
The Importance of Decoupling Recurrent and Disruption Risks in a Supply Chain. 
Sunil Chopra, Gilles Reinhardt, Usha Mohan 

 
 
 
ABSTRACT 
 

This paper focuses on the importance of decoupling recurrent supply risk and disruption 

risk when planning appropriate mitigation strategies. We show that bundling the two 

uncertainties leads a manager to underutilize a reliable source while over utilizing a 

cheaper but less reliable supplier. As in Dada, Petruzzi and Schwarz [6], we show that 

increasing quantity from a cheaper but less reliable source is an effective risk mitigation 

strategy if most of the supply risk growth comes from an increase in recurrent 

uncertainty. In contrast, we show that a firm should order more from a reliable source and 

less from a cheaper but less reliable source if most of the supply risk growth comes from 

an increase in disruption probability.
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1. INTRODUCTION 

 

Chopra and Sodhi [5] discuss several supply risks that a manager must account for when 

planning suitable mitigation strategies. In this paper we focus on two of the risks 

categorized by them - disruptions and delays. Delays can be viewed as recurrent risks, 

whereas disruptions correspond to the interruption of supply. Our goal is to highlight the 

importance of recognizing the two risks as being distinct. We show that bundling the two 

risks can lead to an over utilization of cheaper suppliers and an under utilization of 

reliable suppliers. We also show that the mitigation strategies adopted are different 

depending upon whether most of the supply risk is recurrent or results from disruption. 

A classic example of disruption is the shortage of flu vaccine in Fall 2004 that 

occurred in the United States after 46 million doses produced by Chiron, one of only two 

suppliers, were condemned because of bacterial contamination [12]. This shortage led to 

rationing in most states and severe price gouging in some cases. The lack of a reliable 

backup source of supply severely affected the nation's vaccine supply. In contrast, 

Canada had no such problem. In spite of a much smaller population base, Canada relies 

on more suppliers which make it less vulnerable to disruption from any one supplier. 

Another example is the March 2000 fire at the Philips microchip plant in Albuquerque, 

N.M. [19]. That plant supplied chips to both Nokia and Ericsson. Nokia learned of the 

impending chip shortage in just three days and took advantage of their multi-tiered 

supplier strategy to obtain chips from other sources. Ericsson, however, could not avoid a 

production shutdown because it was sourcing only from that plant. As a result, the 

company suffered $400 million in lost sales. 
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In both examples, one party benefited from mitigating disruption risk by having 

additional suppliers. In this paper, we offer a possible explanation for the different 

actions taken by the two parties. We show that bundling of disruption and recurrent risk 

results in situations where the reliable supplier is not used when it should have been. In 

general, bundling disruption and recurrent supply uncertainty results in an over utilization 

of the cheaper supplier and an under utilization of the reliable supplier.  

We also show that the source of supply risk affects the relative use of cheaper 

suppliers and more reliable suppliers. Similar to the conclusions of Dada, Petruzzi, and 

Schwarz [6], we show that increased ordering from cheaper suppliers is an effective 

mitigation strategy if an increase in supply risk results from an increase in recurrent 

supply uncertainty. In contrast, we show that increased use of the reliable supplier and 

decreased use of the cheaper but less reliable supplier is a better mitigation strategy if an 

increase in supply uncertainty results from an increase in disruption risk.  

Although our results are derived in a single period setting, we illustrate the 

difference between bundling and decoupling of recurrent and disruption risks by 

considering the supply received by a manager placing and receiving orders over twenty 

periods as shown in Table 1. The manager orders 100 units each period and receives 

supply as shown in the first column. We model recurrent supply uncertainty by assuming 

that the delivered quantity is subject to variability and that the lead time is fixed. 

- - - - - - - - - - - - - - - 

Insert Table 1 About Here. Proposed caption: 

Table 1: Delivery Log  

- - - - - - - - - - - - - - - 
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If the manager views the fluctuation in supply quantity as coming from a single 

source, she will use the entire column of supply quantities to estimate uncertainty. Using 

the supply data in the first column she estimates supply uncertainty to be represented by 

an average delivery of 86 units with a standard deviation of 38.60 when orders for 100 

units are placed.  In this case, the manager has bundled all uncertainty. A closer look at 

the data reveals a few days with zero supply. If we interpret zero supply to be a disruption 

and all other fluctuation to be recurrent supply uncertainty, the manager should interpret 

supply uncertainty differently. Considering the same data in the "Sorted by size" column 

reveals that disruption occurs in 3 of 20 instances and supply quantity fluctuates for other 

reasons in 17 of 20 instances. Thus, the manager should estimate supply uncertainty in 

two parts - a disruption probability of 15 percent and, in case of no disruption, a supply 

distribution with a mean of 101 units with a standard deviation of 11.87 units (when 

orders for 100 units are placed). In this case the supply manager correctly decouples 

disruption and recurrent supply uncertainty. 

 

There has been a good amount of conceptual work regarding supply chain risks in 

general, and disruption uncertainty in particular. Mitroff and Alpasan [10] provide 

strategic tools to help identify stress causes and their impact on a firm’s preparedness 

towards disruptive events.  Chapman et al [3] discuss supply chain vulnerabilities by 

enumerating sources of disruptions and analyzing the impacts of each. Zsidisin et al [23] 

observe how seven supply chain champions measure and manage risk sources.  At a more 

technical level, Qi [16] provides centralized and decentralized coordination models and 

tests a firm’s operating plan in a one-supplier one-retailer setting in the presence of 
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disruption risk. Kleindorfer and Saad [9] chart a conceptual framework that trades off risk 

mitigating investments against potential losses caused by supply disruption. Gaonkar and 

Viswanadham [7] also build an empirical framework that addresses the question of 

choosing a set of suppliers that minimizes loss caused by deviation, disruption, and 

disaster risks. 

 

Christopher and Lee [4] draw upon additional disruption instances and also 

illustrate that lack of confidence and panic lead stakeholders to make irrational supply 

chain decisions. Sheffi [18] revisits various supply chain risk reduction mechanisms 

(visibility, multiple sourcing, collaboration, pooling, and postponement) and addresses 

the critical issue of how a firm should apply them in the presence of a terrorism threat, 

while maintaining operational effectiveness. 

 

Although our work can be related to the work on random yields as in Yano and 

Lee [22], the value of decoupling recurrent from disruption risks is an issue that has not 

been considered in the random yields literature. There has been recent work that focuses 

on deriving optimal multi-period ordering policies where it is assumed that the current 

state of the supply process is known (either ‘available’ or ‘not available’). This includes 

Weiss and Rosenthal [20] who integrate disruption uncertainty in EOQ inventory systems 

by developing optimal inventory policies in anticipation of a random length interruption 

in the supply or demand process, but where the interruption starting time is known in 

advance. Parlar [13]  and Parlar and Perry [14] invoke renewal theory to model how the 

multi-period (q, r) replenishment policies can be extended to a setting that includes 
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supply interruptions of random lengths of time. They derive average cost and reordering 

policies for when the supplier is available and not available, assuming that the 

distributions of the amount of time for both instances are known. 

 

The fact that dual sourcing improves performance is demonstrated in several 

settings, including when there is no supply uncertainty (Bulinskaya [2], Whittmore and 

Saunders [21], Moinzadeh and Nahmias [11]) and when there is supply or demand 

uncertainty (Anupindi and Akella [1], Gerchak and Parlar [8], Parlar and Wang [15], 

Ramasesh et al. [17]).  In contrast to the above literature, which focuses on how best to 

use multiple sources, we focus on how bundling of uncertainties affects a manager's use 

of reliable backup suppliers. 

Our paper is closely linked to the work of Dada  et al. [6]. They consider the 

problem of a newsvendor supplied by multiple suppliers with varying cost and reliability. 

They study properties of the optimal solution and show that cost generally takes priority 

over reliability when selecting suppliers. While we briefly discuss the selection of 

suppliers, our paper is much more focused on the relative use of the cheaper supplier and 

the reliable supplier once both have been selected. Our model expands on the insights of 

Dada et al. [6] by separately considering whether the supply risk is primarily recurrent or 

because of disruption. We show that increased use of the cheaper supplier is optimal if 

the growth in supply uncertainty is primarily from an increase in recurrent supply 

uncertainty. In contrast, we show that reliability takes priority over cost and it is optimal 

to increase the use of the reliable supplier and decrease the use of the cheaper supplier if 

most of the growth in supply uncertainty results from disruption.   
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2. ERRORS FROM BUNDLING WITH TWO SUPPLIERS: ONE PRONE TO 

DISRUPTION, ONE PERFECTLY RELIABLE. 

 

Consider a single period problem where the buyer faces a fixed demand D over 

the coming period. The buyer has two supply options - one cheaper, but prone to 

disruption and recurrent supply risk (referred to as the first supplier) and the other 

perfectly reliable and responsive, but more expensive (referred to as the reliable supplier). 

The first supplier may have supply disrupted with probability p, in which case the buyer 

receives a supply of 0. If there is no disruption (with probability 1-p), the amount 

delivered is a symmetric random variable, X, with density function f(X) having a mean of 

S (the quantity ordered) and standard deviation σX. Note that in our model, supply may 

exceed the order quantity. Such a situation may arise in a context where yields are 

random (such as the flu vaccine or semi-conductors) and the contracts are on production 

starts. We also note that this assumption simplifies the analysis and allows us to draw 

useful managerial insights. Each unsold unit at the end of the period is charged an 

overage cost of Co and each unit of unmet demand is charged a shortage cost of Cu. We 

restrict attention to the case where ou CC > . 

The reliable supplier has no disruption or recurrent supply uncertainty, i.e., the 

supplier is able to deliver exactly the quantity ordered. Responsiveness of the reliable 

supplier allows the manager to place her order after observing the response of the first 

supplier and yet receive supply in time to meet demand.  This reliability and 

responsiveness, however, comes at a price. The reliable supplier charges a premium and 
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requires the manager to reserve I units (at a unit cost of $h per unit) at the beginning of 

the period before knowing the outcome of supply from the first supplier. Once the 

outcome from the first supplier is known the manager can then  order any quantity up to 

the I units reserved at an exercise price of $e per unit. If uChe ≥+ , the manager does not 

use the reliable supplier because under stocking costs less than getting product from the 

reliable supplier. Thus, we assume that uChe <+ . If oCh ≥ , the manager does not 

reserve any capacity from the reliable supplier in the absence of disruption, preferring to 

over order from the cheaper supplier. Thus, we assume that oCh < . Also, it is reasonable 

to assume that the total cost from the reliable supplier he +  exceeds the cost of 

overstocking oC  of purchases from the cheaper supplier, i.e., oChe >+ . The manager's 

goal is to minimize total expected costs. 

 

The sequence of events is as follows. The manager orders S units from the first 

supplier and reserves I units from the reliable supplier. Random supply X then arrives 

from the first supplier. If X<D, the inventory manager exercises the option to order 

{ }IXD ,min −  units from the reliable supplier. If X < D-I the manager orders I units and 

there is an under stock of D-I-X. If D-I ≤ X ≤ D the manager orders D-X and there is no 

over or under stock. If D ≤ X, the inventory manager exercises nothing from the reliable 

supplier and over stocks by X-D. 

 

To understand the manager's actions when uncertainties are bundled,  we first 

analyze the case where the delivery quantity from the first supplier only has recurrent 

uncertainty (no disruption) represented by a random supply w with cumulative 
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distribution function G(w) with a mean S (the quantity ordered) and standard deviation 

σw. In the absence of disruption, the expected costs from the perfectly reliable supplier 

are given by 

( )∫ −+=
D

reliable wdGwDIehITCE
0

)(,min)( . 

The expected over and under stocking are all attributed to the first supplier and are given 

by 

( ) ∫ −+∫ −−=
∞−

+
D

o
ID

uunderover wdGDwCwdGwIDCTCE )()()()(
0

.  

Given the variable w with mean S, standard deviation σw, and cumulative distribution 

G(w), define the standardized variable z to be 

 
w

Swz
σ
−

= . 

z has the cumulative distribution GS(z) with mean 0 and standard deviation 1. Given a 

value R of w, define 

 
w

s SRR
σ
−

=)(  

We may denote sR)(  by sR  when there is no ambiguity. Define the standardized loss 

function 
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R
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s
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This yields an expected total cost of (see appendix) 
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The optimal actions by the manager when there is only recurrent uncertainty are obtained 

in Proposition 1. 

Proposition 1: In the absence of disruption, the order quantity *S  from the first supplier 

is given by  
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and the reservation quantity *I  with the reliable supplier is given by  
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Proof: See appendix.         █ 

 

The above analysis allows us to understand the manager's actions when she 

bundles the two risks. Recall that the first supplier has a disruption probability of p 

resulting in a supply of 0 and a recurrent uncertainty represented by a supply X with a 

cumulative distribution function F(X) with a mean of S (the quantity ordered) and a 

standard deviation σx.  Thus, if an order of S is placed with the first supplier, the quantity 

delivered by the first supplier will equal 0 with probability p and, with probability 1-p, 

will equal X which has a cumulative distribution of F(X).   

 

When the manager bundles both sources of uncertainty, let *
1S  be the optimal 

order quantity with the first supplier, and *
1I  the reservation quantity with the reliable 

supplier. A manager who bundles the uncertainties expects a random supply Y given an 

order of S. The expected value of Y is given by  



 11

( ) ( ) ( ) SpXEpYE )1(1 −=−= ,  

and its variance is given by 
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and the reservation quantity *
1I with the reliable supplier is given by 
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The next step is to evaluate the manager's actions if she decouples the two 

uncertainties when making her decision. The total cost in this case can again be broken 

up into two parts: one from contracting with the reliable supplier and one from 

purchasing from the first supplier. Observe that it is never optimal to reserve more than D 

units with the reliable supplier, i.e., D ≥ I. The expected cost for the reliable supplier 

consists of three components - the cost of reserving quantity I, the cost of purchasing I 

units and under stocking by D-I units in case of a disruption, and the cost of purchasing 

the minimum of the reserved quantity I and the shortage D-x in case the supply x is less 

than the demand D. The expected cost for the reliable supplier is given by 
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The expected over and under stocking costs (when supply arrives but leads to over or 

under stocking) is given by 
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The expected total cost on decoupling the two uncertainties is thus given by 
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We thus have 
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Proposition 2 identifies the manager's actions when the uncertainties are decoupled. 

Proposition 2: When the uncertainties are decoupled, the optimal order quantity with the 

first supplier *
2S  is given by 
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and the optimal reservation quantity from the reliable supplier *
2I  is given by 
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Proof: See appendix.         █ 
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 Having identified the manager's actions when she bundles and decouples the 

risks, we first show that there are instances where bundling the two uncertainties results 

in the reliable supplier not being used, whereas decoupling the two uncertainties results in 

the reliable supplier being used. 

 

Proposition 3: For a positive probability p of disruption for the first supplier, there are 

values of Co, Cu, h, and e, such that bundling the two uncertainties results in the reliable 

supplier not being used, i.e., 0*
1 =I , whereas decoupling the two uncertainties results in 

the reliable supplier being used, i.e., 0*
2 >I . 

Proof: From (6) observe that 0*
1 =I  if 
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To obtain *
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Substitute for h from (11) to obtain 
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This implies that 0*
2 >I  using (9). Thus, there are situations where bundling the two 

uncertainties results in no use of the reliable supplier ( 0*
1 =I ) whereas decoupling the 

uncertainties results in a positive amount reserved from the reliable supplier ( *
2I > 0). █ 

  

Proposition 3 is most closely related to the results of Dada et al. [6]. We show that 

bundling of risks leads to instances where the reliable supplier is not selected even though 

it should have been. This relates to the examples of the flu vaccine and Ericsson 

discussed at the beginning of the paper. Bundling of disruption and recurrent risk is a 

possible explanation for going with fewer suppliers than may be appropriate in each case. 

 Next we show in Proposition 4 that when uncertainties are bundled, the quantity 

ordered from the first supplier increases with the probability of disruption.  

Proposition 4: When the uncertainties are bundled, the quantity ordered from the first 

supplier *
1S  is increasing in the disruption probability p for  10 << p . 
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1S  is increasing in the disruption probability p for 10 << p .    █ 

 

In contrast, when the uncertainties are decoupled, Proposition 5 shows that the 

quantity ordered from the first supplier decreases as the probability of disruption grows. 
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Thus, bundling of recurrent and disruption risk leads to an over utilization of the first 

supplier. 

 

Proposition 5: When the uncertainties are decoupled, the quantity ordered from the first 

supplier *
2S decreases as the probability of disruption p increases. 

Proof:  From (8) we obtain  
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To show that *
2S  decreases with an increase in p, we need to show that 
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This derivative is given by  
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Observe that the derivative is negative whenever uCeh <+ , a condition we have already 

assumed from (3). The result thus follows.      █ 

 

Proposition 5 makes an important point. Even though the reliable supplier is most useful 

in the event of a disruption, the reliable supplier also serves the role of mitigating 

recurrent supply uncertainty. Thus, as the supply uncertainty increases because of an 
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increase in disruption probability, it is best for the manager to mitigate more of the 

recurrent supply risk using the reliable supplier and use less of the first supplier.  

 

Proposition 6: When the uncertainties are decoupled, for low disruption probability p 

and h + e ≥ Co, the quantity ordered from the first supplier *
2S  increases as the 

recurrent supply uncertainty σ x  increases. 

Proof: From (8) recall that 
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Using the fact that h + e ≥ Co, we can show that for low values of p,  
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Given that x has been assumed to be symmetric about the mean, we thus obtain 
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The result thus follows.         ■ 

Comparing Propositions 5 and 6 we are able to expand on the insights of Dada et al. [6]. 

They showed that cost takes precedence over reliability when selecting suppliers. Our 

results focus on the relative use of the two suppliers once both have been selected. We 

have shown that the impact of cost and reliability on the relative use of the two suppliers 

is driven by the source of unreliability. By Proposition 6, if the growth in supply 

uncertainty is driven by a growth in recurrent uncertainty, using more of the low cost (but 

unreliable) supplier is a good mitigation strategy. In contrast, if growth in supply 
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uncertainty is driven by a growth in disruption probability, Proposition 5 shows that using 

more of the reliable supplier and less of the cheaper but unreliable supplier is optimal.  

- - - - - - - - - - - - - - 

Insert Figures 1, 2 and 3 Here. Proposed captions: 

Figure 1: Optimal Excess Order from First supplier on Bundling and Decoupling 

Figure 2: Change in Optimal Excess Order from First Supplier as Disruption Probability 

and Recurrent Uncertainty Grows 

Figure 3: Change in Optimal Reservation Quantity from Reliable Supplier as Disruption 

Probability and Recurrent Uncertainty Grows 

- - - - - - - - - - - - - - 

  Numerical experiments confirm all the theoretical conclusions drawn in this 

section. In all numerical experiments we use D=100, Co = 10, Cu = 15, e = 8, and h = 2.8 

and assume the supply distribution to be normal. Figure 1 shows the change in 100*
1 −S , 

the excess order size from the first (cheaper but less reliable) supplier when risks are 

bundled, and 100*
2 −S , the excess order size from the first supplier when risks are 

decoupled, as a function of the disruption probability p. In this chart the supply 

distribution has σ = 15. Observe that when risks are bundled, increasing the disruption 

probability increases the excess order size ( 100*
1 −S ) from the first supplier. In contrast, 

when risks are decoupled, increasing the disruption probability decreases the excess order 

size ( 100*
2 −S ) from the first supplier.  

Figure 2 looks at the case where risks are decoupled and shows the impact of 

changing the recurrent uncertainty σ and the disruption probability p on 100*
2 −S , the 

excess order size from the first supplier. For the upper chart we fix the recurrent 
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uncertainty σ = 15 and vary the disruption probability p from 0.00 to 0.16. In the lower 

chart we fix the disruption probability p = 0.04 and vary the recurrent uncertainty from σ 

= 15 to σ = 31. Figure 2 shows that as the probability of disruption increases, the excess 

quantity ordered from the first supplier ( 100*
2 −S ) should be decreased. In contrast, as 

the recurrent supply uncertainty increases the excess quantity ordered from the first 

supplier ( 100*
2 −S ) should be increased. 

 Figure 3 looks at the case where risks are decoupled and shows the impact of 

changing the recurrent uncertainty σ and the disruption probability p on *
2I , the 

reservation quantity from the reliable supplier. For the upper chart we fix the recurrent 

uncertainty σ = 15 and vary the disruption probability p from 0.00 to 0.16. In the lower 

chart we fix the disruption probability p = 0.04 and vary the recurrent uncertainty from σ 

= 15 to σ = 31. Figure 3 shows that the reservation quantity with the reliable supplier 

increases with both the disruption probability and the recurrent uncertainty.  The 

disruption probability, however, seems to have a much greater impact on the reservation 

quantity than the recurrent uncertainty. As the disruption probability grows from 0 to 

0.16, the reservation quantity grows from 0 to 6.39. In contrast, as the recurrent 

uncertainty grows from 0 to 31, the reservation quantity only grows from 0 to 2.80. 

 To compare the relative use of the first supplier and the reliable supplier to 

mitigate supply risk, consider the ratio ( ) IDS *
2

*
2 − . For the data used in Figures 2 and 3, 

as the disruption probability increases from 0.02 to 0.16 the ratio ( ) IDS *
2

*
2 −  decreases 

from 5.74 to 0.37. Thus, as the disruption probability increases, more of the supply risk is 

mitigated by the reliable supplier. In contrast, the ratio ( ) IDS *
2

*
2 −  stays constant at 2.53 
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as the standard deviation of recurrent supply increases from 15 to 31. The first supplier 

continues to play the dominant role to mitigate recurrent supply uncertainty. 

3. CONCLUSION 

Dada et al. [6] have shown that cost dominates reliability when selecting suppliers. In this 

paper we expand on their insights by focusing on the relative use of the two suppliers 

once both have been selected. We show the importance of recognizing and decoupling 

disruption and recurrent supply risk when planning mitigation strategies in a supply 

chain. The managerial implications of our results are as follows: 

1. Bundling of disruption and recurrent supply uncertainty results in an over (under) 

utilization of the low cost (reliable) supplier. The extent of over (under) utilization 

increases as the probability of disruption grows. 

2. Growth in supply risk from increased disruption probability is best mitigated by 

increased use of the reliable (though more expensive) supplier and decreased use of 

the cheaper but less reliable supplier. Growth in supply risk from increased recurrent 

uncertainty, however, is better served by increased use of the cheaper, though less 

reliable, supplier.
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APPENDIX 

Derivation of Equation (1): The Expected Total Cost in the Two Supplier Case  
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Observe that 
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Proof of Proposition 1 

The proof is provided in the following three steps. Recall that S is the expected supply 

(which is also the quantity ordered) and I is the quantity reserved with the reliable 

supplier. 

(a) The loss function is convex in S. 
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(b) The cost function is convex in S and I.  
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Proof:  From (1) recall that 
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The convexity of E(TC(S,I)) with respect to I follows from the fact ( )( )sIDw −,l  is a 

convex function of I as shown earlier and the assumption that eCu ≥ . 

With regards to S observe that  

( )( ) ( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( ) 0,)(,,

,)(,,

2

22

22

2
≥

∂

∂
++−

∂

∂
−=

∂

∂

∂
∂

++−
∂
∂

−+−=
∂
∂

s
wo

s
wu

s
wo

s
wuu

Dw
S

CeIDw
S

eCISTCE
S

Dw
SCeIDw

S
eCCISTCE

S

ll

ll

σσ

σσ
 (A2) 

The convexity of E(TC(S,I))) with respect to S follows if we assume that eCu > , and 

from the fact that ( )( )sIDw −,l  and ( )( )sDw,l  are convex functions of S as shown earlier. 
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From the definition of the standardized loss function observe that 
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