

# Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la **versión de autor** del artículo publicado en: This is an **author produced version** of a paper published in:

Journal of Chemical Technology and Biotechnology 91.11 (2016): 2882 - 2887

DOI: http://dx.doi.org/10.1002/jctb.4904

**Copyright:** © 2016 Society of Chemical Industry

El acceso a la versión del editor puede requerir la suscripción del recurso Access to the published version may require subscription

| 1      | Degradation of imidazolium-based ionic liquids by                                                                       |  |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 2      | catalytic wet peroxide oxidation with carbon and                                                                        |  |  |  |  |  |  |  |  |
| 3      | magnetic iron catalysts                                                                                                 |  |  |  |  |  |  |  |  |
| 4<br>5 | Macarena Munoz *, Carmen M. Domínguez, Zahara M. de Pedro, Asunción Quintanilla, Jose A. Casas<br>and Juan J. Rodriguez |  |  |  |  |  |  |  |  |
| 6      | Ingenieria Quimica, Universidad Autonoma de Madrid, Crta. Colmenar km 15, 28049 Madrid, Spain                           |  |  |  |  |  |  |  |  |
| 7<br>8 | *Corresponding author phone: +34 91 497 3991; fax: +34 91 497 3516; e-mail:<br>macarena.munnoz@uam.es                   |  |  |  |  |  |  |  |  |
| 9      | Keywords: CWPO; ionic liquid; imidazolium; activated carbon; graphite; alumina; magnetic catalyst.                      |  |  |  |  |  |  |  |  |
| 10     |                                                                                                                         |  |  |  |  |  |  |  |  |
| 11     |                                                                                                                         |  |  |  |  |  |  |  |  |
| 12     |                                                                                                                         |  |  |  |  |  |  |  |  |
| 13     |                                                                                                                         |  |  |  |  |  |  |  |  |
| 14     |                                                                                                                         |  |  |  |  |  |  |  |  |
| 15     |                                                                                                                         |  |  |  |  |  |  |  |  |
| 16     |                                                                                                                         |  |  |  |  |  |  |  |  |
| 17     |                                                                                                                         |  |  |  |  |  |  |  |  |

# 1 Abstract

2 BACKCGROUND: The "green" image of ionic liquids (ILs) is changing in the last few years 3 since numerous works have evidenced their non-biodegradability, persistence and high 4 ecotoxicity, particularly for the most common imidazolium-based ILs. In this work, the feasibility 5 of catalytic wet peroxide oxidation for the degradation of imidazolium-based ILs of different alkyl chain lengths has been studied under selected operating conditions (1000 mg  $L^{-1}$  IL, stoichiometric 6 H<sub>2</sub>O<sub>2</sub> dose, 2 g L<sup>-1</sup> catalyst, pH 3 and 90 °C temperature) using different catalysts such as 7 magnetic iron (Fe<sub>3</sub>O<sub>4</sub>) supported on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and activated carbon (AC) as well as bare carbon 8 9 materials (graphite, AC). The catalytic activity and stability and the efficiency on  $H_2O_2$ 10 consumption have been evaluated.

11 RESULTS: Although both AC-based catalysts led to the conversion of the IL, they yielded a low 12 H<sub>2</sub>O<sub>2</sub> consumption efficiency (24% and 45% with AC and Fe<sub>3</sub>O<sub>4</sub>/AC, respectively) due to the fast 13 decomposition of H<sub>2</sub>O<sub>2</sub> and the recombination of radical species into H<sub>2</sub>O and O<sub>2</sub>, non-reactive 14 species under the operating conditions. In contrast, graphite and  $Fe_3O_4/\gamma - Al_2O_3$  showed high 15 activity allowing complete conversion and relatively high mineralization degrees of all the ILs 16 tested in 1 h reaction time. Among those catalysts, Fe<sub>3</sub>O<sub>4</sub>/γ-Al<sub>2</sub>O<sub>3</sub> exhibited a considerably greater stability upon 4 successive uses where iron leaching was negligible and the magnetic properties 17 18 were maintained.

19 CONCLUSIONS: CWPO has proved to be an interesting alternative for the treatment of 20 imidazolium-based ILs in water. The application of Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> is particularly promising due to 21 its high activity, remarkable stability and easy magnetic recovery.

- 22 23
- 24
- 25
- 26
- 27
- 28

- 1
- 2

# 3 1. Introduction

Ionic liquids (ILs), semi-organic salts that are liquid below 100 °C, have gained considerable attention in the last two decades due to their unique properties such as high dissolving power, tunable structure, non-flammability and thermal, chemical and electrochemical stability. <sup>1, 2</sup> Accordingly, they have emerged as promising "green" replacements for volatile organic solvents to be used in a wide range of applications, such as separation, coating, chemical synthesis, energy storage and transformation. <sup>1, 3, 4</sup>

9 Certain amounts of ILs are expected to be present in industrial wastewater since their synthesis routes frequently involve aqueous media and their industrial applications can also produce water streams.<sup>3, 5</sup> 10 11 This fact represents an environmental concern since, although the low vapor pressure of ILs guarantees 12 the air protection from the emissions of toxic vapors, their stability make them hazardous for water and 13 soil. A number of works have evidenced the non-biodegradability and high ecotoxicity of ILs, particularly for the most common imidazolium-based ILs.<sup>6-11</sup> Bubalo et al. (2014)<sup>10</sup> established that 14 15 almost none of the commonly used imidazolium-based ILs could be classified as readily biodegradable according to the Organization for Economic Cooperation and Development (OECD) standard tests 16 (OECD, 1992<sup>12</sup>). In addition, those ILs have shown to be more toxic than some conventional hazardous 17 organic compounds like phenol, chloroform or acetonitrile, among others.<sup>8</sup> Their ecotoxicity is mainly 18 related to the alkyl chain length, ranging from negligible toxicity values (EC<sub>50</sub> >5000 mg L<sup>-1</sup>) to 19 strongly toxic ones (EC<sub>50</sub> < 0.3 mg L<sup>-1</sup>) with increasing the alkyl chain from C<sub>2</sub> to C<sub>16</sub>.<sup>11</sup> 20

In this context, the application of imidazolium-based ILs must be assessed considering the risk associated to their entire life-cycle, which implies that the industrial processes using those ILs need to consider their recovery or destruction from the residual effluents.<sup>8, 10, 13</sup> Adsorption onto activated carbon has proved to be an effective method for the recovery of ILs.<sup>14</sup> However, important limitations have been found regarding the length of the alkyl chain and the nature of the counter anion, since both

issues affect the size and hydrophobicity of the molecule.<sup>14, 15</sup> In this sense, the destruction of those ILs 1 2 from diluted wastewater streams seems to be the most advisable solution. Due to their high stability and 3 resistance to biodegradation, chemical oxidation treatments would represent the best option for their removal. Several advanced oxidation processes have been so far investigated for such purpose.<sup>4, 9, 16-18</sup> 4 Among them, Fenton oxidation is received growing attention and has been so far successfully applied.<sup>19-</sup> 5 <sup>21</sup> In recent contributions, <sup>11, 22</sup> we reported complete disappearance of imidazolium-based ILs ([IL]<sub>0</sub> = 6 1000 mg L<sup>-1</sup>) and more than 50% mineralization under the optimum operating conditions ( $[Fe^{3+}] = 50$ 7 mg L<sup>-1</sup>; stoichiometric dose of H<sub>2</sub>O<sub>2</sub>; 70-90 °C). Non-toxic effluents were obtained after 4 h treatment. 8 9 An important drawback of the conventional Fenton process is the continuous loss of catalyst which 10 needs to be separated from the effluent to avoid additional water pollution. This has promoted the 11 investigation towards active and stable solid catalysts, giving rise a growing literature on heterogeneous Fenton oxidation or the so-called catalytic wet peroxide oxidation (CWPO).<sup>23-27</sup> Although this 12 technology has been tested with a wide range of industrial wastewaters,<sup>28-30</sup> its application to ILs 13

14 oxidation has not been reported so far.

The use of magnetic catalysts is attracting increasing attention in the last few years due to their high 15 activity as well as to their easy recovery from the reaction medium by applying an external magnetic 16 field.<sup>31-36</sup> Magnetic activated carbon-based catalysts have proved to be highly active in the oxidation of 17 dyes.<sup>31</sup> In the same line, Munoz et al. (2013)<sup>34</sup> demonstrated the better performance of a magnetic iron 18 19 on  $\gamma$ -alumina compared to other conventional catalysts in the CWPO of chlorophenols. On the other 20 hand, the interest towards stable catalysts avoiding metal leaching has also promoted the exploration of 21 bare carbon materials, with surface redox properties, allowing the decomposition of hydrogen peroxide 22 into radical species. Promising results have been obtained on the use of activated carbon, graphite and 23 carbon black as CWPO catalysts for the treatment of synthetic phenol-bearing and some real industrial wastewaters.<sup>29, 37, 38</sup> 24

Here, we study the feasibility of CWPO for the treatment of synthetic wastewater containing different imidazolium-based ILs, the IL family with most industrial applications. The oxidation runs have been carried out at 90°C using different catalysts including magnetic iron (Fe<sub>3</sub>O<sub>4</sub>) on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and activated carbon (AC) as well as bare carbon materials (graphite (G) and AC). Their activity and stability have been evaluated together with the efficiency of H<sub>2</sub>O<sub>2</sub> consumption. The performance of the process has been followed in terms of IL conversion, TOC reduction and H<sub>2</sub>O<sub>2</sub> decomposition. The endreaction organic acids have been analyzed.

6

## 7 2. Materials and methods

#### 8 2.1. Chemicals

9 Imidazolium ILs of four different alkyl chain lengths were tested in this work: 1-ethyl-3-10 methylimidazolium chloride ([C<sub>2</sub>mim]Cl, >98%), 1-butyl-3-methylimidazolium chloride ([C<sub>4</sub>mim]Cl, 11 >98%). 1-octyl-3-methylimidazolium chloride  $([C_8mim]Cl,$ >98%) and 1-hexadecyl-3-12 methylimidazolium chloride ( $[C_{16}mim]Cl$ , >98%). They were purchased from Iolitec, Green Solutions 13 and Solchemar. The Fe(NO<sub>3</sub>)<sub>3</sub> salt used for the preparation of the Fe-bearing catalysts and the hydrogen 14 peroxide solution (30 wt.%) in a stable form were supplied by Panreac and Sigma-Aldrich, respectively. 15 All the reagents were of analytical grade and were used without further purification.

# 16 *2.2. Catalysts*

The magnetic catalysts (4% wt. Fe), Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub>/AC, were prepared following the procedures described elsewhere.<sup>31, 34</sup> Briefly, the former were prepared by incipient wetness impregnation followed by calcination in air (300 °C) (4 h) and reduction in H<sub>2</sub> atmosphere at 350 °C (2 h) whereas the latter was simply treated at 600 °C under N<sub>2</sub> (1 h) after the previous impregnation.  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> was supplied by Merck (ref.: 1010951000) and the carbon materials, activated carbon (AC) and graphite (G), were purchased from Merck (ref.: 102514) and Sigma-Aldrich (ref.: 282863), respectively. All samples were provided in powder form (<80 µm).

2

#### 2.3. Catalyst characterization

3 of the fresh catalysts was The porous structure characterized from the nitrogen adsorption-desorption isotherms at -196 °C using a Micromeritics Tristar 3020 apparatus. The samples 4 were previously outgassed overnight at 150 °C to a residual pressure of  $10^{-3}$  Torr in order to ensure a dry 5 clean surface. The external or non-microporous surface area (Aext) was calculated by the t-method. The 6 7 iron content of the catalysts was analyzed by inductively coupled plasma (ICP/MS) Elan 6000 8 PerkinElmer Sciex. The characterization of the catalysts is summarized in Table 1.

9

### 10 2.4. CWPO experiments

11 CWPO runs were carried out batch-wise for 4 h in a 100 mL stirred three-necked glass reactor 12 equipped with a reflux condenser and temperature control. The reaction volume was 70 mL and the starting concentrations were 1000 mg  $L^{-1}$  IL and the theoretical stoichiometric amount of H<sub>2</sub>O<sub>2</sub> for 13 complete oxidation of IL up to CO<sub>2</sub>, H<sub>2</sub>O, HCl and N<sub>2</sub> (3900, 4500, 5100 and 5800 mg L<sup>-1</sup> for 14 15  $[C_2 min]Cl$ ,  $[C_4 min]Cl$ ,  $[C_8 min]Cl$  and  $[C_{16} min]Cl$ , respectively). In a typical run, an aqueous solution 16 containing the aforementioned concentration of the corresponding IL was placed into the reactor. Once 17 the temperature was equilibrated, 1.5 mL of the hydrogen peroxide solution followed by the catalyst 18 (0.14 g) were added and that was considered the starting time for the reaction. All the experiments were 19 performed at 90 °C and atmospheric pressure, adjusting the initial pH of the reaction medium to 3 with a 20 nitric acid solution (1 M).

Experiments in absence of  $H_2O_2$  were also conducted in order to check the adsorption of the ILs onto the catalysts tested. Experiments in absence of catalyst were carried out as well and negligible disappearance of IL was always observed (<5%). All the experiments were performed by triplicate being the standard deviation always below 5%.

### 2.5. Analytical methods

4 The progress of the reactions was followed by periodically withdrawing and analyzing liquid 5 samples from the reactor. The catalyst was separated by filtration using a PTFE filter (pore size 0.45 6 µm). Imidazolium-based ILs were quantified by means of high performance liquid chromatography, 7 HPLC-UV (Varian, Mod. ProStar), by a Synergi<sup>™</sup> 4 µm Polar-RP 80 Å Phenomenex column (15 cm 8 length, 4.6 mm diameter) with a diode array detector (PDA detector) at 218 nm wavelength. The 9 analyses were carried out using different mixtures of phosphate buffer (Na<sub>2</sub>HPO<sub>4</sub>, 5 mM - H<sub>3</sub>PO<sub>4</sub>, 7.5 mM) aqueous solution and acetonitrile at 0.75 mL min<sup>-1</sup> as mobile phase, depending on the polarity of 10 the IL tested.<sup>11</sup> Total organic carbon (TOC) was measured with a TOC analyzer (Shimadzu TOC V<sub>SCH</sub>). 11 12 Short-chain organic acids were analyzed by ion chromatography with chemical suppression (Metrohm 13 790 IC) using a conductivity detector. A Metrosep A supp 5-250 column (25 cm length, 4 mm internal 14 diameter) was used as stationary phase and a 3.2 mM Na<sub>2</sub>CO<sub>3</sub> aqueous solution as the mobile phase. 15 Hydrogen peroxide concentration was determined by colorimetric titration with a UV 2100 Shimadzu UV-VIS spectrophotometer.<sup>39</sup> Fe leached to the reaction medium was measured by the *o*-phenantroline 16 method.40 17

18

### 19 **3. Results and discussion**

### 20 3.1. Catalysts screening: activity and $H_2O_2$ efficiency

A previous set of experiments in absence of  $H_2O_2$  confirmed that none of the catalysts tested showed significant adsorption of  $[C_2mim]Cl$  (<5%), even in the case of AC, with a high BET surface area (1019 m<sup>2</sup> g<sup>-1</sup>) (Table 1). These results are consistent with those reported by Palomar et al. (2009)<sup>14</sup>, where very low adsorption was observed for short-chain imidazolium-based ILs. Figure 1 shows the time-evolution curves of  $[C_2mim]Cl$  concentration,  $H_2O_2$  conversion and TOC upon CWPO with the catalysts tested. As observed, all the catalysts yielded complete conversion of the IL but significant differences were found among them. Whereas the Fe<sub>3</sub>O<sub>4</sub>/AC and G catalysts allowed complete disappearance of the IL upon 15 min reaction time, 30 min were required in the case of Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and 4 h with the bare AC. The values of the pseudo first-order rate constants were 0.79, 0.59, 0.09 and 0.02 min<sup>-1</sup>, respectively (see Figure S1 of Supplementary Material).

7 Although the iron content of the catalysts was highly different (Table 1), almost complete 8 decomposition of H<sub>2</sub>O<sub>2</sub> occurred after 4 h reaction time in all cases (conversion values of 89, 100, 98 9 and 92% were obtained for Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4</sub>/AC, G and AC, respectively) but fairly different 10 percentages of mineralization were achieved. It is noteworthy to mention that the bare AC (0.04% Fe. 11 Table 1) led to a reduction of TOC around 20% whereas the other three catalysts achieved around 50-12 60%, equivalent to the mineralization obtained upon conventional homogeneous Fenton oxidation under similar operating conditions.<sup>22</sup> Accordingly, the efficiency of hydrogen peroxide consumption ( $\eta_{\rm H2O2}$ ), 13 14 defined as the amount of TOC converted per unit of hydrogen peroxide consumed, was also 15 significantly influenced by the catalyst used. Efficiencies of 62, 45, 60 and 24% were calculated at the 16 end of the 4h-experiments for the Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4</sub>/AC, G and AC catalysts, respectively. The 17 fairly low efficiency obtained with the bare AC catalyst is directly associated with the high ability of 18 AC for  $H_2O_2$  decomposition, related to its high surface area (Table 1). The fast decomposition of  $H_2O_2$ 19 over the carbon surface, which is entirely available due to the negligible adsorption of the IL, promotes 20 parasitic reactions consuming HO and HOO radicals to produce O<sub>2</sub>, a non-effective species under these operating conditions.<sup>37</sup> In the same line, the efficiency obtained with the Fe<sub>3</sub>O<sub>4</sub>/AC catalyst is 21 22 lower than those obtained with G and Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalysts due to the faster decomposition of H<sub>2</sub>O<sub>2</sub>, 23 which was completely consumed in 1 h reaction time. These results are again related to the 24 abovementioned rapid decomposition of  $H_2O_2$  promoted by the AC support as well as to the contribution 25 of homogeneous Fenton reaction since a significant amount of iron was leached from the Fe<sub>3</sub>O<sub>4</sub>/AC

1 catalyst (12 mg L<sup>-1</sup> detected in the liquid phase after 4 h). Although the decomposition of  $H_2O_2$ 2 promoted by G was more progressive along the course of the reaction, that catalyst also suffered from 3 iron leaching (3.2 mg L<sup>-1</sup>), being Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> the most stable catalyst, with a leached iron 4 concentration of 0.25 mg L<sup>-1</sup> at the end of the 4h-experiment. Additional homogeneous Fenton 5 experiments carried out with 0.25 mg L<sup>-1</sup> Fe<sup>3+</sup> did not lead to any significant decomposition of H<sub>2</sub>O<sub>2</sub> and 6 TOC mineralization after 4 h reaction time. Therefore, the contribution of the homogeneous reaction at 7 that iron concentration can be considered negligible.

8 According to previous works,<sup>11, 22</sup> the final products obtained upon homogeneous Fenton oxidation 9 of [C<sub>2</sub>mim]Cl were mainly short-chain organic acids. In this case, those compounds represented around 10 60% of the residual TOC in the cases of the Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and G catalysts, 45% with the Fe<sub>3</sub>O<sub>4</sub>/AC one 11 and only 20% with the bare AC. The concentration of these compounds is collected in Table S1 of 12 Supplementary Data. In consonance with the low amount of short-chain organic acids obtained and the 13 low TOC reduction achieved with the AC-based catalysts, hydroxylated intermediates of higher 14 molecular weight than the starting IL seem to be formed.<sup>22</sup>

The results with  $Fe_3O_4/\gamma$ -Al<sub>2</sub>O<sub>3</sub> and G are comparable to those obtained upon homogeneous Fenton oxidation under similar operating conditions,<sup>22</sup> but the heterogeneous process has the advantage that the catalyst can be recovered and further reused. Those two catalysts yielding the best results in terms of H<sub>2</sub>O<sub>2</sub> consumption efficiency were selected for the following experiments.

19

# 20 *3.2. Dependence on the alkyl chain length*

The length of the alkyl chain determines the potential application of the imidazolium ILs since it shows a significant effect on the melting point and hydrophobicity, among other physicochemical properties.<sup>41</sup> Moreover, it also strongly affects its ecotoxicity.<sup>11</sup> Therefore, the effect of the alkyl chain length of imidazolium-based ILs on their behavior upon CWPO must be analyzed. Figure 2 compares

1 the results obtained with the four ILs tested. As can be seen, regardless the alkyl chain length all of them 2 were completely converted within 60 and 15 min reaction time, with the Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and G catalysts, 3 respectively. As observed, the values of the pseudo first-order rate constants, collected in Table 2, are 4 fairly similar. Nevertheless, it should be taken into account that the initial concentration of H<sub>2</sub>O<sub>2</sub> used 5 for their removal, which is included in the kinetic constant, can be different depending on their 6 stoichiometry for complete mineralization. In fact, the mineralization of the ILs seems remarkably 7 affected by the alkyl chain length (Table 2, see Figure S2 in the Supporting Information for time-8 evolution of TOC). In this sense, a decay on the mineralization with increasing the alkyl chain length was observed with both  $Fe_3O_4/\gamma$ -Al<sub>2</sub>O<sub>3</sub> and G catalysts. Accordingly, the efficiency on H<sub>2</sub>O<sub>2</sub> 9 10 consumption with increasing the alkyl chain length was decreased (Table 2).

11

### 12 *3.3. Catalysts stability and reusability*

13 To learn on the stability of  $Fe_3O_4/\gamma$ -Al<sub>2</sub>O<sub>3</sub> and G catalysts, they were used in the oxidation of 14 [C<sub>2</sub>mim]Cl upon four successive runs with simply drying at low temperature overnight (60 °C) after 15 each use. Iron concentration in the liquid phase was analyzed at the end of the 4h-experiments in order 16 to evaluate possible iron leaching from the catalysts. The results obtained are depicted in Figure 3. 17 Although both catalysts allowed achieving complete conversion of [C<sub>2</sub>mim]Cl upon the four 18 consecutive cycles, G suffered a significant reduction of activity amounting about 70% and almost 50% 19 based on TOC removal and  $H_2O_2$  decomposition after the four consecutive runs, respectively. This loss 20 of activity is directly related to the iron leaching observed upon consecutive uses (Figure 3). In fact, the highest depletion of activity occurred from the first to the second run where 3.2 mg  $L^{-1}$  of iron were 21 22 analyzed in the liquid phase, representing 40 wt.% of the initial amount. Upon further runs, the amount 23 of dissolved iron was considerably lower and the activity was maintained. According to previous works,<sup>24, 42, 43</sup> iron leaching from the catalysts upon CWPO of organic pollutants is directly related to the 24

formation of oxalic acid (27 mg L<sup>-1</sup> in this work), which leads to the formation of a Fe-oxalate complex. In this respect, carbon-based catalysts have proved to be less resistant than  $Al_2O_3$ -based ones.<sup>24, 42, 43</sup> On the other hand, it has to be highlighted that the efficiency on the use of  $H_2O_2$  followed the same trend as the iron leaching, remaining almost unchanged from the second cycle for both catalysts.

5 The Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst was significantly more resistant to iron leaching than G. In this sense, 6 only a slight decrease of H<sub>2</sub>O<sub>2</sub> decomposition and TOC removal was observed from the first to the 7 second run, remaining almost unchanged for the next three consecutive uses. Accordingly, lower iron 8 leaching after each run was detected and the hydrogen peroxide efficiency was almost entirely 9 maintained. These results are consistent with previous works where Fe/Al<sub>2</sub>O<sub>3</sub> catalysts have proved to be fairly stable in both consecutive and long-term continuous experiments.<sup>43, 44</sup> Moreover, it has to be 10 pointed out that this catalyst, which exhibits magnetic properties ( $M_s = 2.24$  emu g<sup>-1</sup>)<sup>34</sup>, can be easily 11 12 separated from the reaction system by applying an external magnetic field after being used.

13

#### 14 **4.** Conclusions

15 CWPO has proved to be an effective process for the removal of imidazolium-based ILs regardless 16 their alkyl chain length. Among the catalysts tested, those based on AC yielded very low  $H_2O_2$ efficiencies due to the recombination of radical species into H<sub>2</sub>O and O<sub>2</sub>, non-reactive under the 17 operating conditions. Although Fe<sub>3</sub>O<sub>4</sub>/AC showed higher activity and H<sub>2</sub>O<sub>2</sub> consumption efficiency 18 19 compared to the bare AC, its stability was negatively affected by strong iron leaching. On the opposite, Fe<sub>3</sub>O<sub>4</sub>/γ-Al<sub>2</sub>O<sub>3</sub> and G showed high activities, allowing complete conversion of the ILs regardless their 20 21 alkyl chain lengths with high H<sub>2</sub>O<sub>2</sub> consumption efficiencies in short reaction times. In fact, their 22 performance was similar to that obtained by conventional homogeneous Fenton oxidation with the 23 advantage of avoiding the continuous loss of iron as well as the formation of iron sludge at the end of the process. Regarding the stability,  $Fe_3O_4/\gamma$ -Al<sub>2</sub>O<sub>3</sub> exhibited a good performance in a four-run test, 24

1 showing negligible iron leaching and maintaining almost unchanged the TOC reduction. Thus, the 2 Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> represents a promising catalyst for the CWPO of imidazolium-based ILs due to its high 3 activity, remarkable stability and easy recovery from the liquid phase given its magnetic properties.

4

### 5 Acknowledgments

This research has been supported by the Spanish MINECO through the project CTQ2013-4196-R and
by the CM through the project S2013/MAE-2716.

8

# 9 **References**

1 Welton T, Room-temperature ionic liquids. Solvents for synthesis and catalysis. *Chem Rev* 99:2071–
2096 (1999).

2 Rogers RD and Seddon KR, Ionic liquids as green solvents progress and prospects. *ACS symposium series. Washington (DC): American Chemical Society* 856 (2003).

3 Plechkova NV and Seddon KR, Applications of ionic liquids in the chemical industry. *Chem Soc Rev*37:123–150 (2008).

4 Zhou H, Lv P, Shen Y, Wang J and Fan J, Identification of degradation products of ionic liquids in an
ultrasound assisted zero-valent iron activated carbon microelectrolysis system and their degradation
mechanism. *Water Res* 47:3514–3522 (2013).

19 5 Burrell AK, Del Sesto RE, Baker SN, McCleskey TM and Baker GA, The large scale synthesis of

20 pure imidazolium and pyrrolidinium ionic liquids. ACS symposium series 9:449–454 (2007).

6 Gathergood N, Garcia MT and Scammells PJ, Biodegradable ionic liquids: part I. concept, preliminary
 targets and evaluation. *Green Chem* 3:166–175 (2004).

7 Docherty KM, Dixon JK and Kulpa Jr CF, Biodegradability of imidazolium and pyridinium ionic
liquids by an activated sludge microbial community. *Biodegradation* 18:481–493 (2007).

8 Romero A, Santos A, Tojo J and Rodríguez A, Toxicity and biodegradability of imidazolium ionic
liquids. *J Hazard Mater* 151:268–273 (2008).

9 Czerwicka M, Stolte S, Müller A, Siedlecka EM, Gołebiowski M, Kumirska J and Stepnowski P,
Identification of ionic liquid breakdown products in an advanced oxidation system. *J Hazard Mater*171:478–483 (2009).

10 Bubalo MC, Radošević K, Redovniković IR, Halambek J and Srček V, A brief overview of the
potential environmental hazards of ionic liquids. *Ecotoxicol Environ Saf* 99:1–12 (2014).

11 Domínguez CM, Munoz M, Quintanilla A, de Pedro ZM, Ventura SPM, Coutinho JAP, Casas JA
and Rodriguez JJ, Degradation of imidazolium-based ionic liquids in aqueous solution by Fenton
oxidation. *J Chem Technol Biotechnol* 89:1197–1202 (2014).

15 12 OECD, Ready biodegradability guideline for testing of chemicals, Guideline No. 301. Organization
16 for Economic Cooperation and Development (1992).

17 13 Coleman D and Gathergood N, Biodegradation studies of ionic liquids. *Chem Soc Rev* 39:600–637
18 (2010).

14 Palomar J, Lemus J, Gilarranz MA and Rodriguez JJ, Adsorption of ionic liquids from aqueous
effluents by activated carbon. *Carbon* 47:1846–1856 (2009).

| 1  | 15 Neves CM, Freire MG and Coutinho JAP, Improved recovery of ionic liquids from contaminated                     |
|----|-------------------------------------------------------------------------------------------------------------------|
| 2  | aqueous streams using aluminium-based salts. RSC Advances 2:10882–90 (2012).                                      |
| 3  | 16 Stepnowski P and Zaleska A, Comparison of different advanced oxidation processes for the                       |
| 4  | degradation of room temperature ionic liquids. J Photochem Photobiol A 170:45–50 (2005).                          |
| 5  | 17 Pernak J and Branicka M, Synthesis and aqueous ozonation of some pyridinium salts with                         |
| 6  | alkoxymethyl and alkylthiomethyl hydrophobic groups. Ind Eng Chem Res 43:1966–1974 (2004).                        |
| 7  | 18 Li X, Zhao J, Li Q, Wang L and Tsang SC, Ultrasonic chemical oxidative degradations of 1,3-                    |
| 8  | dialkylimidazolium ionic liquids and their mechanistic elucidations. Dalton Trans 1875–1880 (2007).               |
| 9  | 19 Siedlecka EM, Mrozik W, Kaczynski Z and Stepnowski P, Degradation of 1-butyl-3-                                |
| 10 | methylimidazolium chloride ionic liquid in a Fenton-like system. <i>J HazardMater</i> <b>154</b> :893–900 (2008). |
| 11 | 20 Siedlecka EM, Goêbiowski M, Kumirska J and Stepnowski P, Identification of 1-butyl-3-                          |
| 12 | methylimidazolium chloride degradation products formed in fe(III)/H2O2 oxidation system. Chem Anal                |
| 13 | <b>53</b> :943–951 (2008).                                                                                        |
| 14 | 21 Siedlecka EM, Gołebiowski M, Kaczynski Z, Czupryniak J, Ossowski T and Stepnowski P,                           |
| 15 | Degradation of ionic liquids by Fenton reaction; the effect of anions as counter and background ions.             |

16 *Appl Catal B* **91** :573–579 (2009).

17 22 Munoz M, Domínguez CM, de Pedro ZM, Quintanilla A, Casas JA and Rodriguez JJ, Ionic liquids
18 breakdown by Fenton oxidation. *Catal Today* 240, Part A:16–21 (2015).

23 Perathoiner S and Centi G, Wet hydrogen peroxide catalytic oxidation (WHPO) of organic waste in
agro-food and industrial streams. *Top Catal* 33:207–224 (2005).

- 24 Zazo JA, Casas JA, Mohedano AF and Rodríguez JJ, Catalytic wet peroxide oxidation of phenol
   with a Fe/active carbon catalyst. *Appl Catal B* 65:261–268 (2006).
- 3 25 Garrido-Ramírez EG, Theng BKG and Mora ML, Clays and oxide minerals as catalysts and
  4 nanocatalysts in Fenton-like reactions A review. *Appl Clay Sci* 47:182–92 (2010).

5 26 Navalon S, Alvaro M and Garcia H, Heterogeneous Fenton catalysts based on clays, silicas and
6 zeolites. *Appl Catal B* 99:1–26 (2010).

7 27 Dhakshinamoorthy A, Navalon S, Alvaro M and Garcia H. Metal nanoparticles as heterogeneous
8 Fenton catalysts. *ChemSusChem* 5:46–64 (2012).

- 9 28 Bautista P, Mohedano AF, Menéndez N, Casas JA and Rodriguez JJ, Catalytic wet peroxide
- 10 oxidation of cosmetic wastewaters with Fe-bearing catalysts. *Catal Today* **151**:148–52 (2010).
- 29 Domínguez CM, Quintanilla A, Casas JA and Rodriguez JJ. Treatment of real winery wastewater by
  wet oxidation at mild temperature. *Sep Purif Technol* 129:121–8 (2014).
- 13 30 Subbaramaiah V, Srivastava VC and Mall ID, Catalytic wet peroxidation of pyridine bearing
- 14 wastewater by cerium supported SBA-15. *J Hazard Mater* **248–249**:355–63 (2013).

15 31 Nguyen TD, Phan NH, Do MH and Ngo KT, Magnetic Fe2MO4 (M:Fe, mn) activated carbons:
16 Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. *J Hazard Mater*

17 **185**:653–661 (2011).

18 32 Xu L and Wang J, Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic
19 nanoparticles. *Appl Catal B* 123–124:117–126 (2012).

33 Xu L and Wang J, Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like
heterogeneous catalyst for degradation of 4-Chlorophenol. *Enviro Sci Technol* 46:10145–10153 (2012).

| 1  | 34 Munoz M, de Pedro ZM, Menendez N, Casas JA and Rodriguez JJ, A ferromagnetic -alumina-                           |
|----|---------------------------------------------------------------------------------------------------------------------|
| 2  | supported iron catalyst for CWPO. Application to chlorophenols. Appl Catal B 136-137:218-224                        |
| 3  | (2013).                                                                                                             |
| 4  | 35 Hou L, Zhang Q, Jérôme F, Duprez D, Zhang H and Royer S, Shape-controlled nanostructured                         |
| 5  | magnetite-type materials as highly efficient Fenton catalysts. Appl Catal B 144:739–749 (2014).                     |
| 6  | 36 Munoz M, de Pedro ZM, Casas JA and Rodriguez JJ. Preparation of magnetite-based catalysts and                    |
| 7  | their application in heterogeneous Fenton oxidation – A review. <i>Appl Catal B</i> <b>176–177</b> :249–265 (2015). |
| 8  | 37 Domínguez CM, Ocón P, Quintanilla A, Casas JA and Rodriguez JJ, Highly efficient application of                  |
| 9  | activated carbon as catalyst for wet peroxide oxidation. Appl Catal B 140–141:663–670 (2013).                       |
| 10 | 38 Domínguez CM, Ocón P, Quintanilla A, Casas JA and Rodriguez JJ, Graphite and carbon black                        |
| 11 | materials as catalysts for wet peroxide oxidation. Appl Catal B 144:599-606 (2014).                                 |
| 12 | 39 Eisenberg GM, Colorimetric determination of hydrogen peroxide. Ind Eng Chem Res 15:327-328                       |
| 13 | (1943).                                                                                                             |
| 14 | 40 Sandell EB, Colorimetric determination of traces of metals. Interscience Pubs., New York, (1959).                |
| 15 | 41 Tokuda H, Hayamizu K, Ishii K, Susan MABH and Watanabe M, Physicochemical properties and                         |
| 16 | structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J           |
| 17 | <i>Phys Chem B</i> <b>109</b> :6103–6110 (2005).                                                                    |
| 18 | 42 Rey A, Faraldos M, Casas JA, Zazo JA, Bahamonde A and Rodríguez JJ, Catalytic wet peroxide                       |
| 19 | oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface. Appl            |

20 Catal B 86:69–77 (2009).

| 1  | 43 Munoz M, de Pedro ZM, Casas JA and Rodriguez JJ, Improved wet peroxide oxidation strategies for |  |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 2  | the treatment of chlorophenols. Chem Eng J 228:646–654 (2013).                                     |  |  |  |  |  |  |  |
| 3  | 44 Bautista P, Mohedano AF, Menéndez N, Casas JA, Zazo JA and Rodriguez JJ, Highly stable          |  |  |  |  |  |  |  |
| 4  | Fe/yAl2O3 catalyst for catalytic wet peroxide oxidation. J Chem Technol Biotechnol 86:497-504      |  |  |  |  |  |  |  |
| 5  | (2011).                                                                                            |  |  |  |  |  |  |  |
| 6  |                                                                                                    |  |  |  |  |  |  |  |
| 7  |                                                                                                    |  |  |  |  |  |  |  |
| 8  |                                                                                                    |  |  |  |  |  |  |  |
| 9  |                                                                                                    |  |  |  |  |  |  |  |
| 10 |                                                                                                    |  |  |  |  |  |  |  |
| 11 |                                                                                                    |  |  |  |  |  |  |  |
| 12 |                                                                                                    |  |  |  |  |  |  |  |
| 13 |                                                                                                    |  |  |  |  |  |  |  |
| 14 |                                                                                                    |  |  |  |  |  |  |  |
| 15 |                                                                                                    |  |  |  |  |  |  |  |
| 16 |                                                                                                    |  |  |  |  |  |  |  |
| 17 |                                                                                                    |  |  |  |  |  |  |  |
| 18 |                                                                                                    |  |  |  |  |  |  |  |
| 19 |                                                                                                    |  |  |  |  |  |  |  |
| 20 |                                                                                                    |  |  |  |  |  |  |  |

**Table 1.** Characterization of the catalysts.

| Catalyst                                                         | $S_{BET} (m^2 g^{-1})$ | $A_{ext} (m^2 g^{-1})$ | Fe (%) |  |
|------------------------------------------------------------------|------------------------|------------------------|--------|--|
|                                                                  |                        |                        |        |  |
| AC                                                               | 1019                   | 175                    | 0.04   |  |
|                                                                  |                        |                        |        |  |
| G                                                                | 12                     | 12                     | 0.4    |  |
|                                                                  |                        |                        |        |  |
| Fe <sub>3</sub> O <sub>4</sub> /γ-Al <sub>2</sub> O <sub>3</sub> | 136                    | 135                    | 3.8    |  |
|                                                                  |                        |                        |        |  |
| Fe <sub>3</sub> O <sub>4</sub> /AC                               | 924                    | 80                     | 3.9    |  |
|                                                                  |                        |                        |        |  |

**Table 2.** Values of the pseudo first-order rate constant of IL disappearance (k', min<sup>-1</sup>), TOC removal (%) and  $\eta_{H2O2}$  (%) in the CWPO of imidazolium-based ILs with the Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and G catalysts ([IL]<sub>0</sub> = 1000 mg L<sup>-1</sup>; [catalyst] = 2 g L<sup>-1</sup>; [H<sub>2</sub>O<sub>2</sub>]<sub>0</sub> = stoichiometric dose; pH<sub>0</sub> = 3; T = 90 °C; t = 4h).

| Catalyst                           | [(                 | -mim]            | Cl                | [(                 |                  | ר <u>ר</u>        | [(                 | ]omim]           | <u></u>           | [[                 | ' <sub>12</sub> mim] | Cl                |
|------------------------------------|--------------------|------------------|-------------------|--------------------|------------------|-------------------|--------------------|------------------|-------------------|--------------------|----------------------|-------------------|
| Cuturyst                           | [C2mmijCi          |                  | [equilibries]     |                    | [Cammijer        |                   |                    |                  |                   |                    |                      |                   |
|                                    | $k'(\mathbf{r}^2)$ | X <sub>TOC</sub> | $\eta_{\rm H2O2}$ | $k'(\mathbf{r}^2)$ | X <sub>TOC</sub> | $\eta_{\rm H2O2}$ | $k'(\mathbf{r}^2)$ | X <sub>TOC</sub> | $\eta_{\rm H2O2}$ | $k'(\mathbf{r}^2)$ | X <sub>TOC</sub>     | $\eta_{\rm H2O2}$ |
| Fe <sub>3</sub> O <sub>4</sub> /γ- | 0.087              | 44               | 62                | 0.089              | 38               | 49                | 0.068              | 36               | 42                | 0.070              | 33                   | 38                |
| Al <sub>2</sub> O <sub>3</sub>     | ±                  |                  |                   | ±                  |                  |                   | ±                  |                  |                   | ±                  |                      |                   |
|                                    | 0.008              |                  |                   | 0.009              |                  |                   | 0.012              |                  |                   | 0.010              |                      |                   |
|                                    | (0.97)             |                  |                   | (0.99)             |                  |                   | (0.99)             |                  |                   | (0.99)             |                      |                   |
| G                                  | 0.587              | 53               | 60                | 0.533              | 47               | 51                | 0.560              | 45               | 50                | 0.635              | 37                   | 44                |
|                                    | +                  |                  |                   | +                  |                  |                   | +                  |                  |                   | ±                  |                      |                   |
|                                    | 0.03               |                  |                   | 0.04               |                  |                   | 0.02               |                  |                   | 0.06               |                      |                   |
|                                    | (0.97)             |                  |                   | (0.99)             |                  |                   | (0.99)             |                  |                   | (0.99)             |                      |                   |



Figure 1. Evolution of  $[C_2mim]Cl$  concentration (a),  $H_2O_2$  conversion (b) and TOC (c) upon CWPO with the catalysts tested ( $[[C_2mim]Cl]_0 = 1000 \text{ mg } \text{L}^{-1}$ ;  $[catalyst] = 2 \text{ g } \text{L}^{-1}$ ;  $[H_2O_2]_0 = 4300 \text{ mg } \text{L}^{-1}$ ;  $pH_0$ = 3; T = 90 °C).



Figure 2. Effect of the alkyl chain length of imidazolium-based ILs on their degradation upon CWPO with Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (a) and G (b) catalysts ([IL]<sub>0</sub> = 1000 mg L<sup>-1</sup>; [catalyst] = 2 g L<sup>-1</sup>; [H<sub>2</sub>O<sub>2</sub>]<sub>0</sub> = stoichiometric dose; pH<sub>0</sub> = 3; T = 90 °C).



Figure 3. [C<sub>2</sub>mim]Cl, TOC, H<sub>2</sub>O<sub>2</sub> conversion,  $\eta_{H2O2}$  and iron leached (4 h) upon CWPO with the Fe<sub>3</sub>O<sub>4</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (a) and G (b) catalysts in successive applications ([[C<sub>2</sub>mim]Cl]<sub>0</sub> = 1000 mg L<sup>-1</sup>; [catalyst] = 2 g L<sup>-1</sup>; [H<sub>2</sub>O<sub>2</sub>]<sub>0</sub> = 4300 mg L<sup>-1</sup>; pH<sub>0</sub> = 3; T = 90 °C, t = 4 h).