Stereoselective Glycosylations of 2-Azido-2-DeoxyGlucosides Using Intermediate Sulfonium Ions

Jin Park, Sameer Kawatkar, Jin-Hwan Kim, and Geert-Jan Boons*

Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road,
Athens, GA 30602

Supporting Information

Experimental Data for Compounds

General Procedures. All reactions were carried out under a positive pressure of argon, unless otherwise noted. All chemicals were purchased from commercial suppliers and used without further purification. Dichloromethane was distilled from calcium hydride under N_{2}. Column chromatography was performed on silica gel 60 (EM Science, 70-230 mesh). Reactions were monitored by TLC on Kieselgel $60 \mathrm{~F}_{254}$ (EM Science) and the compounds were detected by examination under UV light and visualized by dipping the plates in a cerium sulfate-ammonium molybdate solution followed by heating. Organic solutions were concentrated by rotary evaporation below $40^{\circ} \mathrm{C}$ under reduced pressure. Molecular sieves ($4 \AA$), used for reactions, were crushed and activated in vacuo at $390^{\circ} \mathrm{C}$ during 8 h and then for 2-3 hat $390^{\circ} \mathrm{C}$ directly prior to application. Optical rotations were measured with a 'Jasco P-1020' polarimeter. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Varian Inova 300
spectrometer and a Varian Inova 500 spectrometer equipped with Sun workstations. Chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane. Data are presented as follow: Chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ double of doublet, $m=$ multiplet and/or multiple resonances), integration, coupling constant in Hertz (Hz). High-resolution mass spectra were run in a JMS SX/SX102A tandem mass spectrometer, equipped with FAB source. The matrix used was DHB and the internal standards ultramark 1621 and PEG.

General procedure for the glycosylation reaction employing glycosyl donor $\mathbf{1 a}$ and $\mathbf{1 b}$.

Protocol A. A mixture of glycosyl donor 1a or 1b (0.042 mmol), glycosyl acceptor (0.063 $\mathrm{mmol})$ and activated molecular sieves ($4 \AA$) in DCM $(2 \mathrm{~mL})$ was stirred for 20 min under an atmosphere of argon at rt , then cooled to $-78{ }^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$. After the addition of trimethylsilyl trifluoromethanesulfonate ($0.76 \mu \mathrm{~L}, 0.0042 \mathrm{mmol}$), the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$. When the donor was consumed as detected by TLC analysis, the reaction mixture was quenched with aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by size exclusion LH-20 column (eluent $\mathrm{MeOH} / \mathrm{DCM}=1 / 1, \mathrm{v} / \mathrm{v}$) to determine the α / β ratio. Then further purification was completed by silicagel column chromatography (n-hexane/ethyl acetate $=2 / 1$).

Protocol B. A mixture of glycosyl donor 1a or 1b (0.042 mmol), glycosyl acceptor (0.063 $\mathrm{mmol})$, activated molecular sieves ($4 \AA$) and thioether (0.42 mmol) in DCM $(2 \mathrm{~mL})$ was stirred for 20 min under an atmosphere of argon at rt , then cooled to $-78{ }^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$. After the addition of trimethylsilyl trifluoromethanesulfonate $(0.76 \mu \mathrm{~L}, 0.0042 \mathrm{mmol})$, the reaction
mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ or $0{ }^{\circ} \mathrm{C}$. When the donor was consumed as detected by TLC analysis, the reaction mixture was quenched with aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by size exclusion LH- 20 column (eluent $\mathrm{MeOH} / \mathrm{DCM}=1 / 1, \mathrm{v} / \mathrm{v}$) to determine the α / β ratio. Then further purification was completed by silicagel column chromatography (n hexane/ethyl acetate $=2 / 1$) .

Methyl (3,4,6-Tri-O-acetyl-2-azido-2-deoxy- α-D-glucopyranosyl)-($1 \rightarrow 6$)-2,3,4-tri-O-benzoyl- α-D-glucopyranoside $(7 a, \alpha)$; $[\alpha]^{20} \mathrm{D}=+82.0^{\circ}\left(c=5.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.98-7.95 (m, 4H, aromatic), 7.88-7.86 (m, 2 H , aromatic), 7.54-7.25 (m, 9 H , aromatic), $6.18\left(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.54(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{H}-3), 5.54(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}$, H-4'), 5.26-5.23 (m, 2H, H-1', H-2'), $5.04(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{H}-4), 5.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{H}-$ 1), 4.33-4.30 (m, 1H, H-5'), 4.21 (dd, $1 \mathrm{H}, \mathrm{J}=5.0,12.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 4.18-4.15 (m, 1H, H-5), 4.07-4.00 (m, 1H, H-6b), 3.92 (dd, $1 \mathrm{H}, \mathrm{J}=3.5,11.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$ '), 3.69-3.67 (m, 1H, H-6b'), 3.51 (s, 3H, OCH ${ }_{3}$), 3.32 (dd, 1H, J = 3.0, $10.0 \mathrm{~Hz}, \mathrm{H}-2$), 2.09 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}$), 2.06 (s, 3H, COCH_{3}), $2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.57,169.91,169.74,165.81(2)$, 165.37, 133.56, 133.37, 133.15, 129.94, 129.89, 129.71, 129.18, 129.06, 128.77, 128.52, 128.43, 128.29, 128.01, 97.83, 96.91, 72.09, 70.34, 70.30, 69.48, 68.41, 68.33, 67.76, 66.87, 61.77, 60.96, 55.69, 20.71, 20.67(2). HRMS (FAB) m/z calcd for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{16}(\mathrm{M}+\mathrm{Na})^{+}$: 842.2385; found: 842.2382 benzoyl- α-D-mannopyranoside (8a, α); $[\alpha]^{20} \mathrm{D}=-2.76^{\circ}\left(c=5.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}) δ 8.10-7.80 (m, 6 H , aromatic), $7.51-7.23(\mathrm{~m}, 9 \mathrm{H}$, aromatic), $5.90(\mathrm{dd}, 1 \mathrm{H}, J=3.5,10.0$ $\left.\mathrm{Hz}, \mathrm{H}-3^{\prime}\right), 5.85\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.68-5.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 5.53(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{H}-$ 3), 5.05-4.99 (m, 3H, H-1, H-1', H-4), 4.37-4.34 (m, 1H, H-5'), 4.18-4.09 (m, 2H, H-5, H-6b), 4.01-3.97 (m, 2H, H-6a', H-6a), 3.73-3.71 (m, 1H, H-6b'), 3.57 (s, 3H, OCH ${ }_{3}$), 3.35 (dd, 1H, J $=3.5,10.0 \mathrm{~Hz}, \mathrm{H}-2), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.51,169.83,169.71,165.62(2), 165.38,133.60,133.53,133.15$, 129.94, 129.84, 129.72, 129.30, 129.06, 128.86, 128.63, 128.53, 128.28, 98.63, 97.62, 70.63, $70.38,69.97,69.40,68.41,67.75,67.25,67.10,61.74,60.95,55.54,20.71,20.65,20.58$. HRMS (FAB) m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{16}(\mathrm{M}+\mathrm{Na})^{+}: 842.2385$; found: 842.2388

3,4,6-Tri-O-acetyl-2-azido-2-deoxy- α-D-glucopyranosyl-(1 $\rightarrow 6$)-1,2:3,4-di-O-

isopropylidene- α - D -galactopyranose ($9 \mathrm{a}, \alpha$); $[\alpha]^{20} \mathrm{D}=+58.8^{\circ}\left(c=1.2, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime}\right), 5.47(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{H}-3), 5.06(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $10.0 \mathrm{~Hz}, \mathrm{H}-4), 5.04$ (d, 1H, $J=3.0 \mathrm{~Hz}, \mathrm{H}-1$), 4.63 (dd, $\left.1 \mathrm{H}, J=2.0,7.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.33-4.30(\mathrm{~m}$, 2H, H-2', H-4'), 4.16-4.03 (m, 4H, H-5, H-5', H-6a, H-6b), 3.85-3.77 (m, 2H, H-6a', H-6b'), 3.30 (dd, 1H, J = 3.0, $10.0 \mathrm{~Hz}, \mathrm{H}-2$), 2.09 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}$), 2.09 (s, 3H, COCH_{3}), 2.05 (s, 3H, COCH_{3}), $1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.67,170.01,169.73,109.38,108.78,98.18,96.25,70.86,70.59(2)$, 70.35, 68.40, 67.76, 67.61, 66.50, 61.79, 60.99, 26.09, 25.97, 24.97, 24.36, 20.73, 20.73, 20.64. HRMS (FAB) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{13}(\mathrm{M}+\mathrm{Na})^{+}: 596.2068$; found: 596.2066

3,4,6-Tri-O-acetyl-2-azido-2-deoxy- β-d-glucopyranosyl-($1 \rightarrow 6$)-1,2:3,4-di-O-

isopropylidene- $\beta-\mathrm{D}$-galactopyranose (9a, β); $[\alpha]^{20} \mathrm{D}=-15.7^{\circ}\left(c=0.4, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.34\left(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathbf{1}^{\prime}\right), 4.99(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-3), 4.98(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0$ $\mathrm{Hz}, \mathrm{H}-4), 4.62-4.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-1), 4.32-4.25\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{C}^{\prime}, \mathrm{H}-3^{\prime}\right.$, H-6a), 4.13-4.04 (m, 3H, H-4', H-5', H-6a'), 3.85-3.81 (m, 1H, H-6b'), 3.66-3.65 (m, 1H, H-5), $3.50(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-2), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$, $1.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 170.65, 169.97, 169.66, 109.43, 108.74, 102.27, 96.23, 72.53, 71.75, 71.24, 70.71, 70.39, 69.12, 68.49, 67.63, 63.73, 61.92, 25.98, 25.97, 24.94, 24.38, 20.71, 20.70, 20.60. HRMS (FAB) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{13}(\mathrm{M}+\mathrm{Na})^{+}: 596.2068$; found: 596.2068

Methyl (3,4,6-Tri-O-acetyl-2-azido-2-deoxy- α-D-glucopyranosyl)-(1 $\rightarrow 3$)-2-O-benzyl-4,6-O-

 benzylidene- α-D-glucopyranoside(10a, α); $[\alpha]^{20} \mathrm{D}=+91.1^{\circ}\left(c=0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.35(\mathrm{~m}, 10 \mathrm{H}$, aromatic), 5.56 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHPh}), 5.52(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{H}-$ 1), $\left.5.50(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{H}-3), 4.99(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{H}-4), 4.74(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-1)^{\prime}\right)$, 4.67 (d, 1H, J = $11.0 \mathrm{~Hz}, \mathrm{CH} H \mathrm{Ph}$), 4.62 ($\mathrm{d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{CH} \mathrm{HPh}$), 4.40-4.38 (m, 1H, H-5), 4.29-4.23 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} \mathrm{4}^{\prime}$), 4.14-4.10 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\prime}$), 3.86-3.74 (m, 4H, H-6a, H-6b, H-6b', H-5'), 3.61 (dd, 1H, J = 3.0, $10.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), 3.41 (s, 3H, OCH ${ }_{3}$), 3.12 (dd, $1 \mathrm{H}, \mathrm{J}=4.0,10.0 \mathrm{~Hz}$, $\mathrm{H}-2$), 2.09 (s, 3H, COCH_{3}), 2.04 (s, 3H, COCH_{3}), 1.99 (s, $3 \mathrm{H}, \mathrm{COCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.66,170.18,169.55,137.30,137.09,129.52,128.72,128.64,128.54,128.48$, 128.40, 128.32, 128.04, 127.95, 127.84, 127.03, 128.64, 128.43, 128.28, 125.99, 101.49, 98.19, $97.80,82.25,77.76,74.15,72.70,70.23,68.94,68.09,67.40,61.96,61.18,60.64$,55.33, 20.77, 20.69, 20.53; HRMS (FAB) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{13}(\mathrm{M}+\mathrm{Na})^{+}: 708.2381$; found: 708.2381

Methyl (3,4,6-Tri-O-acetyl-2-azido-2-deoxy- β-D-glucopyranosyl)-(1 $\rightarrow 3$)-2-O-benzyl-4,6-O-

 benzylidene- α-D-glucopyranoside(10a, β); $[\alpha]^{20} \mathrm{D}=+8.8^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.32(\mathrm{~m}, 10 \mathrm{H}$, aromatic), $5.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHPh}), 5.00(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-$ 3), 4.95 (t, $1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-4$), $4.89(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), $4.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-$ 1), 4.56 (d, $1 \mathrm{H}, J=12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.49 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}^{\prime}$), $4.29-4.16(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3$ ', H-6a, H-6b), 3.99-3.96 (m, 1H, H-4'), 3.82-3.67 (m, 3H, H-6a', H-5', H-2'), 3.62-3.52 (m, 3H, $\mathrm{H}-2, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-5$ '), 3.12(s, 3H, OCH_{3}), 2.08 (s, 3H, COCH_{3}), 1.98 (s, 3H, COCH_{3}), 1.97 (s, 3H, COCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.70, 170.01, 169.66, 137.34, 128.99, 128.66, 128.52, 128.30, 128.13, 126.05, 101.84, 101.05, 98.45, 80.23, 79.28, 77.22, 73.75, 72.73, 71.50, 68.89, 68.42, 63.91, 62.32, 62.08, 55.32, 20.74, 20.68, 20.60; HRMS (FAB) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{13}(\mathrm{M}+\mathrm{Na})^{+}: 708.2381$; found: 708.2387
Methyl (3,4,6-Tri-O-acetyl-2-azido-2-deoxy- α-D-glucopyranosyl)-(1 $\rightarrow 4$)-2,3,6-tri-O

 benzyl- α-D-glucopyranoside (11a, α); $[\alpha]^{20}{ }_{\mathrm{D}}=+14.2^{\circ}\left(c=5.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.36-7.27 (m, 15H, aromatic), $5.81(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{H}-1), 5.40(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}$, $\mathrm{H}-3$), 5.14 (d, 1H, $J=10.0 \mathrm{~Hz}, \mathrm{CHHPh}), 4.99(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{H}-4), 4.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.0$ Hz, CHHPh), 4.74 (d, 1H, J = $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.63 (d, $1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{H}-1$ '), 4.61 (d, 1H, J $=12.0 \mathrm{~Hz}, \mathrm{CH} H \mathrm{Ph}), 4.58(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{HPh}), 4.13-4.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ ', H-6a), 3.95-3.91(m,2H, H5, H-6a'), 3.83-3.66 (m, 4H, H-6b, H-5', H-4', H-6b'), 3.58 (dd, 1H, J = 3.0, $10.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), 3.39(s, 3H, OCH $)_{3}$, 3.23 (dd, $1 \mathrm{H}, \mathrm{J}=4.0,10.0 \mathrm{~Hz}, \mathrm{H}-2$), 2.07 (s, 3H, COCH_{3}), 2.01 (s, 3H,COCH_{3}), $1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.42,169.96,169.46,138.56$, 137.86, 137.81, 131.03, 129.30, 128.50, 128.42, 128.35, 128.13, 128.01, 127.69, 127.47, 127.37, 124.75, $97.60,97.35,81.76,80.52,74.86,73.54,73.53,73.20,70.32,69.30,69.13$, 68.18, 67.98, 61.44, 60.87, 55.35, 20.67, 20.66, 20.59; HRMS (FAB) m/z calcd for $\mathrm{C}_{40} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{13}(\mathrm{M}+\mathrm{Na})^{+}: 800.3007$; found: 800.3001

Methyl (3,6-Di-O-acetyl-4-O-benzyl-2-azido-2-deoxy- $\alpha-\mathrm{D}$-glucopyranosyl)-(1 $\rightarrow 6$)-2,3,4-tri-

 O-benzoyl- α-D-glucopyranoside (7b, α); $[\alpha]^{20}{ }_{D}=+137.8^{\circ}\left(c=0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.98-7.96 ($\mathrm{m}, 4 \mathrm{H}$, aromatic), 7.88-7.86 ($\mathrm{m}, 2 \mathrm{H}$, aromatic), 7.52-7.27 (m, 14H, aromatic), $6.17\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.64(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-3), 5.20(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}$, H-4'), 5.26-5.23 (m, 2H, H-1', H-2'), 4.96 (d, 1H, J = $3.0 \mathrm{~Hz}, \mathrm{H}-1$), 4.63 (d, $1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}$, CHHPh), 4.57 (d, 1H, J = $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.33-4.16 (m, 3H, H-5', H-6a, H-6b), 4.10-4.07 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), 3.92-3.89 (m, 1H, H-6a'), 3.64-3.62 (m, 1H, H-6b'), $3.58(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-4$), $3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.12(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.0,9.0 \mathrm{~Hz}, \mathrm{H}-2), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.02(\mathrm{~s}, 3 \mathrm{H}$, COCH_{3}) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.54,169.73,165.79,165.77,165.33,137.35,133.49$, 133.30, 133.05, 129.94, 129.71, 129.21, 129.11, 128.80, 128.55, 128.45, 128.39, 128.26, 128.08, 127.98, 98.07, 96.86, 75.95, 74.34, 72.09, 71.95, 70.35, 69.53, 68.79, 68.36, 66.84, 62.59, 61.33, 55.72, 20.93, 20.79. HRMS (FAB) m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{15}(\mathrm{M}+\mathrm{Na})^{+}$: 890.2748; found: 890.2748 tri-O-benzoyl- α-D-mannopyranoside (8b, α); $[a]^{20}{ }_{D}=+38.6^{\circ}\left(c=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.11-8.09 (m, 2H, aromatic), 7.96-7.94 (m, 2H, aromatic), 7.91-7.81 (m, 2H, aromatic), $7.61-7.22(\mathrm{~m}, 14 \mathrm{H}$, aromatic), $5.88(\mathrm{dd}, 1 \mathrm{H}, J=3.0,10.0 \mathrm{~Hz}, \mathrm{H}-3$), $5.80(\mathrm{t}, 1 \mathrm{H}, J=$ $\left.10.0 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.67\left(\mathrm{dd}, 1 \mathrm{H}, J=2.0,3.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.64(\mathrm{dd}, 1 \mathrm{H}, J=10.0,11.0 \mathrm{~Hz}, \mathrm{H}-3), 4.96$ (d, 1H, J = 2.0, Hz, H-1'), $4.96(\mathrm{~d}, 1 \mathrm{H}, J=3.0, \mathrm{~Hz}, \mathrm{H}-1), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{CH} H \mathrm{Ph})$, $4.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{CH} \mathrm{HPh}), 4.36-4.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5$) $), 4.25-4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.14-4.05$ (m, 2H, H-6b, H-5), 3.99-3.95 (m, 1H, H-6b'), 3.68-3.66 (m, 1H, H-6a'), $3.57(t, 1 H, J=11.0$ $\mathrm{Hz}, \mathrm{H}-4), 3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.14(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.0,10.0 \mathrm{~Hz}, \mathrm{H}-2), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.97$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.50,169.66,165.61(2), 165.39,137.31$, 133.51, 133.48, 133.10, 129.96, 129.88, 129.73, 129.34, 129.11, 128.89, 128.62, 128.56, $128.47,128.26,128.12,128.02,98.60,97.85,75.93,74.45,72.04,70.62,69.99,69.40,68.84$, 67.33, 67.07, 62.56, 61.33, 55.58, 20.94, 20.73. HRMS (FAB) m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{15}$ $(\mathrm{M}+\mathrm{Na})^{+}: 890.2748$; found: 890.2748
3,6-Di-O-acetyl-4-O-benzyl-2-azido-2-deoxy- α-D-glucopyranosyl-(1 $\rightarrow 6$)-1,2:3,4-di-O-

 isopropylidene- α-D-galactopyranose (9b, α); $[\alpha]^{20} \mathrm{D}=+104.8^{\circ}\left(c=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.22(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $5.57(\mathrm{dd}, 1 \mathrm{H}, J=9.0,11.0 \mathrm{~Hz}, \mathrm{H}-3), 5.50(\mathrm{~d}$, $\left.1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{H}-1), 4.62-4.55(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3$ ', H-4', CHHPh), 4.33-4.26 (m, 4H, H-2', H-6b', H-6a, CHHPh), 4.09-4.06 (m, 1H, H-5), 4.02-4.00 (m, 1H, H-5'), 3.82-3.80 (m, 1H, H-6a'), 3.75-3.73 (m, 1H, H-6b), $3.59(t, 1 H, J=9.0 \mathrm{~Hz}, \mathrm{H}-4), 3.12(\mathrm{dd}, 1 \mathrm{H}$, $J=3.0,11.0 \mathrm{~Hz}, \mathrm{H}-2), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.43(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.64,169.82$,137.34, 128.55, 128.08, 127.95, 109.27, 108.76, 98.29, 96.22, 75.94, 74.17, 71.84, 70.77, 70.63, 70.57, 68.63, 67.23, 66.32, 62.70, 61.39, 26.11, 25.97, 24.97, 24.33, 20.94, 20.88; HRMS (FAB) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{12}(\mathrm{M}+\mathrm{Na})^{+}: 644.2431$; found: 644.2439

Methyl (3,6-Di-O-acetyl-4-O-benzyl-2-azido-2-deoxy- $\alpha-\mathrm{D}$-glucopyranosyl)-(1 $\rightarrow 3$)-2-O-

 benzyl-4,6-O-benzylidene- α-D-glucopyranoside(10b, α); $[\alpha]^{20}{ }_{D}=+173.6^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.22(\mathrm{~m}, 15 \mathrm{H}$, aromatic), $5.60(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.0,11.0 \mathrm{~Hz}, \mathrm{H}-$ 3), 5.56 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHPh}$), 5.48 (d, $1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{H}-1$), $4.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{H}-1$ '), 4.62 (s, 2H, CHHPh), 4.55 (d, 1H, $J=11.0 \mathrm{~Hz}, \mathrm{CHHPh}), 4.49(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{CHHPh}), 4.35-4.26$ (m, 2H, H-5, H-5'), 4.22 (t, 1H, J = $9.0 \mathrm{~Hz} \mathrm{H-3}$ '), 4.08-4.06 (m, 1H, H-6a), 3.99 (dd, 1H, J=3.5, $12.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 3.79-3.72 (m, 3H, H-4', H-6a', H-6b'), 3.59 (dd, 1H, J = 3.5, $9.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), $3.55(\mathrm{t}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{H}-4), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.98(\mathrm{dd}, 1 \mathrm{H}, J=3.5,9.0 \mathrm{~Hz}, \mathrm{H}-2), 2.06(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{COCH}_{3}$), $2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.74,170.24,137.89$, 137.41, 129.17, 128.83, 128.65, 128.45, 128.13, 128.07, 126.21, 101.64, 98.53, 98.41, 82.46, 78.07, 75.92, 74.61, 74.56, 73.24, 72.36, 69.17, 68.75, 62.44, 62.16, 61.22, 55.53, 21.20, 21.05; HRMS (FAB) m/z calcd for $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{12}(\mathrm{M}+\mathrm{Na})^{+}: 756.2744$; found: 756.2740Methyl (3,6-Di-O-acetyl-4-O-benzyl-2-azido-2-deoxy- α-D-glucopyranosyl)-(1 $\rightarrow 4$)-2,3,6-tri-O-benzyl- α-D-glucopyranoside (11b, α); $[\alpha]^{20} \mathrm{D}=+79.6^{\circ}\left(c=0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.34-7.20 (m, 20H, aromatic), $5.76(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{H}-1), 5.47(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}$, $\mathrm{H}-3$), 5.11 (d, 1H, $J=12.0 \mathrm{~Hz}, \mathrm{CHHPh}), 4.78(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}, \mathrm{CHHPh}), 4.71(\mathrm{~d}, 1 \mathrm{H}, J=$
$12.0 \mathrm{~Hz}, \mathrm{CHHPh}), 4.61$ (d, $1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CHHPh}), 4.62-4.47(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1$ ', CHHPh), $4.11(\mathrm{t}$, $\left.1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.07-3.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-5^{\prime}\right), 3.89-3.79(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-4$ ', H-5), 3.72 (dd, $\left.1 \mathrm{H}, J=3.5,11.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{\prime}\right), 3.64-3.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\prime}, \mathrm{H}-2^{\prime}\right), 3.49(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{H}-4)$, 3.38 (s, 3H, OCH 3), 3.04 (dd, 1H, J = 4.0, $10.0 \mathrm{~Hz}, \mathrm{H}-2$), 2.06 (s, 3H, COCH ${ }_{3}$), 1.98 (s, 3H, COCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.37,169.79,138.71,137.88,137.85,137.33$, $129.45,129.21,128.99,128.83,128.63,128.54,128.51,128.39,128.32,128.17,128.12$, 128.03, 127.74, 127.56, 127.42, 126.23, 124.27, 97.60, 97.59, 81.84, 80.55, 77.22, 75.70, 74.81, 74.65, 73.49, 73.23(2), 72.14, 69.28, 69.12, 62.43, 61.25, 55.32, 20.93, 20.81; HRMS (FAB) m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{12}(\mathrm{M}+\mathrm{Na})^{+}: 848.3370$; found: 848.3377

Table 3. Glycosylation of acceptors 2 and 4 in the presence of various thioethers.

Table 4. Glycosylations of thioglycosyl donor 14 with secondary glycosyl acceptors 5 and 6 in the presence or absence of thioethers.

		$\xrightarrow[0^{\circ} \mathrm{C}]{\text { Glycosyl Acceptor 5-6 }}$
Accept.	Thioether	product, α / β (yield)
5	none	10a, 2/1 (60\%)
5	PhSET	10a, 14/1 (76\%)
5	thiophene	10a, 17/1 (74\%)
6	none	11a, α only (40\%)
6	PhSEt	11a, α only (45\%)
6	thiophene	11a, α only (40\%)

Table 5. Glycosylations of 2-deoxy-2-azido-3,4,6-O-tri-benzyl-D-glucopyranose trichloroacetimidate 15 with glycosyl acceptors 2-5 in the presence or absence of thiophene

	Glycosyl Acceptor 2-5Cl_{3}		$\xrightarrow[\text { DCM, } \mathbf{0}^{\circ} \mathbf{C}]{\text { MS(4Å), TMSOTf }}$
Accept.	Temp.	Thioether	product, α / β (yield)
2	$0^{\circ} \mathrm{C}$	none	3/1 (80\%)
2	$0^{\circ} \mathrm{C}$	thiophene	3/1 (82\%)
3	$0^{\circ} \mathrm{C}$	none	3/1 (83\%)
3	$0^{\circ} \mathrm{C}$	thiophene	4/1 (81\%)
4	$0^{\circ} \mathrm{C}$	none	1/2 (95\%)
4	$0^{\circ} \mathrm{C}$	thiophene	1/2 (96\%)
5	$0^{\circ} \mathrm{C}$	none	1/2 (45\%)
5	$0^{\circ} \mathrm{C}$	thiophene	1/1 (48\%)

