A Highly Stereocontrolled Total Synthesis of (–)-Neodysiherbaine A

Keisuke Takahashi, Takashi Matsumura, Graeme R. M. Corbin, Jun Ishihara, and

Susumi Hatakeyama*

Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan

Supporting Information

Table of Contents	Page
General Experimental	S2
Synthesis of compound 14 from 9	S2
¹ H and ¹³ C NMR spectra for 11	S4
¹ H and ¹³ C NMR spectra for 12	S5
¹ H and ¹³ C NMR spectra for 14	S 6
¹ H and ¹³ C NMR spectra for 15	S 7
¹ H and ¹³ C NMR spectra for 16	S 8
¹ H and ¹³ C NMR spectra for 17	S9
¹ H and ¹³ C NMR spectra for 18	S10
¹ H and ¹³ C NMR spectra for 20	S11
¹ H and ¹³ C NMR spectra for 21	S12
¹ H and ¹³ C NMR spectra for 22	S 13
¹ H and ¹³ C NMR spectra for 25	S14
¹ H and ¹³ C NMR spectra for 26	S15
¹ H and ¹³ C NMR spectra for 27	S16
¹ H and ¹³ C NMR spectra for 29	S17
H-H COSY and NOESY spectra for 29	S18
¹ H and ¹³ C NMR spectra for neodysiherbaine A (2)	S19

General Experimental. All reactions were performed under argon atmosphere, except for DDQ oxidation of 19 and NaIO₄ oxidation of 28. All extracts were dried over MgSO₄ and concentrated by rotary evaporation below 30 °C at 25 Toor unless otherwise noted. Commercial reagents and solvents were used as supplied with following exceptions. Dichloromethane (CH₂Cl₂), triethylamine (Et₃N), dimethyl sulfoxide (DMSO), $N_{1}N_{2}$ dimethylformamide (DMF), *N*,*N*-dimethylacetoamide (DMA), N,N,N,N',N',N'hexamethylphosphoramide (HMPA), benzene, acetonitrile (MeCN) were distilled from CaH₂. Methanol (MeOH) was distilled from sodium. Analytical thin-layer chromatography (TLC) was performed using glass-packed silica gel plates (0.2 mm thickness). Column chromatography was performed using silica gel (particle size 100-210 µ). Optical rotations were recorded on a digital polarimeter at ambient temperature. Infrared spectra were measured on a Fourier transform infrared spectrometer. ¹H NMR (400 and 500 MHz) and ¹³C NMR (100 MHz) spectra were measured using CDCl₃, CD₃OD, or D₂O as solvent, and chemical shifts are reported as δ values in ppm based on internal CHCl₃ (7.26 ppm, ¹H; 77.0 ppm, ¹³C), H₂O (4.65 ppm, ¹H), or MeOH (49.9 ppm, ¹³C). HRMS spectra were taken in EI or FAB mode.

(3aR,6R,7R,7aR)-Tetrahydro-(7-(tert-butyldimethylsilyl)oxy-2,2-dimethyl-3aH-

[1,3]dioxolo[4,5-c]pyran-6-yl)methanol (14). To a stirred solution of tri-*O*-acetyl-D-glucal (9) (71 g, 261 mmol) in CH_2Cl_2 (600 ml) at 0 °C were added triethylsilane (73 g, 522 mmol) and BF₃·OEt₂ (54 g, 470 mmol). After stirring at 0 °C for 2 h, the reaction was quenched with saturated NaHCO₃ (300 ml). The reaction mixture was extracted with CHCl₃, washed with brine and concentrated to give ((2*R*,3*S*)-3,6-dihydro-3-acetoxy-2*H*-pyran-2-yl)methyl acetate (60 g) as a colorless oil, which was used for the next reaction without purification.

Crude ((2R,3S)-3,6-dihydro-3-acetoxy-2*H*-pyran-2-yl)methyl acetate (60 g) was dissolved into MeOH (300ml) and NaOMe (4.2g, 78.3 mmol) was added. After being stirred for 2 h at room temperature, the reaction mixture was neutralized with Dowex 50, filtrated, and evaporated to give **10** (40 g) as a colorless solid, which was used for the next reaction without purification.

Crude **10** (40 g) was dissolved into DMF (300 ml), and the mixture was cooled to 0 °C. Imidazole (106 g, 1570 mmol) and *tert*-butyldimethylsilyl chloride (100g, 666 mmol) were added and the mixture was stirred at room temperature for 10 h. MeOH (20 ml) was added and the mixture was stirred for 10 mim. The reaction mixture was diluted with Et₂O, washed with water and brine, and concentrated to give **11** (96 g) as a pale yellow oil, which was used for the next reaction without purification. Pure **11**, a colorless oil, obtained by silica gel column chromatography (hexane/AcOEt = 10/1-4/1) showed the following spectral and analytical data: $[\alpha]^{25}_{D}$ +53.7° (*c* 1.20, CHCl₃); FTIR (neat) 2939, 2858, 1462, 1251, 1089 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.76 (dd, *J* = 2.0, 10.4 Hz, 1H), 5.70 (d, *J* = 10.4 Hz, 1H), 4.15 (m, 3H), 3.89 (dd, *J* = 2.0, 11.2 Hz, 1H), 3.72 (dd, *J* = 4.4, 11.2 Hz, 1H), 3.29 (t, *J* = 5.6 Hz, 1H), 0.91 (s, 9H), 0.90 (s, 9H), 0.10 (s, 3H), 0.10 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 129.3, 127.0, 79.9, 65.5, 64.9, 63.4, 26.1, 25.8, 18.6, 18.0, -4.1, -4.7, -5.0, -5.1; HRMS (EI) calcd for C₁₈H₃₈O₃Si₂ (M⁺) 358.2360, found 358.2347.

Crude **11** (96 g) was dissolved into acetone (522 ml) and water (130 ml). *N*-methylmolpholine oxide (NMO) (61 g, 522 mmol) and OsO_4 (1.5 M in water, 8.7 ml, 1.35 mmol) were added, and the mixture was stirred for 15 h. The reaction mixture was diluted with Et₂O, washed with 10% Na₂S₂O₃, water, and brine, dried, concentrated, and filtrated thorough SiO₂ (500 g) with hexane/EtOAc (3:1) to give **12** (90 g) as a pale yellow solid, which was used for the next reaction without purification. Pure **12**, a colorless solid, obtained by silica gel column chromatography (hexane/AcOEt = 4/1-2/1) showed the following spectral and analytical data: $[\alpha]^{24}_{D} + 2.8^{\circ}$ (*c* 1.34, CHCl₃); FTIR (neat) 3428, 2942, 2859, 1463,

1251, 1103 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.00 (dd, J = 2.2, 12.4 Hz, 1H), 3.86 (dd, J = 2.0, 11.2 Hz, 1H), 3.86 (m, 1H), 3.75 (dd, J = 4.9, 11.2 Hz, 1H), 3.67 (t, J = 9.0 Hz, 1H), 3.52 (dd, J = 1.0, 12.4 Hz, 1H), 3.47 (td, J = 9.0, 3.5 Hz, 1H), 3.10 (ddd, J = 2.0, 4.9, 9.0 Hz, 1H), 2.38 (d, J = 9.0 Hz, 1H, exchangeable with D₂O), 2.19 (d, J = 7.1 Hz, 1H, exchangeable with D₂O), 0.40 (s, 18H), 0.16 (s, 3H), 0.11 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 81.8, 75.3, 69.9, 69.8, 62.8, 26.0, 18.5, 18.3, -3.9, -4.8, -5.0, -5.2; HRMS (EI) calcd for C₁₇H₃₇O₅Si₂ [(M-Me)⁺] 377.2180, found 377.2173.

To an ice-cooled solution of crude **12** (90 g) in CH₂Cl₂ (500 ml) were added 2,2dimetoxypropane (72 g, 690 mmol) and *p*-toluenesulfonic acid monohydrate (2.2 g, 11.5 mmol), and the mixture was stirred at 0 °C for 4 h. After disappearance of **12** on TLC, MeOH (11g, 345 mmol) was added and stirring was continued at room temperature for 10 h. The reaction mixture was diluted with Et₂O, washed with saturated NaHCO₃ and brine, and concentrated. Recrystallization of the residue from hexane and column chromatography (SiO₂ 400g, hexane/AcOEt = 8/1) of the mother liqor gave **14** (45.0 g, 54 % from **9**): $[\alpha]_{D}^{25}$ -40.9° (*c* 1.92, CHCl₃); FTIR (neat) 3460, 2943, 2860, 1458, 1378, 1315, 1249, 1134 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.25 (d, *J* = 13.4 Hz, 1H), 4.17 (dd, *J* = 6.2, 2.0 Hz, 1 H), 3.96 (t, *J* = 6.2 Hz 1H), 3.84 (dd, *J* = 2.9, 11.7 Hz, 1H), 3.73 (dd, *J* = 2.2, 13.4 Hz, 1H), 3.61 (dd, *J* = 6.36, 11.7 Hz, 1H), 3.59 (dd, *J* = 6.2, 9.5 Hz), 3.11 (ddd, *J* = 3.0, 6.4, 9.3 Hz, 1H), 2.08 (brs, 1H), 1.52 (s, 3H), 1.35 (s, 3H), 0.87 (s, 9H), 0.15 (s, 3H), 0.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 109.2, 79.7, 79.5, 74.0, 71.3, 66.6, 62.7, 28.1, 26.4, 25.9, 18.1, -4.0, -5.1; HRMS (FAB) calcd for C₁₅H₃O₅Si [(M+H)⁺] 319.1941, found 319.1950.

160.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0

HO. PMBO-¹H NMR(400 MHz, CDCl₃)

PPM 110 100 90 80 70 60 50 40 30 20 10 0

.....

HO TESO ¹H NMR(400 MHz, CDCl₃) 6.38 5.25 3.35 3.01 98 1.86 5 1.00 1.08 1.04 0.97 PPM 4 0 T 3 2 1 HO TESO 77.322 77.000 76.66 75.325 75.325 73.444 73.444 77.361.310 67.101 61.013 27.800 43.103 6.921 5.065 4.842 ¹³C NMR(100 MHz, CDCl₃) IP

