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Coarse-Grained Simulations of Elongational
Viscosities, Superposition Rheology and
Shear Banding in Model Core–Shell Systems
A. van den Noort, W. J. Briels*
A recently developed coarse-grain model is used to investigate nonlinear rheological proper-
ties of model core–shell systems. The influence of several model parameters on the stresses
and shear rates is investigated. Continuous planar elongational flow and superposition
rheology are studied and compared to simple shear
flow results. With particular values of the model
parameters, an initially linear velocity profile splits
into many bands with different shear rates and differ-
ent densities, which finally merge into just two bands
stacked along the gradient direction. With the box
sizes used in our simulations, stick and Lees–Edwards
boundary conditions lead to qualitatively similar
results, with the stick boundary simulations showing
better quantitative agreement with experiments.
Introduction

Most of the complex fluids have rheological properties

which are interesting from an industrial application point

view as well as from a theoretical point of view. While

Newtonian liquids react to shear deformations by devel-

oping stresses proportional to the applied shear rates,

complex fluids display a variety of more complex stress–

rate of strain relationships. In many cases, the apparent

viscosity, i.e. the ratio of stress and rate of strain decreases

with the increase in shear rate, a phenomenon called shear

thinning. In this paper, we perform simulations with a

particular core–shell model exhibiting strong shear thin-

ning and investigate some causes and consequences of the

latter.
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Usually, shear thinning in complex fluids is related to

the process of perturbing and restoring some structural

property characteristic of the quiescent state. Perturba-

tions caused by an applied shear flow relax back to

equilibrium with a characteristic time t. At inverse shear

rates larger than t, relaxations are fast enough to keep the

system effectively at equilibrium. At higher shear rates,

the applied flow substantially changes the structure of the

fluid and thereby its rheological properties. In the core–

shell systems studied in this paper, this results in shear

thinning. Other systems in which strong shear thinning

occurs are solutions of rod-like colloids, worm-like micelles,

polymer melts and polymer solutions.[1–12] In the first two

cases, it is believed that shear thinning results from

alignment of the rods or worms caused by the flow. In the

case of polymer melts, elongation of the polymer coils and

subsequent alignment with the flow is believed to be

the dominant mechanism for shear thinning. The same

process may be responsible for shear thinning in polymer

solutions. In this case, however, as opposed to polymer

melts, large density fluctuations may occur, possibly

leading to shear banding.
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In those cases where in the homogeneous state the

stress as a function of shear rate reaches a plateau, or even

decreases, the system becomes unstable and splits into

two (or more) bands, stacked along the gradient direction

and having different shear rates. This phenomenon

is called shear banding.[13] Several phenomenological

theories have been developed to describe shear banding.

Dhont has introduced the so called shear curvature

contribution to the stress, and was able to describe shear

banding at constant density.[14] Olmsted and Fielding

developed a theory in which the two bands are allowed to

have different densities.[15–19]

In this paper, we will extend the results published

before.[20,21] In the following section, we introduce our

model and give some details of our simulations. In the next

section, we investigate the relative importance of some

model parameters. In the subsequent sections, we study

elongational flow and superposition rheology, respec-

tively. In the section Shear banding, we study some aspects

of shear banding. Finally in the last section we summarize

our findings.

It is perhaps interesting to note that banded structures

also exist in sheared plastic materials.[22] Although there

are many similarities between the two types of banding,

there are also important differences. We leave a detailed

comparison for the future.
Model and Method

Model

The particles to be simulated are core–shell particles

consisting of a central hard core covered with a corona of

polymer chains. In our simulations, we coarse grained each

particle to a single entity. In the coarse graining step, the

average contributions of the coronas to the forces in the

system become encoded in a very soft potential of mean

force, which we will describe further on. In many cases

of interest, however, it is important to realize that the

instantaneous contributions of the coronas to the inter-

actions between overlapping particles may well differ

from the average values. When two particles are brought

together to a distance r, the polymers in the coronas will

start to interpenetrate and relax to some equilibrium state

depending on the distance between the two particles. The

polymers in the coronas form physicochemical connec-

tions, like for example, electrostatic or hydrogen bonds, or

physical entanglements, collectively called ‘stickers’ from

now on. Since the formation of these ‘stickers’ is equally

slow as themovement of the centres ofmass, they give rise

to transient forces, which must be included in the model.

To this end, we describe the state of overlapping coronas

between particles i and j by a parameter nij, the number of

stickers between i and jwhich in equilibrium has the value
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n0(rij). The equilibrium number of stickers is chosen to

be n0ðrÞ ¼ 1� rc=ðrc � sÞ½ � ðr � sÞ=r½ �, which is unity at

the diameter s of the particles and zero at their cut-off

distance rc¼ 4s, taken to be the diameter of the full

particles including their coronas. We recently introduced a

Brownian dynamics propagator which includes the effects

of stickers:[20]
¼ VðriÞh idt þriðkT=jiÞdt þ u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kTdt=ji

p
þ 1

ji

P
j

�ri fðrijÞ þ a½nij � n0ðrijÞ� dn0
drij

rij
rij

n o
dt

(1)
Here, VðriÞh i is the average flow field at position ri and u is a

random number with zero mean and variance unity. The

friction of particle i, ji, consists of two contributions and

quantifies the particle’s friction relative to the average

flow field. The first contribution is the friction with respect

to the solvent, the second describes the friction between

neighbouring particles. The latter, for each partner j, is

proportional to the number of stickers between i and j, if it

is positive, and zero otherwise. ji may, therefore, be

written as
ji ¼ j0 þ
1

2
js
X
j

ðnij þ jnijjÞn0ðrijÞ (2)
The factor n0(rij) has been added to make sure that the

friction decays smoothly to zero for neighbouring particles

beyond the cut-off distance rc. We call js the friction per

sticker. The friction per particle occurs in Equation (1) in a

drift term, a random displacement and in front of the

contribution of the forces to the displacement. The latter

consist of two contributions, one being the thermody-

namic forces originating from the effective potential

f(rij), the other being the transient forces due to the

corona–corona interactions. The effective thermodynamic

particle–particle potential f(r) is chosen as fðrÞ ¼ 4" ðb=rÞ
8
,

representing both the steep core–core potential and the

weak corona–corona potential of mean force. The rather

small range of the pair potential f(r) compared to rc
reflexes the fact that at equilibrium, the coronas hardly

influence each other at distances beyond about 2s. This

does not hold true for the sticker forces, which may be

substantially different from zero even at separations

slightly below rc. As long as the number of stickers of two

approaching particles is smaller than its equilibrium

value n0(rij), the two coronaswill push each other resulting

in a repulsion a½nij � n0ðrijÞ�dn0ðrijÞ�drij directed along

rij¼ ri� rj. On the other hand, when two particles in

equilibrium are displaced to a larger separation, each

corona will pull the other, resulting in an attraction

between the particles. That is, two entangled coronas resist

displacements in the direction of increasing absolute
www.mts-journal.de 743
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values of nij�n0(rij). With this role of n0(rij) in mind, it is

easy to understand that its range must be substantially

larger than that of f(rij). Evenwhen themore dilute parts of

two coronas are brought into contact this temporarily

leads to strong repulsions, which, however, finally relax to

very small values.

The time evolution of the number of stickers is given by
Macrom

� 2007
dnij ¼ � 1

t
nij � n0ðrijÞ
� �

dt þ u0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT dt

at

r
(3)
Table 1. Simulation parameters.

Parameter Value Unit

T 300 K

r 0.4 sS3

e 240 kBT

b 0.42 s

a 0.473 kBT

j0/rkBT 0.302 st

js/rkBT 1.181 st

dt 5T 10S5 t

rc 4 s
with u0 a random number with zero mean and unit

variance. Here, we identify 1/t as the characteristic rate

with which the sticker number strives towards its

equilibrium value n0(rij) for rij<rc or zero for rij� rc. The

second term on the right-hand side gives rise to random

fluctuations of the sticker numbers. Since for pairs which

are separated by a distance larger than rc, we do not need

to know nij and since for these values of rij they are doing

no more than fluctuate around zero, we only keep track

of nij for those pairs which are separated by a distance

rij smaller than some value rv, slightly larger than rc,

rv¼ 1.0625rc. When a particular pair enters this region, its

sticker number nij is initialized according to the probability

density/ expf�1=2ban2
ijg. Without this simplification, the

simulation would hardly be feasible, because in that case

all pairs should be considered in the simulation.

Having described the model and its implementation, let

us clarify some of the motivations behind the particular

choices that we made. First, Equation (1) and Equation (3)

together give rise to an equilibrium distribution for the

positions of the particles and the sticker numbers identical

to the one obtained by integrating Equation (A1) over all

particle and sticker velocities. The precise definition of

the friction is irrelevant for this. We next calculate the

probability distribution of the particle coordinates by

integrating over all sticker numbers. Accepting negative

values for the sticker numbers the resulting probability

distribution of the particle coordinates is independent of

n0(rij) and simply proportional to expð�b
P

i;jh i fðrijÞÞ. This
means that we can steer the thermodynamics of the

system by the choice of the potential of mean force

without bothering about the possible influences of

the sticker forces. In practice, negative values of sticker

numbers only occur near the cut off radius, where they

give rise to fluctuating forces, as they should. Next, as

already mentioned, the precise dependence of the friction

on the sticker numbers does not influence the distribution

of the coordinates, and may be chosen according to

appropriate criteria. The choicemade in Equation (3)meets

the obviously necessary criterion that the friction should

never be negative.

In Appendix A, we propose a second order version of this

model. We describe the necessary ingredients and show
ol. Theory Simul. 2007, 16, 742–754
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that the second order model gives in principle the same

results as our present first order model.
Simulation Details

Our model may be mapped on different experimental

systems, depending on the values of the parameters of the

model. It is, therefore, useful to write all the results in

terms of a set of characteristic variables of the model.

These variables are chosen to be 1kBT for energies, 1s for

distances and 1t for time. The unit of length, s, is defined as

the distance r where the potential f(r) reaches unity; it

coincides with the point where the radial distribution

function becomes unity for the first time, indicating that

unit of length may be interpreted the hard-core diameter

of the core–shell particles.

In all our calculations, we have used the parameters

given in reduced units in Table 1, unless stated otherwise.

Except when stated differently, simulation boxes were

cubic containing some 2000–4 000 particles. Equilibrium

simulations were done using periodic boundary condi-

tions, while nonequilibrium simulations were done using

Lees–Edwards boundary conditions[23] to impose a flow in

the x-directionwith a velocity gradient _g in the y-direction.

Average velocities were measured at different y-positions

in the simulation box from the displacement of the

particles. In order to reduce the noise in the instantaneous

velocity field, we averaged it over its history with a weight

function exponentially decaying in the past using a time

constant tflow¼ 1000dt. The local velocity of a given

particle, to be used in the equations of motion [Equation

(1)], was interpolated from the values in the nearest bins.

In a similar way, average frictions were measured

at different y-positions. The gradient of riðkT=jiÞ was

assumed to point along the y-axis; its value was calculated

by comparing kT/ji at neighbouring y-values. Stresses

were calculated as S ¼ 1=V
P

riFi with Fi the total force on

particle i, i.e. the sum between curly brackets in the first
DOI: 10.1002/mats.200700029
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line of Equation (1) andV the volume of the box. Viscosities

then followed from h ¼ Sxy= _g.

In the section Shear banding, we impose stick boundary

conditions by applying a bounce-back rule for the particles

colliding with the top and bottom of the box. We keep

the bottom stationary and move the top according to the

imposed shear rate. With every particle that tends to cross

the wall, we calculate the exact fraction tcoll of the time

step that has been consumed when the collision occurs.

The new position of particle i is then set to:
Macrom

� 2007
rðt þ dtÞ ¼ rðtÞ þ tcolldrþ ð1� tcollÞ

� ð�drþ 2 _gLydtexÞ (4)
Figure 1. Shear viscosity h as a function of shear rate at different
sticker force strengths a; a is respectively 0.47kBT (solid line),
1.89kBT (dot-dashed line), 5.10kBT (dashed line) and 8.32kBT
(dotted line).
where dr is the displacement computed from Equation (1).

The first two terms on the RHS of Equation (4) give the

position of impactwith thewall. The last term accounts for

the bounce-back displacement for the remainder part of

the time step and for an extra displacement in the flow

direction from the moving wall, which is only added for

collisions with the top wall.
Investigation of Some Model Parameters

In this section, we will investigate the relative importance

of the various forces operating in our model as well as

some other model parameters like the density of hard

material.
Figure 2. Conservative contribution to the stress tensor plotted
versus the shear rate for values of a equal to 1.89kBT (circle),
3.78kBT (box), 5.67kBT (diamond) and 7.56kBT (triangle).
Sticker Forces

In Figure 1, we have plotted viscosities as a function of

shear rate for various values of a and all other parameters

as given in Table 1. At small shear rates, the viscosities are

seen to grow almost linearly with a. This is just an

indication that sticker forces are dominant in this regime.

At these low values of _g, sticker numbers are close to their

equilibrium values. Any movement of the centres of mass

leads to deviations from the (new) equilibrium number

of stickers, and hence to strong restoring forces. As a

consequence, large shear forces are needed to deform and

make flow the system.

With increasing shear rates, the above effect becomes

less important. As soon as _g is equal to about 1/t, two

particles displaced along the gradient direction pass each

other too fast for any substantial number of stickers to

develop. Although the contribution of the sticker forces to

the stress will be large, it is also independent of the shear

rate. This contribution to the viscosity will, therefore, be

proportional to _g�1. This is clearly observed in the figure.

One more interesting aspect of Figure 1 is worthy to

be mentioned. At the very high shear rates of about 50t�1,
ol. Theory Simul. 2007, 16, 742–754
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the order of the curves inverts. While below this shear rate

viscosities increase with increase in a, above it viscosities

decrease with increase in a. This suggests that the stress,

which is generated by the thermodynamic forces, is not

independent of a, and in fact must decrease with increase

in a. This is indeed confirmed in Figure 2, where we have

plotted these contributions to the stress as a function of _g

for several values of a. Over the entire range of shear rates,

except for very small ones, the stresses resulting from

the thermodynamic forces decrease proportional to a. The

reason for this peculiar effect is the fact that with increase

in shear rates the particles increasingly arrange in

(structureless) layers in an effort to make the separation

between the particles along the gradient direction as large
www.mts-journal.de 745
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as possible, in order to diminish the forces even more. The

larger the value of a, the larger the distance between these

layers will be, and the smaller the contributions of

the thermodynamic forces to the stress will be.

Obviously, the effect just mentioned should not occur at

equilibrium and consequently not at small values of _g.

Indeed it is seen in Figure 2 that at shear rates below

0.05t�1 the order of the curves is the reverse of that at

higher shear rates. Since it is rather difficult to obtain good

statistics with nonequilibrium simulations at these low

shear rates, we have calculated the time autocorrelation

function of the contributions of the thermodynamic forces

to the stress, and plotted the results in Figure 3. At t¼ 0 all

curves have the same value, indicating that sticker forces

do not influence static properties. The subsequent decay of

these functions with time is seen to be slower with

increasing values of a. Consequently, the integral of G(t)

from zero to infinity, i.e. the contribution of the thermo-

dynamic forces to the viscosity, increases with increase

in a.

It is perhaps interesting to notice that a similar

crossover as the one just mentioned has been found in

simulations of polymer melt rheology by means of FENE

chains.[24] In this case, zero shear viscosities increase with

increase in chain length, while at the same time the degree

of shear thinning increases to such an extent that at large

shear rates viscosities decrease with increase in chain

length. Although increase in a implies an increase in the

influence of entanglements, it is not entirely equivalent to

the increase in chain length, since in the latter case also t

and the friction change. The similarity of both phenomena

remains striking however.
Figure 3. Stress autocorrelation at zero shear with only conser-
vative forces included in the calculation of the stress tensor, for
values of a equal to 1.89kBT (solid line), 3.78kBT (dotted line),
5.67kBT (dashed line), 7.56kBT (long dashed line) and 8.51kBT
(dot-dashed line).
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Friction Per Sticker

In Figure 4, we have plotted viscosities as a function of _g

for various values of the friction per sticker js. At low shear

rates, viscosities increase almost linearly with js. This may

be understood by noticing that at equilibrium the system

samples experience stress in some order independent of

friction, but they do so with a speed which is inversely

proportional to j. As a consequence, all stress–stress

autocorrelation functions Gj(t) are roughly the same

except for a scaling of the time axis by the friction:

GjðtÞ ¼ Gj0ðtj0=jÞ. Consequently, the viscosity being the

integral of Gj(t) from zero to infinity, is roughly propor-

tional to j, i.e. roughly proportional to js. In the case of a

nonequilibrium simulation, the deformation of the path

followed by the system at a shear rate _g and friction j is

similar to that at a shear rate _gj=j0 and friction j0. A time

average of the stress will yield the same result in both

cases, leading to viscosities proportional to j. This

proportionality of the viscosity with j and hence roughly

with js is seen to hold over the entire range of shear rates

presented in Figure 4. In Figure 5, we plot similar curves for

a system with number density r¼ 0.1s�3 and a¼ 9.5kBT.

Again, at low shear rates viscosities are roughly propor-

tional to js, but at high shear rates this is not true anymore.

We will discuss this system further in the section Shear

banding.
Elongational Viscosities

In a previous paper,[20] we calculated the flow curve, i.e.

shear viscosities versus shear rates, of our present model

for the specifications given in Table 1. The results exhibit a

strong shear thinning at shear rates around 1/t. Roughly

speaking, shear thinning occurs because the contributions
Figure 4. Viscosity versus shear rate for different values of the
friction per sticker js, at w¼0.21 and a¼0.47kBT. The lines
represent respectively js/rkBT¼0.12st (solid), 1.18st (dotted),
2.36st (dashed) and 5.90st (dot-dashed).
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Figure 5. Viscosity versus shear rate for different values of the
friction per sticker js, with w¼0.10 and a¼9.5kBT. The lines
represent respectively js/rkBT¼0.09st (solid), 0.19st (dotted),
0.27st (dashed), 0.79st (long dashed) and 2.36st (dot-dashed).
of the sticker forces to the stress become ‘saturated’ at high

shear rates. The idea is that two particles, displaced with

respect to each other along the gradient direction, are

advected past each other before having had enough time

to develop stickers. As a consequence, the contribution of

the corresponding nonequilibrium sticker forces to the

stress becomes constant, independent of the particular

shear rate. The viscosity then drops proportional to _g�1

until the thermodynamic forces take over. In this section,

we study elongational flow in a similar way.

In this paper, we concentrate on planar elongational

flow characterized by
Macrom
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VðrÞ ¼
_" 0 0
0 � _" 0
0 0 0

0
@

1
A � r (5)
Figure 6. Upper panel shows the viscosity versus the deformation
rate. The circles depict the viscosity measured under elongation
flow via ~helo ¼ ðSxx � SyyÞ= _", whereas the squares represent the
In particle based simulations, it can be implemented in a

continuous way using a method proposed by Todd and

Daivis[25,26] and by Baranyai and Cummings.[27] Both

methods are based on work of Kraynik and Reinelt.[28]

The basic idea is to perform a checkerboard simulation

with VðrÞh i in Equation (1) replaced by V(r) according to

Equation (5) above. The central box, i.e. the unit cell of the

checkerboard, is chosen such that after a finite simulation

time tp the deformed box coincides with some unit cell of

the lattice generated by the original box. At this time, all

particles are mapped to the original unit cell and the run is

continued. Some details are presented in Appendix B.

The elongational viscosity is usually defined by
elongational viscosity including the Trouton factor, i.e.
helo ¼ ~helo =4. The viscosity measured from h ¼ Sxy= _g under
simple linear shear is given by the crosses. The lower panel shows
the generalized viscosity as a function of the second scalar
~helo ¼ Sxx � Syy
_"

(6)
invariant of the deformation tensor I2 for shear (crosses) and
elongation flow (circles). The second scalar invariant I2 is defined
as 2 _g2 and 8 _"2 for shear and elongation flow, respectively.
In the case of a Newtonian liquid, this results in

~helo ¼ 4h, with h the shear viscosity. The factor of 4 is called
ol. Theory Simul. 2007, 16, 742–754
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the Trouton factor for this particular case. It is natural

to define the planar elongational viscosity helo by

helo ¼ ~helo =4. With this definition, a unified expression

for the viscosity, holding both for shear flow and for

elongational flow,[29] reads
h ¼ S : D

D : D
¼ S : D

I2
(7)
whereD ¼ ruþ ðruÞT
h i

is the rate of deformation tensor.

The latter definition basically says that the rate of

dissipation 1
2S : D is proportional to 1

2D : D, with constant

of proportionality equal to h.

In Figure 6 (upper panel), we have plotted ~helo, helo and h

as a function of _" and _g, respectively for the system defined
www.mts-journal.de 747
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in Table 1. It is interesting to notice that just like in the case

of a Newtonian liquid, after correcting for the Trouton

factor, the elongational viscosity at low deformation rates

becomes equal to the shear viscosity. At higher _" and _g,

both viscosities behave qualitatively similarly, but start

deviating quantitatively. Equation (7) above, however,

suggests that we plot both viscosities as a function of

I2¼D:D, i.e. as a function of 2 _g2 in the case of shear flow

and 8 _"2 in the case of elongational flow. This is done in

Figure 6 (lower panel). Somewhat to our surprise, may be,

both curves now agree very well over several decades of I2.

This suggests that as far as dissipation is concerned, shear

flow and elongational flow are very similar. Only at the

higher values of I2, very small deviations between the two

curves are discernible.

Figure 7. The viscosity h measured from the stress tensor under
simple shear (crosses) and via the superposition of external forces
h? (circle and diamond). The amplitude of the external force was
0.0242kBT/s (circles) and 0.0024kBT/s (diamonds), where
the force was directed in the z-direction with a gradient in the
y-direction perpendicular to the shear flow. The triangle at the
vertical axis represents h? measured at zero shear.
Superposition Rheology

In this section, we investigate the possible anisotropic

rheological properties of the fluid induced by the applied

shear flow. To this end, we calculate the resistance of the

fluid to a shearing motion perpendicular to the applied

shear flow. To bemore precise, we apply a shear flow in the

x-direction with gradient along the y-direction and then

perturb the system with a force on each particle i given by
Macrom
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fi ¼ f0cosðkyiÞ êz (8)
where yi is the y-coordinate of particle i and êz is the unit

vector in the z-direction. This force will produce an

additional flow field
vðrÞ ¼ rf0
k2h?

cosðkyÞ êz (9)
where r is the mass density and h? is the viscosity for this

particular type of flow; y is the y-coordinate of r. Inverting

this equation we obtain
rf0
k2h?

¼ 2

L3

Z
d3rcosðkyÞvðrÞ � êz

¼ 2

N

XN
i¼1

vizcosðkyiÞ
* + (10)
where the angular brackets indicate a time averaging.

We have used this result to calculate h?. The velocity

needed to do so was calculated from dri¼vidt, with dri
from Equation (1).

We performed simulations using k¼ 2p/L and either

f0¼ 0.0242kBT/s or f0¼ 0.0024kBT/s, and found reasonable

agreement between both cases. Even smaller values of f0
did not change the results. The value of h? for _g ¼ 0 is

shown on the vertical axis in Figure 7 and agrees very well
ol. Theory Simul. 2007, 16, 742–754
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with h obtained from standard nonequilibrium simula-

tions. This proves that both values of f0 are small enough to

obtain reliable results, and, incidentally, that including

sticker forceswhen calculating the stress tensor is the right

thing to do. Finally, we checked that the values of Sxy in the

perturbed case are equal to those in the unperturbed case.

In Figure 7, we have plotted both h? and h as a function

of _g. It is seen that for values of _g smaller than about 1/t

both types of viscosity agree very well, indicating that the

shear flow has not substantially changed the structure of

the liquid. For shear rates equal to 1/t or larger both curves

start to deviate. This is somewhat surprising, since for both

types of flow, i.e. the applied shear flow and the flow

resulting from the applied perturbation, the gradient

direction is the same. Restructuring induced by the applied

shear flow is expected to affect mainly the correlations

along the gradient direction leaving unchanged the

structure within the vorticity plane. Still it appears that

forces along different directions in the vorticity plane

are different. One explanation for this may be that at

these very large shear rates the structure of the particles

in the layers parallel to the vorticity plane becomes

anisotropic in an effort to minimize dissipation.
Shear Banding

In a recent paper, we described the occurrence of shear

banding in a system with parameters given in Table 1,

except for the value of a, which was set equal to 5.1kBT.

Depending on the initial configuration, the system would

split into several bands, stacked along the gradient
DOI: 10.1002/mats.200700029
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direction. When run long enough, all systems finally

settled in a banded state of just two bands, one high shear

rate band and one low shear rate band. An extended study

of this system is presented in Figure 8. In Figure 8 (upper

panel), we have plotted the maximum and minimum

shear rates, measured in boxes in their final stationary

states, as a function of applied shear rate and for a wide

range of values of the sticker parameter a. In Figure 8

(lower panel) the same has been done for the densities.

From these figures, we infer that for values of a larger than

about 4.0kBT all systems shear band in some range of

imposed shear rates. Outside these ranges, the systems

behave normally, i.e. develop linear flow fields with shear

rates equal to the imposed shear rates. With increasing a,

the density in the high shear rate band becomes smaller.

Eventually, the high shear rate band is very narrow, has a

very high shear rate and a very low density, and so has all

the characteristics of a crack.
Figure 8. Maximum and minimum shear rates _g1;2 (upper panel)
andmaximum andminimumnumber densities r (lower panel) as
a function of the overall imposed shear rate _g and strength of the
sticker forces a. Shear banding is observed for a>4.0kBT, as
themaximum andminimum shear rates start to deviate from the
imposed shear rate.
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In this section, we will first study the influence of using

stick boundary conditions on the flow profiles instead of

the periodic boundary conditions used so far. We will

study the same system as before, i.e. the one characterized

by Table 1 except for the value of a, which is taken to be

5.1kBT. We then change the density in the system to half of

its original value and study the time development of the

emerging bands after start up of shear.
Stick Boundary Conditions

In our previouswork, we found that at imposed shear rates

slightly beyond those where shear banding occurred,

stresses were still decreasing with increase in imposed

shear rates. We attributed this behaviour to the finite sizes

of our systems and possibly to the use of periodic boundary

conditions. Whereas with periodic boundary conditions,

the ‘interface’ between the two bands may occur any-

where in the box, with stick boundary conditions its

position is dictated by the moving boundaries. In Figure 9,

we have plotted average velocities as a function of

the position along the gradient direction as they were

measured in the box, i.e. without shifting the profile along

the gradient direction. Indeed it is seen that the high shear

rate bands occur in the upper part of the box and the low

shear rate bands in the lower part. In all cases, the

‘interfaces’ are quite narrow and the shear rates in both

bands are well defined. As a result, the positions of the

interfaces are fixed by the lever rule
Figu
hei
1.6,
con
box
the
_g ¼ f _g1 þð1� f Þ _g2 (11)
re 9. Velocity in the shear direction vx as a function of the box
ght. The imposed shear rate is (from bottom to top): 0.2, 1.0,
2.8, 4.0, 8.0, 12.0 and 16.0 t�1. Stick, nonperiodic boundary
ditions were applied at the top and bottom of the simulation
. The top wall moves in the x-direction at a speed of _gLy , while
bottom was fixed.
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Figure 10. The local shear rate of the high and low shear bands _g1;2
versus the imposed shear rate _g for a¼ 5.1kT. Results from the
periodic boundary conditions are represented by crosses, the
shear rates measured in the stick boundary conditions simu-
lations are given by the circles.

Figure 11. Shear stress Sxy in flow direction as a function of the
shear rate _g for a¼ 5.1kT. Results from the periodic boundary
conditions are represented by crosses, the stress measured in the
stick boundary conditions simulations are given by the circles.
The dashed boxes indicate the imposed shear rates where shear
bands are observed.
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where f denotes the fraction of the box occurring in the low

shear rate band.

In Figure 10, we have plotted the shear rates in the two

bands as a function of the imposed shear rate, both for the

present box with stick boundary conditions (circles) and

for the box with periodic boundary conditions described

previously (crosses). Two differences between these two

cases are immediate. First, the shear rates in the two bands

are more extreme in the stick boundary case than in the

periodic boundary case, i.e. the low shear rates are smaller

in the stick boundary case than in the periodic boundary

case and the high shear rates are larger. Moreover, the

range of imposed shear rates where shear banding occurs

is somewhat larger in the stick boundary case than in

the periodic boundary case, extending to larger values of

imposed shear rates.

In Figure 11, we have plotted the stresses in both cases

as a function of the imposed shear rates. At those shear

rates where no shear banding occurs, stresses are margin-

ally smaller in the boxes with stick boundary conditions

compared to those in the boxes with periodic boundary

conditions. This may probably be due to the fact that the

stick boundary condition effectively reduces the volume of

the box a bit. The volume occurring in the denominator of

the expression for the stress is therefore actually a bit

smaller than the nominal volume of the box used in our

calculations. The regions where shear banding occurs

are indicated by dashed boxes in both cases. Again, it is

obvious that in the case of stick boundary conditions the

range of shear rates over which banding occurs is larger

than in the case of periodic boundary conditions. Second,

while in the case of periodic boundary conditions, stresses

were decaying at imposed shear rates slightly above the
Macromol. Theory Simul. 2007, 16, 742–754
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banding regime, this does not occur with stick boundary

conditions. On the other hand, with stick boundary

conditions, a slight decrease of the stress occurs in the

banding regime at low shear rates. A third interesting

point to be mentioned concerns the growth of stresses

with imposed shear rates in the (major part of the) banding

regime. It is clearly seen that in the banding regime, with

increasing shear rates, stresses increase according to a

power law with exponent close to 0.3. This is in very good

agreement with experimental findings by Berret et al.[1]
Time Evolution of the Bands After Start up of Shear

Finally, we study the evolution of bands emerging after

start up of shear, and how they finally settle in a stationary

state. In order to make possible the occurrence of

multibanded states, it is advantageous to use boxes which

are substantially larger along the gradient direction than

the one used until now. We, therefore, set the box

dimension along the gradient direction, i.e. the height of

the box, equal to 43s. At the same time, in order to keep

CPU times as short as possible, we change the volume

fraction of hard material from 0.2 to 0.1. With a value of

a¼ 9.5kBT we obtain multiply banded states, well suited

for visual inspection and stress calculations. In all the cases

described in this section, the shear ratewas equal to 7.5(1/t).

In Figure 12, we have plotted the evolution of the

average velocity field in a system starting with a linear

velocity profile at time zero. In the top panel, every line

represents the average velocity in a slab at a height

proportional to the number of the line, counted from the

bottom of the figure. The width of each slab was 0.72s. It is
DOI: 10.1002/mats.200700029
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Figure 12. Time evolution of the velocity profile (top) and corresponding stress (bottom). Every
line in the top figure represents the velocity at evenly distributed heights in the simulation box:
little separation between lines corresponds to low shear rate bands. The initial velocity profile
was linear with an imposed shear rate of 7.5(1/t). Eventually, the system separates in one high
and one low shear rate band by merging several bands. At the bottom, we plot the correspond-
ing stress (grey) and a running average over blocks of 100 data points (black).
clearly seen that after start up the system quickly splits

into several bands. Bands with widely separated lines are

high shear rate bands, those with little or no separation

between the lines are low shear rate bands. At the very

early stages, five low shear rate bands and five high shear

rate bands may be discerned. After some quick rearrange-

ments, from time 15t on, the system temporarily settles in

a quasi-stationary state, with three bands of each type. At

time about 100t two low shear rate bands merge into one.

Thismay also be expressed by saying that a high shear rate

band between two low shear rate bands ceases to exist. So

after this process, two bands, one of each type, have
Figure 13. The time evolution of the velocity profile and stress for
a simulation of an initially banded velocity profile, plotted in the
same way as Figure 12. The overall imposed shear rate equals
7.5(1/t).
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disappeared and we are left with

four bands, two of each type. At

time 150t two more bands dis-

appear, after which the system

settles in its final state, consisting

of one low shear rate band and one

high shear rate band. An apparent

drift of all velocities seems to take

place concomitantly with this last

event. The explanation for this

comes from the fact that during

all runs we kept the total momen-

tum equal to zero. Since the

density in the high shear rate

band is very low compared to that

in the low shear rate band, the

distribution of the velocities is

necessarily skew.

In the upper panel of Figure 13,

flow profiles are sketched for a
similar system, but now prepared in a banded state at time

zero. After some vague banding at early times, but mainly

some substantial redistribution of mass, quickly the final

stationary state appears at about t¼ 20t.

In the lower panels of Figure 12 and 13, we have plotted

the stress development with the evolution of the velocity

in the corresponding upper panel. In both cases, the stress

decays quickly in order to settle at some stationary or

quasi-stationary value. In the latter case, with every major

event bringing the system from one quasi-stationary

state to the next, the stress diminishes substantially. This

process continues till the final stationary state is selected

such that the stress is minimal. Since in every (quasi)

stationary state the stress is constant throughout the

system, the volume-averaged stress discussed so far is

proportional to the rate of dissipation
W ¼
Z

dVr � ðS � uÞ (12)
We, therefore, hypothesize that the final stationary

state, whether banded or not, is selected on the basis of

minimal overall dissipation. Obviously, the local dissipa-

tion does not have to be constant throughout the system.
Summary

We have discussed results of simulations of a particular

model of core–shell particles. Each particle of our model

consists of a hard core to which a thick and soft corona is

attached. The hard core and the corona together give rise to

interactions between the particles described by a soft

potential of mean force f. Besides these interactions, to
www.mts-journal.de 751
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each pair of particles a number nij is attributed, which

describes the thermodynamic state of the overlapping

coronas. Temporary deviations of the sticker numbers from

their equilibrium values give rise to transient forces, which

contribute substantially to the rheological properties of the

system. Since frictions are large, or in other words

characteristic times are long, the propagator of choice

is a first order Brownian propagator. In Appendix A, we

describe a Gallilei invariant second-order Langevin propa-

gator, whichmay be of use in similar systemswith smaller

frictions.

In the section Elongational viscosities, we have found

that elongational viscosities, provided the Trouton factor is

included in their definition and they are plotted against

8 _"2, coincide with shear viscosities plotted against 2 _g2.

Note that the same should hold when plotted against 2 _"

and _g, respectively. Once we realize that simple shear flow

is composed of a rotation and a planar elongation with

elongation rate equal to 1
2
_g these findings are obvious.

In the section Superposition rheology, we studied the

response of a sheared system to a perturbation causing a

flow along themain vorticity directionwith gradient along

the main gradient direction. From the results, we inferred

that at high shear rates the particles gather together in

planes perpendicular to the gradient direction and that at

very high shear rates these planes are slightly anisotropic.

It will be interesting to extend these studies in order to

provide guidance to the interpretation of future experi-

ments in superposition rheology.

In the final section, we found that with a suitable choice

of the sticker force strength a, the system could bemade to

shear band in a well-defined regime of shear rates. a

should be chosen such that the sticker forces yield the

dominant contribution to the stress tensor. Shear banding

then occurs around values of _gwhere sticker forces become

constant or even decrease with shear rate. In rate

controlled simulations using stick boundary conditions,

stresses in the banded regime are selected proportional to

_g0:3, in good agreement with experiments on worm-like

micelles. We hypothesize that banding of the system

occurs in an effort to minimize dissipation.

Finally, let us mention that the model, used in this

paper, not only applies to core–shell particles or star

polymer but also with small adjustments can be used to

simulate other systems, like for example polymer melts

and solutions or block copolymers.
Appendix A: Second Order Model

In this appendix, we present a set of second order

equations of motion for our model. In order to do so, we

associate a mass m and velocity vnij with every sticker

number nij. We take the probability distribution that we
Macromol. Theory Simul. 2007, 16, 742–754
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want to sample at equilibrium to be given by
Peq / exp

(
�b

X
i

1

2
mv2

i þ
X
i;jh i

�
fðrijÞ þ

1

2
mv2nij

þ 1

2
aðnij � n0ðrijÞÞ2

�)
; (A1)
where m is the mass and vi is the velocity of the particle i.

The standard procedure to derive the Fokker–Planck

equations admitting this distribution as its stationary

state[30–32] then leads to the following equation of motion:
vi

t
¼

X
j

�ri fðrijÞ þ a½nij � n0ðrijÞ�
dn0

drij

rij
rij

� �
þ fFi þ fRi

m
dvnij
dt

¼ �a½nij � n0ðrijÞ� þ f Fnij þ f Rnij

(A2)
where fFi and fRi are the friction and random force acting on

particle i, and fFnij and fRnij are the friction and random force

acting on sticker number nij. In both cases, the friction and

random forces are related by the fluctuation–dissipation

theorem, to be discussed next.

We start with fFi and fRi . Among the many possible

choices for the friction force fFi , there is one outstanding

choice, first introduced by Hoogerbrugge and Koelman in

their well-known DPD model.[33,34] In accordance with

their model, we choose fFi to be a sum of pair frictions

proportional to vij � r̂ij r̂ij, when vij¼vi�vj and r̂ij is a unit

vector in the direction of ri� rj. The reason for the

particular usefulness of this type of friction forces is that

they are Gallilean invariant, and therefore can be used to

simulate systems in flow. Once the friction forces are

defined, the random forces are dictated[35] by the

fluctuation–dissipation theorem:
fFi ¼ �
P
j

~jðnijÞvij � r̂ij r̂ij

fRi ¼
P
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT~jðnijÞ=dt

q
u r̂ij

(A3)
where dt is the time step and u is a random number with

zero mean and unit variance. We have added a tilde in the

friction constant ~jðnijÞ in order to discriminate it from the

friction used in the main text. Similarly to what was done

in the main text, we take ~jðnijÞ to be given by
~jðnijÞ ¼ ~js
1

2
nij þ nij

		 		
 �
n0ðrijÞ þ ~j0 (A4)
We choose n0(rij) to be the same as in the main text.
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Similarly, we take f Fnij proportional to �vnij and find fRnij
from the fluctuation–dissipation theorem:
Fig
bas
of s
((ni
imp
the
imp

Macrom

� 2007
f Fnij ¼ �atvnij

f Rnij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

at
dt

p
u

(A5)
Wehavewritten the constant of proportionality in f Fnij as

at, in order to emphasize the role of t as a characteristic

time. This can be understood by going back to the equation

of motion for nij, but now omitting the random term:
m
dvnij
dt

¼ �a½nij � n0ðrijÞ� � atvnij (A6)
This equation describes the time evolution of a damped

harmonic oscillator. In case m is chosen smaller than at2/4,

nij will exponentially approach n0(rij) with characteristic

time t.

We end this appendix with a short test of the second

order model just described. Typical masses of the core–

shell particles are in the range of 1.2� 109 g�mol�1. To

prove that the fluctuation–dissipation theorem has

been applied correctly, we measured the temperature in

three different ways. Since the probability distribution at

equilibrium has three independent Gaussian factors,

pertaining to the velocities v of the particles, the velocities

vnij of the sticker numbers, and the harmonic potential

for the number of stickers (nij�n0), we can calculate
ure 14. Instantaneous temperature for second order model
ed on particle velocity (v; grey), rate of change for number
tickers (vnij; solid line) and fluctuations of number of stickers
j� n0); dotted). Both kinetic terms fluctuate around the
osed temperature (300 K), while the temperature based on
fluctuations in the number of stickers slowly decays to the
osed temperature.
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temperatures based on these three sets of degrees of

freedom. In Figure 14, we plot the actual temperature

during the simulation for the three terms. The temperature

based on the particle velocity and rate of change of

the number of stickers both fluctuate around the imposed

temperature of 300 K. The instantaneous temperature

based on the fluctuations in the number of stickers

deviates from the imposed temperature at the start of the

run and slowly decays to the imposed temperature. Note

that the simulation time is merely a fraction of t, which

takes 3 weeks of CPU time in this simulation.
Appendix B: Continuous Planar Elongational
Flow Boundary Conditions

Since we restrict ourselves to planar elongational flow, we

can leave one axis out of our considerations. For

convenience, we let the two elongational axes be the

x-axis and the y-axis and assume that the periodic box

initially has unit vectors b1¼ (cosu, sinu)T and b2¼ (�sinu,

cosu)T. From an integration of Equation (5), we find that

after a time t these vectors have developed into

b1ðtÞ ¼ ðl cos u; l�1 sin uÞT and b2ðtÞ ¼ ð�l sin u; l�1 cos uÞT

with l ¼ expð _"tÞ. By adjusting u we make sure that after

some time t¼ tp, the new vectors coincide with two lattice

vectors generated by the original unit cell:

b1ðtpÞ ¼ N11b1 þ N12b2

b2ðtpÞ ¼ N21b1 þ N22b2

where Nij are integers. Solving for Nij we find

N11 ¼ lp � ðlp � l�1
p Þ sin2 u

N12 ¼ N21 ¼ �ðlp � l�1
p Þ sin u cos u

N22 ¼ l�1
p þ ðlp � l�1

p Þ sin2 u

Once a set of Nij found by solving these equations,

u follows from

tan u ¼ sin2 u

sin u cos u
¼ N11 � lp

N12

lp þ l�1
p ¼ N11 þ N22

Among the many solutions found by Kraynik and

Reinelt one is given by N11¼ 2, N12¼�1 and N22¼ 1. u and

tp ¼ _"�1 ln lp then follow from the last two equations.
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