

Fam

Alexa 488

Pyrene

Tamra

Red-X

Deleted: Appendix 19

${ }^{-1}$
The distances between the dyes were estimated using the following assumptions: $\boldsymbol{\|}$
9
The RNA helix can be described as a cylinder with a radius of $13 \AA$, a height that increases $2.6 \AA$ per base pair and a
Deleted: n
Deleted: helical twist per base pair of 33°. .
The distance from the base to the fluorophore is that of the fluorophore linker. $\|$
The distance from the edge of the cylinder to the fluorophore is the fluorophore linker minus the distance from linking position on the base to the edge of the cylinder (ca. $6.7 \AA$), which leaves an effective radius of $13-6.7=6.3 \AA$. This is because the cylinder is
Deleted: demarked
Deleted: demarcated by the
phosphate backbone so the bases are buried inside the cylinder. ${ }^{\|}$
The linker length for Alexa488, Fam and Tam is taken as $15.9 \AA$ while the linker length for Cy 5 is $20.85 \AA$. $\boldsymbol{\pi}$
-
Example: Calculation of the distance
Deleted: : MB-2d
Deleted: from Cy5 to Alexa488 in BP-2dब
\uparrow
The position of the fluorophore in the cylinder can be described by the angle between the dyes (33% base $\times 7$ bases $=231^{\circ}$), the vertical displacement which depends on the number of bases between the dyes $(2.6 \AA /$ base $\times 5$ bases $=18.2 \AA)$, and a representative radius equal to the effective RNA radius ($6.3 \AA$) plus the length of the fluorophore's linker; Alexa488: $6.3+15.9=22.2$
$\AA, \mathrm{Cy} 5: 6.3+20.85=27.2 \AA$ (see figure below). $\boldsymbol{\|}$

The position of the fluorophore in the cylinder can be described by the angle between the dyes $\left(33^{\circ} /\right.$ base $\times 7$ bases $\left.=231^{\circ}\right)$, the vertical displacement which depends on the number of bases between the dyes ($2.6 \AA /$ base $\times 5$ bases $=18.2 \AA$), and a representative radius equal to the effective RNA radius ($6.3 \AA$) plus the length of the fluorophore's linker; Alexa488: $6.3+15.9=22.2 \AA$, Cy5: $6.3+20.85=27.2 \AA$ (see figure below).

The cosine law can be used to determine the length of x .
$\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ac} \cos \left(c^{\prime}\right)$
where c ' is the angle between a and b. Then:
$c^{2}=27.2^{2}+22.2^{2}-(27.2)(22.2) \cos 129=44.6 \AA$
Then, if x is $44.7 \AA$, using Pythagoras' theorem the value of d results:
$\mathrm{d}^{2}=44.7^{2}+18.2^{2}=2323.2 ; \mathrm{d}=48.2 \AA$

