
A, ac2 AA, 3T, R,
Lofp, Weea, - PPy, - PRy,
23,4, 3z, 3z, 9L, 3L,
1 A
L. g,
Al BEI A1A2 3(;2
1 9B 1 »9Aa
- 2+ 2 Bx
A, 3¢, AR, 0r,

(A-1.2)
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(a)

(e)
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,
U 1 3w
with 81 = ____1_ -
R, A, 3z,
<
B, = Eﬁ - i~ ow
R, A, 3T,
%
c) Boundary conditions

The boundary conditions are given by:

For a constant boundary
boundary values.

o)
R
o}
I
Cli
b

(A-1.3)
2 = le or U, = EI‘2
or W=W
or W= _E
L, 9L,

acl, where the double barred terms correspond

to



d) The parameters for a cylindrical shell of revolution

(Fig. 2 and 3) give us:

¢, =

¢, =

]
c
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AI = 1
AZ =X
(A-1.4)

Substituting these parameters into the five equations of equilibrium
(A-1.1), we obtain:

oN

x + - X0 - X
X r 06 2r? 36
BNxe + i aNe . —i BMxe
9x r 96 2r 99X
WV + 3% - Iy =0

ox r 46 r

aMx + i 8Mxe - QX = 0
ox r 06

Mo + LM - g = 0
ox r 96

1 N

(A-1.5)

(a)

(b)

‘(C)

(@)

(e)
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APPENDIX A-2

EQUATIONS OF MOTION

This appendix contains the equations of motion for a thin cylindrical
shell, which were referenced in the various chapters of this report.

a) Sander's equations of motion (2.5)

32U ., P oW o%w 1 1
P11 + _.I__g — - P1l+ +(_ (Plz * P33) * — (Pls + PBG)
~ 2 oo '\--3 - -2
oX r oX oX K I
3 3%V 1 P P 3%2u 1
T — PSG) * ——-(Paa - et 66) - (Fis t 2P
4r 3 209x r2 \ r 4r?/ 382  r2
3
_ P\ W ~ o
r )8x862

r r r r ox96 r r

2 32v 3 9 92v . 1 p oW
_P) 7 (Paa * Py +———-Pse) P, v 52)
r 962 r 4r? ax? r? r 20
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— P?T aU - l /h iy Pﬂ:\ av Pnn v s 33U l /.\
L ——_-_ ———\rzz < 9 — — L £ Ww T i *r .
I — 1 — 51
r dx r? r / 36 r2 9x? 2
P 33U 1 P o%v | 1
+ 2P63 - GG) T <P52 + ss) + - (p“2 + 2P,
r %062 r? r 063 r
3 2 y 2
+ Pug 4 3 Pse IV, 2P25 3°W _ P55 o'W L, 2 P, oW _ p
- - 2
r r 36 9x?2 rd 962 r* 38% r ox
4 y
T i_ (2P, 5 * 4P¢) o = 0
8x“ r2 8x289

b) Sander's simplified equations of motion (2.6)

Sl (U,V,W) = 0

2 2 3 2
P,, 0 + Plz .?E * }_ (Plz * Paa\ ___A_BA._,V:M - Plu 8 W M P33 97U
%2 r 9x ¥ \ / 9x36 ox 3 r2 9302
1 + 2p 33w 0
- __{PFis 36 =
r? 9x962

2 2 2 3
1 (P21 N Paa) 32U , P,, 3*V . , 3'V [ P, 3W _P,; 3°W

r 3x 98 r? 362 dx?2 r? 30 r® 363




c) Equations of motion (4.14) (n =

L] (U,W) =0

3
82U , Py, W _ W _
11 —— e 14
ox? r 9x ox?
1] . —
L, (V) = 0O
+2p +9 p 32V
P33 — 36 66 e
r 4r? ax?
Ly (U,W) =0
3
_ Py, 30 _ Py, W o+ Puz 37U
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APPENDIX A-3

MATRIX CONSTRUCTION (n = 0)

In this appendix, the mass, stiffness and intermediate matrices are
determines for cases of asixymmetric motion (n = 0).

A-3.1 Non-torsional

a) Strain-displacement relationships

The deformation vector {e} is given by:

(ex] (3U/3X ]
{e,} = ise =4 W/r ’ (A-3.1)
" -2y 2
lr\x l 3°W/3x J

Substituting equations (4.22) and (A-3.1), vector {e} takes the form

$.

$ i

Legd = [2] [2,7] . (A=3-2)

8 J

J

i( = [B,]

Matrices [Qq] and [Ag] are given in Appendix A-4.
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b) Stress-strain relationships

The resultant stress vector takes the form:

{o,} = [P,] {e,} | ~ (3-3.3)

with
Pll P12 Pl#
[Po] = |P2s P,, P,, ' (A-3.4)
P ’ P Pll |
L b1 L2 T'J

By using equations (A-3.2 and A-3.3), the stress vector is given by:

N, N
’ 1
fog} ={Ng} = [P] [B,] 5 (A-3.5)
X

c) The mass and stiffness matrices

The mass and stiffness matrices can be expressed in the same way as
equations (5.3).
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[[rn '1 e

"0

[B.]
/fm EN } an

where dA = rdo dx

dA

(A-3.6)

—
3

L
i

Matrices [Ng] [Po] and [Bg] are determined in (4.22), (A-3.4) and
(A-3.5). Substituting them in (A-3.6) and integrating them on 6, we obtain:

[x] [AZ?‘J [ / 23" 12 [0 dx] (2] = 27"

[c,] [a] ] R (A-3.7)

Iz

ot [A;“]T[zﬂr [ TRd" [R] dJ [a7'] = ot [27'175,]
: S |

1
3
.
{1

. |
[a; "]
The elements of matrices [Gg] and [Sg] are determined as a function of

elements of matrix [Pg] A and «

Ai + Aj # 0



60

2 (A, + X.)e/r

G, (i,j) = _°™F e * 3 - 1) 2, (i,3)

A+ AL :

( i j) (A-3.8)

. ) 2 2 (>\ + A-)K/r . .

S, (1,3) = ™ (e * ] - 1) T, (1,3)

AL, o+ OAL ’

( i Aj) (A-3.9)

and
Kl + )xj =0
G, (i,3) = 2mxt Z, (i,3) - (A-3.10)
S (i,3) = 27wre T (i,
0 Ay F a7 - L 0 A ¥ 7
where
' . P P 2 2
Z, (1,3) = Py, a; ay *+ 12 (a; +ay) - 1% (a; A5 + ay A3)
r r?
+ Pas o Pyy (A2 + A2%) + Puy a2 a2 (A-3.11)
—_— i 3 —_— 1 ]
r? rs r*

and Iy (i,j) = (ai oy + 1)

i,J = 1,2...4
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A-3.2 Torsional

a) Strain-displacement relationships

Deformation vector {eb} is given by:

2¢ IvV/ox
e .
SO e O (A-3.12)
{80} = . = 3 3 5
kx| | 2 V0%

Using equations (2.2), and (4.23) and (A.12), vector {e} takes the
form:

6.
[ ll (A-3.13)

Matrices [Qy] and [Ab] are given in Appendix A-4.

b) Stress-strain relationships

The resultant stress vector takes the form:

{o,} = [P}] (e)) (A-3.14)
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with

Py, Pyg | (A-3.15)

Using equations (2.3), (A-3.13) and (A-3.14), the stress vector is
given by:

{00} = ’?xe = [P:)] [B;]

8y (A-3.16)
8

Mxe j

c) Mass and stiffness matrices

Analogously to the non-torsional case, the mass and stiffness matrices

here can be written as:

(<] = (3,717 [2m / 1oy 1" [r] [0)] ax | [}
0

[m]

4
ot [A'—I]T 2wr./~ [R']T [R. ] ax [K_l]
0 a 0 0
0
The elements of matrices [k] and [m] are given by:

2nrh

k(1,1) =
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x(2,2) = —21’{3—‘
k(1,2) =’2ﬁgh
k(2,1) =-20E0
and
2
m(l,1) =§wdpt
m(l,2) = m(l,1)/2
m(2,1) = m(1,2)
where
| 3
h = P33+i—Pss+—P63)
4y? r

Quantities &, r, and t are, respectively, the length, radius and thickness
of the element and p is the density of the material.
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APPENDIX A-4
This appendix contains the matrices referenced in the bibliography

during the course of out analytic developments,

These matrices are classified as follows:

[pl; [D,] (Table 1)
[al: [a 1; [2;] (Table 2)
[T]: [R]; [R,1: [R;] ( Table 3)
[0] [Q,1: [9;]  (Table 4)

The subscript (,) corresponds to cases of symmetric loads. The subscripts
i,j assigned to the matrice correspond to: the roots of the characteristic
equations; coordinate x = 2 = 0; coordinate x = xj = L

Quantities 2&,r are, respectively, the length and radius of each
element. The roots of the characteristic equation are represented by AK,
where ¢ = I,..8 for n =1 and « = 1,..4 for n = 0. The values of @ and B
are determined by equations (4.8) for n = 1 and (4.19) for n = O,



[p]
3x3

with

11

12

13

21
22

23

31

32

33

TABLE 1
Matrix [D]
3x3
A d11
c d31
P A2 - p
11 33
- h1 A
2
)\(h3 - Pl‘oA )
r
h1 A
P,, = Pj; AZ
h - h_ A?
] 7
2
A(h, - PruATy
r
h, - h, A?
At 2
Puu_—z_—hs A +h11

12

22

32
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and
h = P + P
1 12 313
h., =P, + % (p._ + 2P )
2 =T Fyoe r 15 36
l’l5 = P + P25
22 "'r
1
h7 =7 (qu + 2P36)
211
hy = r [r (P, s 2P, ) qu
1 P
r r
The characteristic equation (4.5) is of the form:
he)\e + hs)\6 + hu)‘“ + h2>‘2 +h, =0
where

2
(qu Plxpuu)

o
il
"

8 33

2 - n2 2
he = Py, [Pzzpuu vt (Pyshy h7)] v P3Py, * b (XPyh,

(2rP_ h_ + P P, - rhh,)

- Puuhl) - P N 1 22
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2
r*P,, (2hh, - P,,hy = P, ;h,,) - Py, [Pzzpuu

+ r? (P,,h, - hi)] + r2h1 (hyhg = hzh;) + rhy [Plupzz

(2h1h5 N P22h3)

+r (P,,h, - hlh,,)] - P,

2 2
r [PII(PZZhll - h¥) - P,,(2h;h, - P,,h, - P,;h,,)

2
* h, (2h;hg - hh ) - Pzzha)]

2 Lo
Pas(st Pzzpss)



Matrix [D]

2x2
?
[D, ] {A}_ 0 D ] [d“
2x2 ~ - ! 0 B At
ey L2,
with
d;I = Plll
A 5 ,
dip = Py, = 1% A
. r
P 3
ag, = 2,0 - P
r
2P 2 P y
déz =P, = 28 AT+ 44 A
r r?

The characteristic equation (4.17) is of the form:

4 2 wn
h!A* - hjA? + hy = 0

where

=
i1
=
Ny
e
as)
&
E-d
f
J
[ N
£
h S

r

2
h, = r (P“P“ Plzplu)
h' = p P _ - P?

o
— -
IS

)

o
N -
N
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3

A(l,k)
A(2,K)

A(3,k)

A(4,x)
A(5,«)
A(6,K)
A(7,k)

A(8,k)

TABLE 2

Matrix [A]
8x8

[a] {c}; fc} = {c, ¢, ....c}T
8x8 8x1 :

wlx

= A(l,;K) X a

I

A(2,k) x a

A(3,k) X a

A(4,k) x a

69



S,
i

36.
J

Model 1

)6.
i
S..
J

Ao(l,K)

AO(Z,K)

A0(3,K)

Ao(4,K)

Model I1

A, (1,k)

A, (2,k)

= [a,] {c} ;

4x4

u,

Matrix [Ag]
4x4

{C} = {Cl C

T
= {wi Bw/Bx)i wj Bw/ax)j}

e

Ao(l,K) x a

Bw/ax)i uj Bw/ax)j}T

70



1

IK)

where

3’

~~
‘_-J
-~
ray
5
(¢
P2

Ao (2’K) X a

71

..4)



with

$.
’ lf - [Aa] {B}
5 2x2  2x1

S.
1 T
J

AI(1,1) = 1
Aa(l,Z) = 0
Al(2,1) =1

A'(2,2) = £

Matrix [A}]
2x2

{B} = {Bo BI}T
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U(x,90)

e
P
- OO

[t 'e'e]

e
LJm

rm™m

B+ W

[y 0

B
)

—

<D

~—

Vi(x,0)

[l
ey

|

with

T
O.Ca}

= {Cl CZ

{c}

sin.GJ

cos O

cos

[T]:,
L

M
N
X
¥
~<
v
3
T
¥
2
&

..8)

2,

(1,

K

(AK x/r)

e

R(2,k)

H
~
w
%

~<

o

¥

@

U

V4

™M

~



Matrices [Ro]; [Rb]

U(x)

= [R] {c} ; V = [R'] {B}
W(x) 2x4  4x1 1x3" 2x1

with
{cy = tc, ..c,}T
4x1
(AK x/r)
R, (1,k) = a. e
(A x/r)

R (2.K) = e
o I
RB (lll) =1
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TABLE 4

Matrix [Q]

[T] 0 | Ly

(e} = [ ] [0] [A‘]¥1‘
0 [T] 6x8 8x8 Gj

8x1

6x6

with
[lex ] [ 0U/9ox ]
o~ (1 /+\ a7 /290 4+ W/
Kae \..l./.l..’ UV/UV V‘/-L
nge 3v/dx + (1/r) 3U/36
{E} = = ) )
Ky -3°W/ox
‘. (-1/22) (>2w/302 - &
; \ 3/av 1 0
— _ 2 L2 eV L U
2KXe (-=2/r) 9°W/3x36 + 5T 3% 52 56
cos © 0 0
[T] = 0 cos 0 0
0 0 sin 6
bK
Q(llK) = aK e
0z =L (6 v 1) X
! T r K
b
. 1 K
Q(3,k) = = (BK AK - ocK) e
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where



with

a)

b)

77

Matrices [Qq]; [Qb]
x4  2x2

o
{e} = [0,] [a;'] , lt
3x4 4x4 §.

J

4x1

A 2 b,
Qo(3tK) = "\r e

te;} = [@,1 [A}17

s.f
1
5.
3
Q!(1,1) =0

Q;(l,2) =1



where

0! (2,1)

0} (2,2)

o}
1
=

1

Nle
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APPENDIX A-5

FREE VIBRATION OF CYLINDRICAL SHELLS
PARTIALLY FILLED WITH LIQUID

The dynamic behaviour of a shell subjected to pressures fields can be
represented by the following equation system.

[0,3 = 0a1] €63« [re,] - ted] 6 + [ix, - 3] o) = e
‘ " (5.1)

where

{5} is the displacement vector; [My] and [Kq] are, respectively, global
matrices for the mass and stiffness of the in-vacuo system, and [Me 15 [Cf]
and [K%] represent the intertial Coriolis and centrifugal forces of the
Tiquid flow; [Co] is the system damping matrix and external forces {F}
represent the field pressure hazardous induced by the boundary layer [22].
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The shell is subject to intertial, Coriolis and centrifugal forces
because of the liquid flow, which participates within the vibration of the
structure. These forces are coupled with the elastic deformation of the
shell.

The mathematic model used is based on the following hypotheses [22]:

\‘A

"
\

a) The Tiquid flow is potential;
b) Vibration is linear (small deformation);
c) Pressure on the wall is purely lateral;

d) The speed distribution of the fluid is assumed constant throughout the

shell section;

e) The fluid is incompressible.
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The potential flow is governed by the following equations:

— X —
2

' 2 2 2
v2¢=L[3¢+2UX3¢+U28®] (a)
c? Lat? 9x3t 9%’

and

2
o @ J 9 (b)

where

(5.2)

C is the speed of sound in the fluid; UX is the velocity of the liquid
through the shell section and & is the potential function that represents

potential velocity:

o0
Vr"‘ or

l

%
LS
|
%
L4

6;

QU

(5.3)
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and

Vx’ Ve and Vr are the axial, tangential and radial components of the fluid
velocity.

The pressures exerted on the wall are given by:

Pi = —pi a(I);l_ + Ux.aq}i
ot 1 r

oX =a

(5.4)

Pe = —pe 8¢e + UXe 8@8
ot X J r=a+t

where

a and t are, respectively, the radius and thickness of the shell, and sub-
scripts 1 and e indicate the internal and external locations of the shell.

Finally, the condition
90 _ (3w W
Vedpoa = (5?) r=a - <§E T Uy Bx) r=a (5'5?

must be satisfied in order to obtain the contact between the shell's surface
and the peripheral layer of the fluid.
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From equation (4.12) we have [22]:

8 (A, x/a + iwt)
W(x,06,t) = ), C_e 4 cos n 6 (5.6)
g=1 1 -

and setting:

8 .
P (x,0,r,t) = ). R _(r) S _(x,6,t) (5.7)
g=1 g q

Substituting (5.6) and (5.7) in (5.5). we obtain:

S_(x,8,t) = mo— [W_+ U W] ___ . (5.8)
g R _iaj g £ g I=a
g
and equation (5.7) becomes:
8 Rq(r) .
- - S 2
(x,0,r,t) = qgl R, (@) (wy + oWl o (5.9)

Substituting equations (5.6) and (5.9) in equation (5.2), we obtain for each
value of q:

2
RO (r) + 1 RY(x) = Ry () [f‘_y - m;] (5.10)

r Y
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where

P

[
oI

A \ 2
U+ iv7
X

P
o |a

3
]
o))
n
i
O[l—‘
X

The solution of equation (5.10) is in the form:

R(r) = D, Jn(mqr) + D, Yn(mqr) (5.11)

such that

Jn(mqr) and Yn(mqr) are, respectively, Bessel functions of the first and
second kind and of order n; the potential functions will be given by:

g J {m 1) .
o, = 3 s W+ u_ W] 5
i g=1 Jn(mqai) q X; gq° r=a (5.12)

and

8 Y (m r) e I} . 4
o = g [w +vu, Wl (5.13)
e - Y'(m a_) €

=1 "n g e

and the pressure exerted on the wall
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Pt= P.l" Pe
8 . . . ]
Py = Z% {[—aipirq ¥ aepesq] Wq t2 [—piaiUxirq peanxe q
a= _ ‘
Y 2 2
- " 5.14
Wq + [ piaiUXirq + peanxesq] Wq} ( )
where
8 (Aq x/a + iwt)
W(x,6,t) = ggﬁ Cq e cos n 8, p, P

are, respectively, internal and external fluid densities, and w is the free
vibration of the system.

(5.15)

r:l//,____ fee o N o \
s =1 _ - (5.16)
d // (n Mg® Yne1 (MgPe) v ‘mqae))

Using the finite element method, vector {F} will be given:

{r} =/]A[N.]T {P} a dxdé (5.17)
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where the pressure vector is determined by:

0 )

{
{P} = ipt | (5.18)
. .

Finally, substituting (5.14) and (5.18) in (5.17) and integrating on x
and 6, we obtain the intertial Coriolis and centrifugal forces of the liquid
how as follows:

-1.7 -1
= |A S A
[mc] = [a 71" [sgl [2] 5.10)
[ce] = (27117 [p.] [a7']
and
- -1
[k.] = [a T [eg] [A ]
where
2
Sf(k,q) = —ﬁéiy;rqlkq (K,ai) + wﬁeyesq (K,ae)

De(k,q) = 2Aqn [-éiUiyirquq (L,a;) + 5eUeYesq (K,ae)](S.ZO)
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2

2 _2 —
Gf(k,q) = Aqw [—6iU.r (K,ai) + deUesquq (K,ae)]

i quq

In the equations, the non-dimensional terms are determined by:

N AIARRN A

= U (5.21)
0_19(1,1,1)/)_1{51 ;o Uy = X3 | 0 = ‘

o
i

<
!
i
e
}_h
£
i

=l
i

: o= a. r Y = a
o Uxe/é ro Yy l/él _ e e/{l
0

where

ry, ty and p; are, respectively, radius, thickness density of the first

element of the shell. The element P(1,1,1) is the first term in the matrix
of elasticity [P].

1 [e‘“k
[

+ Aq)[/a

qu(z,a) L/a for A, * A =0 k,g = 1,2,...8

and 2 is the element length.
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Matrices [Mc], [Cc¢] and [K¢] are, respectively, the global matrices
mass, stiffness and for the apparent damping of the entire fluid column,
which are obtained by superposition of the mass [mf}, stiffness [kf] and
damping [Cf] matrices for each element in the fluid column,

Note: The preceding developement, given for the case of n = 1, is still
applicable for n = 0 with the two following changes:

Matrices [Sc], [De] and [G¢] will be re-multiplied by two and k,q =
1,2,..4. Matrix [A] will be given by [Ag].
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BARON MICHALOPOULOS
n & & PRESENT
BLEICH MUSTER METHOD
0 3540 3384 3398
1 1920 1775 1790

TABLE 1 - Natural frequencies (Hz) of a uniform cylindrical shell simply
supported at both ends, calculated by various theories (m = 1)

Shell

Length ¢ 18.54 in.

Radius (average) : 4.08 in,

Thickness : 0.047 in,

Young's modulus : 3 x 107 1b/in2

Poisson‘s ratio : 0.3

Density of material : 0.7324 x 10-3 1b - sec?/po*
Boundary conditions : simply supported shell

V=W=01tox=0and x =L
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n = 1; clamped-free

TOTTENHAM*
m & SANKARAN** PRESENT
SHIMIZU [30] METHOD
[29]
1 2033 2080 2043
2 5387 5450 5557
3 6957 7000 7289
4 7532 7740 8163

* Progression method
** Integral method

TABLE 2 - Natural frequencies (Hz) of a clamped-free cylindrical shell
calculated by various numerical methods (n = 1),

Shell
r/t = 100 : v=0.3 g = 980 cm/sec?
r/L = 0.448 p=7.84 x 103 kg/cm3 r = 10,16 cm
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r/t Baron &
20 50 100 200 300 Bleich
L/r all values of r/t
_mpt 0.8581] 0.8482) 0.8501; 0.8626; 0.8808 0.8448
full 1.0 { 0.6915) 0.5647§ 0.4621} 0.3596| 0.3018 -
empty 0.7151% 0.7153} 0.7229§ 0.7446} 0.7635 0.7117
full 1.5 ¢ 0.5358) 0.4214| 0.3320{ 0.2485| 0.2050 -
empty 0.5746¢ 0.5770f 0.5849) 0.5985| 0.6055 0.5728
full 2.0 } 0.4180} 0.3219} 0.2491§ 0.1840) 0.1519 —
empty 0.4605y 0.4632§ 0.4688) 0.4748} 0.4771 0.4591
full 2.5 { 0.3314| 0.2525| 0.1936{ 0.1426{ 0.1178 -
empty 0.3738) 0.3761} 0.3794f 0.3819| 0.3828 0.3727
full 3.0 | 0.2674} 0.2025{ 0.15464 0.1138} 0.0941 -
empty 0.3082y 0.3100}{ 0.3117§ 0.3127} 0.3132 0.3072
full 3.5 § 0.2195f{ 0.1665{ 0.1260| 0.0927{ 0.0767 —
empty 0.2577) 0.2590f 0.2598| 0.2604{ 0.2606 0.2569
full 4.0 + 0,1828% 0,13731 00,1044t 0,07671 0,0635 -
empty 0.18703 0.1875} 0.1877} 0.1879} 0,1879 0.1864
full 5.0 } 0.1315f 0.0983} 0.0745{ 0.0548] 0.0464 -
empty 0.1411) 0.1412§ 0.1413] 0.1414f 0.1414 0.1406
full 6.0 § 0.0986} 0.0734} 0.0556} 0.0408{ 0.0337 —
empty 0.1098; 0.1098} 0.1099§ 0.1099} 0.1099 0.1096
full 7.0 { 0.0762} 0.05667 0.0428} 0.0314] 0.0260 -
empty 0.0876} 0.0876{ 0.0876{ 0.0877{ 0.0877 0.0874
full 8.0 | 0.0605} 0.0448} 0.0339} 0.0248} 0.0205 -
empty 0.0714} 0.0714} 0.0714} 0.0714} 0.0714 0.0713
full 9.0 | 0.0491| 0.0363}{ 0.0274{ 0.0201{ 0.0166 —
empty 0.0592] 0.0592} 0.0592| 0.0592| 0.0592 0.0592
full 10.0 | 0.0406} 0.0300§ 0.0226§ 0.0166} 0.0137 —

TABLE 3 Vibration parameter (@) of a cylindrical shell simply supported at
both ends and filled with Tiquid (n = 1), m = 1, v = 03, Py

0.935 x 10-* 1b - sec2/P¥ and @ = wr /p(1 - v')/E)



93

r/t
20 50 100 200
L/r
empty 0.2796¢ 0.27961 0.2796) 0.2796
full 15 § 0.1901} 0.1398} 0.1052} 0.0770
empty 0.1610% 0.16101 0.1610% 0.1610
full 20 { 0.1090( 0.0801| 0.0602{ 0.0440
empty 0.1043| 0.1043| 0.1043f 0.1043
full 25 } 0.0704} 0.0516% 0.0338% 0.,0284
empty 0.07293 0.0729} 0.0729% 0.0729
full 30 { 0.0492| 0.0360f 0.0270{ 0.0198
empty 0.0538( 0.0537( 0.0537| 0.0537
full 35 § 0.0363} 0.0265% 0.0199% 0.0146
empty 0.0414] 0.0413} 0.0413% 0.0413
full 40 { 0.0279¢{ 0.0203| 0.0153{ 0.0112
empty 0.0329( 0.0327¢1 0.0327( 0.0327
fuiil 45 3 §.0222y 0.0161y 0.0121iy 0.0088
empty 0.0268) 0.0265) 0.0265% 0.0265
full 50 ¢ 0.01801 0.0130f 0.0098! 0.0072

TABLE 3 Vibration parameter (@ x 10) of a cylindrical shell simply
supported at both ends and filled with liquid (n = 1, m = 1,

v= 0.3, py = 0.935 x 10°% 1b - sec?/P4 and 0 = w vp(1-v")/E)
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r/t
20 50 100 200 300

L/r
empty 0.09561 0.9585{ 0.9419| 0.9543] 0.9790
full 1.0 § 0.99721 0.7719} 0.6631} 0.5470} 0.5420
empty 0.9331} 0.9075{ 0.9223} 0.9763}{ 0.0219
full 1.5 § 0.7938f 0.6573| 0.5497| 0.4243| 0.3479
empty 0.8611| 0.86471 0.9018| 0.9636| 0.9848
full 2.0 | 0.6934} 0.5688) 0.0480} 0.3417} 0.2802
empty 0.7937) 0.8120{ 0.8548} 0.8928}{ 0.9040
full 2.5 { 0.6113| 0.4898| 0.3864| 0.2855| 0.2351
empty 0.7226f 0.7464{ 0.7788{ 0.8000{ 0.8091
full 3.0 } 0.5394f 0.4252{ 0,3305| 0.2436} 0.2011
empty 0.6512} 0.6735} 0.6936| 0.7061} 0.7123
full 3.5 | 0.4766] 0.3712{ 0.2860| 0.2106{ 0.1705
empty 0.5838f 0.6015{ 0.6133| 0.6209} 0.6246
full 4.0 | 0.4224} 0.32601 0.2499} 0.1840} 0.1520
empty 0.4687} 0.4778} 0.4821§ 0.4850| 0.4864
full 5.0 { 0.3356| 0.2557| 0.1951| 0.1435| 0.1187
0.3802| 0.3845| 0.3863| 0.3876] 0.3881
6.0 | 0.2709} 0.2049} 0.1559) 0.1147! 0.0949
0.3128) 0.3148} 0.3157} 0.3163} 0.3165
7.0 1 0.2221} 0.1672] 0.1270! 0.0934{ 0.0774
0.2610} 0.2620| 0.2625| 0.2628] 0.2629
8.0 | 0.1847{ 0.1385] 0.1052} 0.0774| 0.0641
0.2206{ 0.2211y 0.2214] 0.2216} 0.2216
9.0 | 0.15567 0.1164{ 0.0883] 0.0649| 0.0537
0.1886]| 0.1889} 0.1890} 0.1891] 0.1892
10.0 } 0.1326} 0.0990{ 0.0751{ 0.0552 0.0456

TABLE 3a Vibration parameter (Q) of a ¢
both ends and filled with 1§

ylindrical shell simply supported at
quid ( n =

1,m=2, V=O.3, p£=

0.935 x 10=% Tb - sec?/P* and @ = wr v p(1 - v2)/E)
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r/t
20 100 200
L/r
empty 0.9819; 0.9821; 0.9823; 0.9824
full 15 { 0.6806¢{ 0.5047} 0.3814% 0.2798
empty 0.59345 0.5934} 0.5934} 0.5934
full 20 { 0.4075y 0.3008f 0.2269| 0.1662
empty 0.3945; 0.3944} 0.3944) 0.3944
full 25 § 0.2692) 0.1982% 0.1493} 0.1093
empty 0.2801} 0.2800} 0.2800y 0.2800
full 30 § 0.1904f 0,1400{ 0.1053} 0.0771
empty 0.2087} 0.2086) 0.2086| 0.2086
full 35 } 0.1415} 0.1039} 0.0782; 0.0572
empty 0.1614 0.1612§ 0.1612} 0.1612
full 40 { 0.1092| 0.0801{ 0.0602} 0.0440
empty 0.1284} 0.1282| 0.1282| 0.1282
full 45 § 0.08685 0.0636; 0.0476; 0.0349
empty 0.10463 0.1043} 0.1043} 0.1043
full 50 y 0.0706f 0.0517] 0.0388| 0.0284
TABLE 3a Vibration parameter (@ x 10) of a cylindrical shell simply

supported at both ends and filled with liquid (n = 1, m = 2, Py =
2
0.935 x 10=* 1b = secz/Pg and @ = wr v p(l = v )é)
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r/t
20 50 100 200 300
L/r
empty 1.6030; 1.0781{ 0.9850} 0.9850; 1.0000
full 1.0 § 1.5829} 0.9433| 0.7663} 0.5917{ 0.5817
empty 1.0973% 0.9655} 0.9658) 1.0216% 1.0685
full 1.5 ¢ 0.9986f 0.7732{ 0.6584( 0.5169} 0.4216
empty 0.9701) 0.93964 0.9818{ 1.0532} 1.0636
full 2.0 | 0.8415} 0.6942} 0.5786} 0.4359} 0.3556
empty 0.9139§ 0.9281% 0.9916% 1.0320} 1.0346
full 2.5 { 0.7608) 0.6310f 0.5122{ 0.3806] 0.3125
empty 0.8731] 0.9137} 0.9713{ 0.9926} 1.0008
full 3.0 + 0.6996} 0.5745} 0.4570} 0.33811 0.2785
empty 0.8338} 0.8856% 0.92705 0.9464} 0.9591
full 3.5 | 0.6458] 0.5233) 0.4104{ 0.3030| 0.2499
empty 0.7917) 0.8420{ 0.8709{ 0.8984} 0,9033
full 4.0 } 0.59641 0,47681 0,37031 0,2730) 00,2253
empty 0.6985; 0.7311} 0.7468) 0.7609} 0.7668

full 5.0 § 0.5082| 0.3971| 0.3050{ 0.2245{ 0.1855

empty 0.6040{ 0.6218] 0.6304| 0.6370| 0.6401
full 6.0 § 0.4333} 0.3333) 0.2547| 0.1874| 0.1550

empty 0.5192} 0.5289} 0.5335| 0.5368} 0.5383
full 7.0 1 0.3707; 0.28237 0.2153{ 0.1584{ 0,1311

empty 0.4476) 0.4530f 0.4556| 0.4574] 0,4582
full 8.0 | 0.3190y 0.2416| 0.1840{ 0.1354{ 0.1121

empty 0.3883} 0.3915f 0.3931§ 0.3941} 0.3945
full 9.0 | 0.2764| 0.2086f 0.1587| 0.1168| 0.0967

empty 0.3393] 0.3413] 0.3422] 0.3429] 0.3431
full 110.0 } 0.2412} 0.1815} 0.1381} 0.1016{ 0.0841

TABLE 3b Vibration parameter (@) of a cylindrical shell simply supported at
both ends and filled with liquid (n = 1, m = 3, v = 0.3, py =
0.935 x 10-% 1b ~ sec?/P¥ and 9 = wr v p(1 - v*)/E)
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r/t
20 50 100 200
L/r
empty 1.9058) 1.5085; 1.9048) 1.9106
full 15 | 1.3411§ 1.0017} 0.7597% 0.5585
empty 1.20487 1.2052} 1.2055} 1.2057
full 20 t 0.8390| 0.6234f 0.4717| 0.3463
empty 0.8240f 0.8239| 0.8240| 0.8240
full 25 1 0.5691} 0.4213} 0.3182} 0.2333
empty 0.5961} 0.5959{ 0.5959} 0.5959
full 30 { 0.4093} 0.3021} 0.2279| 0.1670
empty 0.4499; 0.4496| 0.4496) 0.4496
full 35 { 0.3076} 0.2266§ 0.1707} 0.1250
empty 0.3509y 0.3506{ 0.3506| 0.3505
full 40 ¢ 0.2391] 0.1759| 0.1324} 0.0969
empty 0.2810) 0.2807{ 0.2806{ 0.2806
full 45 7 0.1910; 0.1403; 0.10567 0.0773
empty 0.2299f 0.2295} 0.2295} 0.2295
full 50 § 0.1560| 0.1145} 0.0861| 0.0630
TABLE 3b Vibration parameter (@ x 10) of a cylindrical shell simply

supported at both ends and filled with

0.3, py = 0.935 x 10-* 1b - sec2/Pg and

liquid (n = 1, m = 3, v =
2 |
or v p(l = v7)/E)
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r/t
20 50 100 200 300
L/r
empty 2.4855; 1,3232) 1.0620} 1.0020) 1.0133
full 1.0 § 2.7245| 1.2442} 0.8805| 0.6339} 0.5919
empty 1.3952¢ 1.0358% 0.9942% 1.0387| 1.0802
full 1.5 1.3392| 0.8791{ 0.7278} 0.5706{ 0.4628
empty 1.1018; 0.9825| 1.0125§ 1.0662| 1.0670
full 2.0 { 1.0020y 0.7768} 0.6519{ 0.4932} 0.4006
empty 0.99863y 0.9761) 1.0376} 1.0624} 1.0676
full 2.5 1 0.8740f 0.7184{ 0.5934{ 0.4431] 0.3627
empty 0.9513| 0.9808f 1.0374{ 1.0490{ 1.0533
full 3.0 { 0.8046} 0.6717] 0.7402{ 0.4051} 0.3329
empty 0.9226¢ 0.9714} 0.9797% 0.9819} 1.0386
full 3.5 ¢ 0.7551| 0.6293{ 0.5029| 0.3728| 0.3068
empty 0.8994| 0.9116f 0.9165| 0.9196| 1.0194
full 4.0 + 0,71354 0,5890% 0.45511 0.34400 §.2835
empty 0.8480} 0.8996y 0.9222} 0.9450} 0.9576
full 5.0 { 0.6389| 0.5140{ 0.3994| 0.2947} 0.2433
empty 0.7793} 0.8146/ 0.8341{ 0.8521| 0.8615

full 6.0 | 0.5692| 0.4478y 0.3449| 0.2542} 0.2161

empty 0.7011}y 0.7245{ 0.7349}{ 0.7360}| 0.7544
full 7.0 1 0.5047| 0.3910{ 0.2998| 0.2208{ 0.1827

empty 0.6246} 0.6400) 0.6483| 0.6547| 0.6576
full 8.0 | 0.4470} 0.3429} 0.2622} 0.1931} 0.1598

empty 0.5552} 0.5623} 0.5705} 0.5731} 0.5759
full 9.0 { 0.3965| 0.3023| 0.2308| 0.1700{ 0.1407

empty 0.4946| 0.5012| 0.5045| 0.5068| 0.5078
full 110.0 § 0.3529} 0.2679{ 0.2043} 0.1505| 0.1246

TABLE 3c Vibration parameter (Q) of a cylindrical shel] simply supported at
both ends and filled with liquid (n=1,m=4, v=0.3, Py =

0.935 x 10-% Tb - sec2/P% and @ = wr / p(1 - v2)/F)
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r/t
20 50 100 200
L/r
empty 2.94891 2,96021 2,9654] 2,0685
full 15§ 2.0945} 1.57474 1.1977% 0.8817
empty 1.9324) 1.9351} 1.9364} 1.9372
full 20 { 1.3611{ 1.0175{ 0.7721}| 0.5678
empty 1.3545; 1.3551] 1.3555| 1,3558
full 25 1 0.9461}) 0.7042} 0.5332§ 0.3917
empty 0.9972) 0.9971}y 0.9973§ 0.9974
full 30 f 0.6916| 0.5130f 0.3878{0.28463
empty 0.7622] 0.7619| 0.7619} 0.7619
full 35 § 0.5257} 0.3888} 0.29367 0.2153
empty 0.6000y 0.5996f 0.5996% 0.5996
full 40 ; 0.4120) 0.3041{ 0.2294} 0.1681
empty 0.4838| 0.4834| 0.4833| 0.4833
full 45 | 0.3311} 0.24401 0.18391 0,1347
empty 0.3980§ 0.3975) 0.3974} 0.3974
full 50 | 0.2716| 0.1998] 0.1505| 0.1102
TABLE 3c Vibration parameter (@) x 10) of a cylindrical shell simply

ted at both ends and filled with Tiquid (n = 1, m = 4, v

V<
=
w T T
=
o
=
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r/t
20 50 100 200 300
L/r
empty 3.7146} 1,72651 1.7264]1 1.2250) 1.1233
full 1.0 } 4.7684} 1.7700{ 1.0570} 0.7577| 0.6250
empty 1.8645) 1.1544} 1.0928} 1.0676) 1.0815
full 1.5 | 1.8981 1.0264{ 0.8707| 0.6087| 0.4895
empty 1.3124} 1.1101] 1.0583| 1.0739| 1.0729
full 2.0 | 1.2415} 0.8547{ 0.7048| 0.5314| 0.4292
empty 1.1107§ 1.0115% 1.0567{ 1.0654} 1.0786
full 2.5 { 1,0077{ 0.7841{ 0.6500{ 0.4860| 0.3963
empty 1.0261{ 1.0166] 1.0559| 1.0617| 1.0606
full 3.0 | 0.9012} 0.7402% 0.6081} 0.4534} 0.3715
empty 0.9864; 1.0222} 1.04801 1.0600} 1.0654
full 3.5 1 0.8408] 0.7049{ 0.5723{ 0.4258| 0.3496
empty 0.9650| 1.0169| 1.0354] 1.0494| 1.0567
full 4.0 + 0.7993%F 0.6719% 0,5396} 0,4006! 10,3295
empty 0.9355{ 0.9817f 1.0033} 1.0220{ 1.0321
full 5.0  0.7355| 0.6078{ 0.4796| 0.3551] 0.2929
empty 0.8950( 0.9339( 0.9573| 0.9795! 0.9916
full 6.0 | 0.6768) 0.5465{ 0.4262} 0.3152| 0.2605
empty 0.8386} 0.8722) 0.8948} 0.9157} 0.9269
full 7.0 { 0.6184) 0.4899{ 0.3793| 0.2802{ 0.2319
empty 0.7739} 0.8015{ 0.8196] 0.0853] 0.8433
full 8.0 | 0.5620§ 0.4393} 0.3385{ 0.2499| 0.2068
empty 0.7076) 0.7287} 0.7416} 0.7519} 0.7569
full 9.0 ; 0.50961 0.3945{ 0.3030| 0.2236{ 0.1851
empty 0.6440} 0.6595{ 0.6683] 0.6749| 0.6780
full 10.0 ; 0.4619} 0.3552} 0.2722} 0.2000} 0.1663

TABLE 3d Vibration parameter (@) of a cylindrical shell simply supported at
both ends and filled with liquid (n =

0.935 x 10-% 1b - sec2/P8 and Q = wr v p(1 - v2)/é

1, m=5, v=0.3, p =
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r/t
20 50 100 200
L/r
empty 4.0712) 4.1033) 4.1181 4.1279
full 15} 2.9075) 2.2016} 1.67931 1.2381
empty 2.7485y 2.7573) 2.7612y 2.7636
full 20 § 1.9523| 1.4683| 1.1173§ 0.8230
empty 1.9661] 1.9689{ 1.9702| 1.9710
full 25 | 1.3863} 1.0375% 0.7878% 0.5796
empty 1.4692} 1.4700f 1.4705} 1.4709
full 30 { 1.0286( 0.7666( 0.5811| 0.4270
empty 1.1356( 1.1357| 1.1359{ 1.1360
full 35 | 0.7900} 0.5870f 0.4442} 0.3261
empty 0.9018} 0.9014% 0.9015} 0.9016
full 40 | 0.6241f 0.4624] 0.3495| 0.2564
empty 0.7321f{ 0.7315f 0.7315{ 0.7315
full 45  0,50451 0.3730% 0.28161 0.2065
empty 0.6053} 0.6047{ 0.6046} 0.6046
full 50 { 0.4157{ 0.3068] 0.2314{ 0.1696

TABLE 3d Vibration parameter (@ x 10) of a cylindrical shell simply
supported at both ends and filled with liquid (n = 1, m =, v = 0.3,

g = 0.935 x 10-% Tb - sec?/P% and 0 = wr ¥ p(1 - v2)/E)
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r/t
10 20 50 100 200 300
L/r

empty 16.705 y10.6850,10.675 §10.673 10.671 110.670

full 10 } 8.7322% 7.4361} 5.5102% 4,1637} 3.0542| 2.5259
empty 5.5648) 5.55361 5.5478% 5.5457 5.54451 5.5440
full 15 | 4.4988) 3.8127] 2.8097{ 2.1171| 1.5505; 1.2815
empty 3.35431 3.3470¢1 3.34361 3.3425] 3.3420{ 3.3415
full 20 § 2.7000) 2.2821% 1.6773} 1.2622% 0.9236| 0.7632
empty 2.2226) 2.2196) 2.2174%} 2.2167} 2.2163f 2.2162
full 25 | 1.7868F 1.5076} 1.1063| 0.8319} 0.6084{ 0.5027
empty 1.5801) 1.5735{ 1.5717) 1.5712}1 1.5710| 1.5721
full 30 1.2665% 1.0662) 0.78161 0.5874] 0.4295{ 0.3548
empty 1.1795¢ 1.1712) 1.1696} 1.,1692} 1.1691} 1.1690
full 35 1 0.9444}F 0.79231 0.5803] 0.4361| 0.3188( 0.2633
empty 0.9161f 0.9047} 0,9031{ 0.9030§ 0.9027{ 0.9027
full 40 5 00,7330 0.6115% 0.4475; 00,3361 0.2457% 0.2029
empty 0.7355y 0.7197 0.7178% 0.7175) 0.7175% 0.7174
full 45 | 0.5882( 0.4860( 0.3553) 0.2668] 0.1950] 0.1611
empty 0.6086) 0.58621 0.5839{ 0.5837| 0.5836! 0.5836
full 5 | 0.4865) 0.3957] 0.2881} 0.2169§ 0.1585} 0.1309

TABLE 4a Vibration parameter (@ x 102) of a clamped-free cylindrical shell
filled with Tiquid (n = 1, m = 2, v = 0.3 pg = 0.935 x 10=% 1b -

sec2/Pg and @ = wr v p(1 - vz)/é)
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r/t
10 20 50 100 200 300
L/r

empty 24,040 124,081 {24,118 124,140 {24,156 124,183
full 10 119.849 |17.072 {12.780 § 9.701 | 7.1349} 5.9061
empty 13.399 {13.383 {13.378 {13.378 {13.378 {13.378
full 15 {10.945 { 9.3376] 6.9333} 5.2439| 3.8490} 3,1840
empty 8.4535| 8.4387| 8.4327| 8.4310| 8.4302| 8.4298
full 20 | 6.8613f 5.8301} 4.3097} 3,2525% 2.3843| 1.9714
empty 5.7750% 5.7628} 5.7577} 5.7565y 5.7556% 5,.75563
full 25 t 4.6673] 3,9552¢ 2.9154( 2.1972| 1.6093{ 1.3303
empty 4,1752) 4.1642| 4.1603| 4.1592| 4,1587) 4.1584
full 30 | 3.3643) 2.8450% 2.0931| 1.5760f 1.1536} 0.9534
empty 3.15064 3.1398} 3.1364} 3.1355| 3.1351} 3.1350
full 35 | 2.5333) 2.1383| 1.5709{ 1.1820{ 0.8649| 0.7147
empty 2.45841 2.4470) 2.4440| 2.4433| 2.4430{ 2.4430
full a0 '} 1.97381 1.66271 1,22011 0,0176! 0.67131 0,.5545
empty 1.9711) 1.9583) 1.9533} 1.9550) 1.9545f 1.9544
full 45 ¢ 1.5807| 1.3283) 0.9739{ 0.7322( 0.5355| 0.4424
empty 1.6165{ 1.6015{ 1.6080} 1.5980| 1.5977! 1.5976
full 50 | 1.2952| 1.0849} 0.7947} 0.5973} 0.4368| 0.3608

TABLE 4b Vibration parameter (@ x 102) of a clamped-free cylindrical shell

filled with liquid (n

=1$m=

1b - sec?/P* and @ = wr 7 p(1 - v’)/E)

3, v =

0.3, py = 0.935 x 10-*%
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r/t
10 20 50 100 200 300
L/r

empty 38,212 {38,475 138,711 :38.831 {38,012 138,948
full 10 131.903 |27.776 121.025 {16.030 111.811 | 9.7823
empty 22.626 |22.644 |32.673 122.689 122.700 {22.704
full 15 118.660 {16.042 {12.008 { 9.1170f 6.7066} 5.5519
mpty 14.819 14.807 14.807 114.808 {14.810 {14.811
full 20 {12.129 110.366 § 7.7127% 5.8390% 4.2890% 3.5489
empty 10.395 {10.378 |10.374 §10.373 |10.372 {10.372

full 25 { 8.4619)| 7.2044f 5.3388| 4.0344} 2.9600f 2.4480

empty 7.65901 7.6420) 7.6401; 7.6353| 7.6347| 7.6345
full 30 § 6.2092) 5.2718} 3.8954} 2.9400} 2.1547} 1.7816
empty 5.8580} 5.8413} 5.8359} 5.8347} 5.8342} 5.8340
full 35 | 4.7347( 4.0107) 2.9572| 2.2292| 1.6330( 1.3500
empty 4.6152) 4.5986| 4.5936( 4.5923| 4.5918) 4.5918
full 40 1 3.7217% 3.1462% 2.,3159% 1,7445% 1,27731 1,0658
empty 3.7253) 3.7080¢ 3.7030} 3.7021} 3.7016) 3.7015
full 45 ( 2.9986| 2.5299| 1.8598| 1.4000{ 1.0248| 0.8468
empty 3.06801 3.0496| 3.0447( 3.0438) 3.0435( 3.0433
full 50 | 2.4660y 2.0762) 1.5245} 1.1471| 0.8394§ 0.6930

TABLE 4c Vibration parameter (Q x 102) of a clamped-free cylindrical shell
filled with liquid (n = 1, m =4, v = 0.3, py = 0.935 x 10-*

b - sec2/Pg and @ = wr v p(1 - v2)/é)
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r/t
10 20 50 100 200 300
L/r
empty 52.313 {53.012 {53,669 {54,012 {54,252 54,355
full 10 |44.032 138.809 {29.731 |22.764 [16.800 {13.916
empty 32.801 132.936 |33.068 {33.131 {33.174 [33.192
full 15 {27.235 {23.600 {17.807 {13.567 { 9.9978] 8.2817
mpty 22.118 §22.137 (22.166 {22.180 §22.190 §22.194
full 20 |18.230 15.677 {11.7417} 8.9187% 6.5828}| 5.4338
empty 15.843 }15.833 115.837 {15.840 {15.843 {15.843
full 25 112.981 {11.108 | 8.2784| 6.2734} 4.6102{ 3.8152
empty 11.860 §11.840 {11.838 §11.838 {11.838 §11.838
full 30 | 9.6719} 8.24701 6.1230f 4.6319% 3.4003{ 2.8130
empty 9.1822;y 9.1007) 9.1547 9.1541} 9.1541% 9.1541
full 35 ¢ 7.4607| 6.3431} 4.6964| 3.5477) 2.6022| 2.1521
empty 7.3024) 7.2795) 7.2728} 7.2714% 7.2714| 7.2714
full 40 1 5.9155y 5.0174y 3.7066y 2.0503) 2.0503y 1.6953
empty 5.9364% 5.91274 5.9059% 5.9043| 5.9043} 5.9083
full 45 ¢ 4,7976( 4.0603( 2.2942] 1.6540| 1.6540| 1.3674
empty 4,9157) 4.8910) 4.8840| 4.8824{ 4.8824( 4.8822
full 50 { 3.96511 3.34881 2.4657} 1.3606} 1.3606% 1.1246

TABLE 4d Vibration parameter (Q x 102) of a clamped-free cylindrical shell
5, v = 0.3, Py

filled with liquid (n

1, m =

b - sec2/Pg and @ = wr v p(1 - vz)/é)

= 0.935 x 10-*
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r/t Baron and Bleich
20 200 all values of r/t
L/r
1 0.9647 0.9614 0,9489
2 0.9333 0.9331 0.9294
4 0.4666 0.4665 0.4646
6 0.3111 0.3110 0.3097
8 0.2333 0.2332 0.2323
9 0.2074 0.2074 0.2065
10 0.1866 0.1866 0,1859

TABLE 5 Vibration parameter (Q) of a cylindrical shell simply supported at
e
both ends (n =0, m=1, v=0.3and Q= v p(l = v )/E)
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n = 1; simply supported - supported

NIORDSON PRESENT
m 7 METHOD CONDITION
9.956 9.861 empty shell
1 4,504 4,549 shell filled
with Tiquid
37.504 37.290 empty shell
2 17.257 17.46 shell filled
with Tiquid
77.271 77.900 empty shell
3 36.361 37.137 shell filled
with Tiquid
123.693 128.120 empty shell
4 59,594 62.115 shell filled
with liquid

TABLE 6 Free vibration (Hz) of a cylindrical shell simply supported at bot

ends and filled with Tiquid [in list of Tables].

Shell
r/t =60 V=03 E-=29.5x 106 1b/in2 r = 35.43 in.
i/r = 24,98 p= 0,734 x 10-3% ib - sec?/int Py = 0.935 x 10-%

1b - sec?/in*
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APPENDIX C

FIGURES
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Direction of resultant constraints

Direction of resultant moments

FIGURE 1 - DIFFERENTIAL ELEMENTS FOR A THIN SHELL
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FIGURE 4 - SHELL COMPOSED OF BY AN ODD NUMBER (2v + 1)
OF ANISOTROPIC LAYERS
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INPUT

NO. OF CIRCUMFERENTIAL MODES, n = 0,1

CONSTRUCT MASS MATRIX FOR EACH ELEMENT

CONSTRUCT STIFFNESS MATRIX FOR EACH ELEMENT
N

NO
LIQUID

YES

CALCULATE MASS MATRIX OF EACH ELEMENT IN FLUID COLUMN

ASSEMBLE SYSTEM STIFFNESS MATRICES

ASSEMBLE SYSTEM MASS MATRICES

OVERLAY BOUNDARY CONDITIONS

CALCULATE SYSTEM EIGEN VALUES AND EIGEN VECTORS

PRINT FINAL RESULTANTS

FIGURE 6 - Slow chart of the principle program
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FIGURE 7 - NORMALIZED NATURAL EIGEN VECTORS OF A CYLINDRICAL
SHELL SIMPLY SUPPORTED AT BOTH ENDS
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FIGURE 8a - CONVERGENCE TEST OF A CYLINDRICAL SHELL
SIMPLY SUPPORTED AT BOTH ENDS FOR

n=0andn=1

(N = number of finite elements)
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FIGURE 8b - CONVERGENCE TEST OF A CYLINDRICAL SHELL SIMPLY
SUPPORTED AT BOTH ENDS FOR n = 0 and n = 1
(N = number of finite elements)
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r/t =200

-

10

m=1

9 ’ .
101 7 L 6 10 20 40 60 100 U
FIGURE 9 - VARIATION OF VIBRATION PARAMETER (Q) IN CONJECTION

WITH L/r OF A CYLINDRICAL SHELL SIMPLY SUPPORTED

SR
AT BOTH ENDS (n = 1), v=0.3 and Q@ = wr v p(1l - v )/E)
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Simply supported

0.8

e Clamped-free

0.7

-L/r=2
06 L

0.5

0.4

0.3

0.2,

0-1

0

FIGURE 10 - VARIATION OF VIBRATION PARAMETER (@) IN CONJUNCTION
WITH r/t OF A CYLINDRICAL SHELL (n =1, m =1, v = 0.3

and @ = wr v p(1 - vz)/é)
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S.S t
5 dominant radial motion.
ememwe = Tadial and circumferential
3 motion =@ identical
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4 E-L
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b E-L (Clamped-Free) \\ \\
S-5 (Simply Supported) \\ \\
\\ \
2 \ \
\ \
\\ \
3 \ \\
10 . ; .\\ . A £
2 57 10 20 40 60 100 L/r

FIGURE 11 - EFFECT OF L/r ON EIGEN VALUES AND EIGEN VECTORS
FOR DIFFERENT BOUNDARY CONDITION (n = 1, m = 1,

—_—
r/t =100 and @ = wr v p(l - v )/E)
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0 r/e 20
radial motion
\4
10
61 circumferential motion
b |

/
/

1 2 4 6 810 20 40 60 100L/r
FIGURE 12 - VARIATION OF VIBRATION PARAMETER (©) IN CONJUNCTION WITH
L/r OF A CYLINDRICAL SHELL SIMPLY SUPPORTED AT BOTH ENDS

—
(n=0,m=1, v=03and 9= w v p(l - v )/E)
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b axi0”
S-S (Simply Supported)
E~-L (Clamped-Free)
04 N —— (empty)
e e (with liquid)
031
0.2 S.S
\\\{\
~.
\.\e
0.1 — |
E.L B —
~—— |
\-MMN
0 50 100 150 200 250 I/t

FIGURE 13 - EFFECT OF THE LIQUID ON VIBRATION PARAMETER (@)
(n=1,m=1, v =0.3, Py = 0.935 x 10-% 1b - sec?2/in*

L/r =50 and @ = wr v p(l - vz)/é)
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o

o

present method

experimental

32

22

0 02 04 06

1b = sec /in

08 b/L
FIGURE 14 - COMPARISON OF PRESENT METHOD WITH EXPERIMENTAL
VASLUES [23] FOR A CYLINDRICAL SHELL PARTIALLY FILLED
WITH LIQgID £n =1, v= 0.3 and Py = 0.935 x 10-*
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FIGURE 15 - VARIATION IN FREE VIBRATION OF A CYLINDRICAL SHELL
PARTIALLY FILLED WITH LIQUID AND SIMPLY SUPPORTED

2 b

AT BOTH ENDS (pk = 0.935 x 10=" 1b - sec /in
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FIGURE 16 - NORMALIZED EIGEN VECTORS OF A SHELL SIMPLY

SUPPORTED AT BOTH ENDS AND PARTIALLY FILLED
WITH LIQUID







